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INTRODUCTION

In the pigeon, as in other members of the three groups of vertebrates which have
developed advanced powers of flight—the birds, bats and pterosaurs—the bending
and torsional strength of the proximal part of the wing lies in the humerus and
radio-ulna. The humerus runs obliquely back from the shoulder joint to the elbow,
and from there the radio-ulna runs obliquely forward to the wrist. In flight the
radio-ulna is generally set at a large angle to the humerus, often about a right angle
(Fig. 8).

The elbow joint is free to bend in the plane of the wing, but transmits bending
moments at right angles to this plane, and twisting moments. Because of the large
angle between the radio-ulna and the humerus, bending moments applied by the lift
force to the radio-ulna are transmitted to the humerus largely as twisting moments,
and vice versa. At the shoulder joint, the head of the humerus is free to rotate through
large angles in all of the six possible ways—up, down, forward, back, and rotation in
the nose-up and nose-down senses: bending and twisting moments cannot, therefore,
be transmitted to the body without the help of muscles inserting on the humerus.

In this paper the ultimate strengths of the humerus and radio-ulna under bending
and twisting loads are examined. The question is then asked—How much lift would
be needed to break the bones in various ways? This can be answered subject to
making some assumptions about the distribution of lift over the wing, and, this done,
the limitations imposed by the structural strengths of the wing bones on the pigeon's
performance can be considered.

MATERIAL

Feral pigeons Columba livia were caught in nocturnal raids on Bristol University's
clock tower, and were kept in cages until wanted. Strength tests on bones were
carried out as soon as possible after killing and dissection.

METHODS

Mounting of bones

In strength tests on bones, the ends of the bones were embedded in Wood's
Metal (m.p. 700 C.) in brass cups, and the test forces were then applied to the brass
cups. By this means the ends of the bone were firmly gripped, but as the Wood's
Metal mould fitted the bone closely, concentrated forces were avoided.
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Bending strength

Bending moments were applied to the bones with the apparatus shown in Fig. i.
The lower brass cup was rigidly fixed, and the test force was applied horizontally to
the lever arm projecting upwards from the upper one, by means of a string passing

o

Fig. i. Apparatus for applying bending moments to bones (see text).

Fig. 2. Apparatus for applying twisting moments to bones (see text).
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over a pully. A stream of water was directed into a bucket tied to the end of the
string, and diverted as soon as the bone broke. The force -Fin the string causing failure
was then determined by weighing the bucket of water on a spring balance graduated
in steps of 100 g. wt. The moment arm D was measured from the point of attachment
of the string to the lever, to the point at which the bone broke (dotted line in Fig. 1).
FD was then taken as the bending moment causing failure.

The arrangement also subjected the bone to a shearing stress, but as this was
generally less than 20 kg. wt./cm.2 at failure, it is unlikely to have influenced the result.
This feature of the tests is therefore neglected, and results are regarded as a measure
of the limiting bending moments which the bones could bear.

Torsional strength

For these tests the bone was mounted horizontally as shown in Fig. 2, the cup at
one end being fixed, while that at the other was mounted on a shaft supported on two
ball races, so that only torsional stresses could be applied to the bone. A lever pro-
jected horizontally from this shaft, at right angles to it, and test moments were
applied by hanging weights from the end of this lever.

Fig. 3. Oblique longitudinal section through right humerus of pigeon, looking postero-
ventrally. Slender bony trabeculae cross the hollow interior of the bone at the ends, and form
annular thickenings inside the cylindrical shaft, thus maintaining the thin outer wall under
load, and preventing buckling.

RESULTS

Structure of the humerus

Although the anatomy of the pigeon's skeleton is well known, some features of the
bones under test will be pointed out here in order to enable the results of the tests
to be more readily followed.

The humerus is basically a hollow tube of bone, more or less circular in section,
which carries the bending and twisting moments set up by the aerodynamic forces
acting on the wing (Fig. 3). It would not appear to be significantly loaded in direct
tension or compression as a rule. The ends are widened and reinforced with bony
trabeculae, the proximal end to form the ball of the shoulder joint and to carry the
insertions of the muscles acting at this joint, and the distal end to form a joint with
the radio-ulna which is strong and stiff in torsion and vertical bending, but free to
bend fore-and-aft.

Fig. 4 is a view along the axis of the humerus from the proximal end, to show its
orientation in life. The deltoid crest forms a shelf jutting forward on the dorsal side of
the humerus, with the pectoralis muscle inserting on its ventral side. The dorsal
surface of the deltoid crest is approximately flat, and parallel with the plane of the
wing. This was used as a guide in setting up humeri in the bending apparatus, the



222 C. J. PENNYCUICK

bending force being applied at right angles to the flat dorsal face of the deltoid crest,
and in such a direction as to bend the distal end of the bone dorsally.

Bending strength

The eight humeri of four pigeons, of average weight 393 g. wt. were broken in the
bending apparatus. Failure occurred at points varying between 0-38 and 070 (averag-
ing 0-53) of the overall length of the humerus from the proximal end, the average
overall length being 4-83 cm. The bending moment at failure varied between 13-4
and 21*1 kg. wt. cm., averaging 17-0 kg. wt. cm.

Fig. 4. Head of humerus, looking distad, showing orientation in relation to radio-ulna.
Anterior to left of diagram. Dotted line marks flat dorsal surface of deltoid crest—used as a
guide in orienting humeri in the bending apparatus.

Torsional strength

Six humeri were subjected to twisting moments in the apparatus of Fig. 2, and
broke at moments between n-2 and 14-1 kg. wt. cm., averaging 12-4 kg. wt.cm.

Structure of the radio-ulna

The radio-ulna of the pigeon shows the typical bird arrangement. The two bones
articulate with one another at both ends, but are not fused. The ulna is the thicker
bone, and is curved, bulging posteriorly, while the radius is thinner and straight.
In the middle part of their length the two bones are quite separate, the radius being
anterior to the ulna, and in section the line joining their centres is approximately
perpendicular to the direction of the lift. Neither bone is pneumatic.

Bending strength

When subjected to a bending moment simulating the normal action of lift on the
wing the two bones are side by side and their strengths are additive. The radio-ulnae
of the same four pigeons, whose humeri were tested as described above, were broken
in the same manner in the bending apparatus. The average overall length of the ulna
was 6-o6 cm. and the average point of failure was 0-33 of the overall length from the
proximal end, though the variation in this measurement was rather wide, ranging
from 0-17 to 0-76. The bending moment at failure varied between 7-7 and 12-4
kg. wt. cm., averaging io-6 kg. wt. cm.

Neutral axis of torsion

Twisting the radio-ulna produces a somewhat more complicated situation than is
seen in the approximately cylindrical humerus. Owing to the asymmetry of the
radio-ulna, with two different-sized bones separated by a gap, at least one of the
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bones must be off the axis about which twisting is applied, and hence is subjected to a
combination of bending and twisting moments. The choice of twisting axis therefore
affects the results of torsional strength measurements, and in order to minimize bending
the neutral axis of torsion was used. By definition, a force applied to this axis, and at
right angles to it, produces bending without twisting.

The neutral axis of torsion was located by the method illustrated in Fig. 5. The
procedure was carried out at both ends of a radio-ulna, and the position of the neutral
axis of torsion, thus located, is marked in Fig. 6.

Fig. 5. Method of locating neutral axis of torsion of radio-ulna. Top: A light horizontal bar is
attached transversely to one end of the radio-ulna, the other end being fixed. Middle: addition
of a weight Wi to one end of the bar causes the radio-ulna to bend and twist. Bottom: the
weight W2 which, when applied to the other end of the bar, balances the twist produced by
Wi, is found. Wi and W2 then produce equal and opposite moments about the neutral axis
(dotted line).

Fig. 6. Radio-ulna of pigeon showing points (thin dotted lines) at which neutral axis of torsion
(thick dotted line) was located.

For setting up radio-ulnae in the twisting apparatus a jig was constructed by which
a radio-ulna could be supported so that its neutral axis of torsion coincided with the
axis of the twisting apparatus. With the specimen so held, Wood's Metal was poured
into the cups, and the jig was then removed.

Torsional strength

Five radio-ulnae, from three pigeons, were broken in the twisting apparatus. The
twisting moment at failure varied between 7-12 and 8-84 kg. wt. cm., and averaged
7-66 kg. wt. cm.

DISCUSSION

In order to consider the significance of the mechanical properties of the skeleton an
estimate of the lift distribution must be made. This is attempted below for two
extreme conditions of flight-gliding and the downstroke in hovering.
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The difference between these two conditions lies in the distribution of relative air
speed over the span. In a straight, unaccelerated glide (Fig. ja) the wings are held
motionless relative to the body, and the relative air speed is the same over the whole
span—it is just the speed at which the bird is gliding along. In hovering (Fig. jb) the
bird's body is not moving at all, and the relative air speed at the body, including the
shoulder joint, is zero. If the wing tip is distant r cm. from the shoulder joint, and
the wing is flapped at w radians/sec, then the speed of the tip (and hence the relative
air speed at that point) is r(o cm./sec. The relative air speed increases linearly along
the span from the shoulder joint to the tip.

Fig. 7. (a) Pigeon gliding. The length of the arrows represents the relative air speed, which is
the same at all points across the span. (6) Middle of downstroke in hovering. The relative air
speed is zero at the body, and increases linearly from the shoulder joints to the wing tips.

In the downstroke of flapping flight other than hovering the relative airspeed at any
point on the wing is the resultant of two components, one due to the forward motion
of the whole bird, and the other due to the angular motion of the wing relative to the
body. The velocity distribution will thus be intermediate between that for the
hovering case, in which the former component is zero, and that for the gliding
case, in which the latter is zero.

Estimation of lift distribution

To obtain a lift distribution the wing is divided up into 10 chordwise strips, and it
is assumed that the lift on each strip is proportional to the product of its area and the
square of the local relative air speed, which amounts to assuming that the local
section lift coefficient is constant along the span. Readers with aeronautical knowledge
may think this assumption somewhat rudimentary, but it provides a simple basis for
making an approximation, in the absence of any evidence favouring some more ela-
borate assumption. The analysis refers, of course, only to positive (i.e. right-way-up)
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loading of the outstretched wing—more complicated situations, such as the inverted
loading seen in the upward 'flick' in the upstroke of slow flapping flight (Brown, 1948)
are not considered here.

The lift force acting on each strip of wing is assumed to act through a point whose
spanwise position is in the middle of the strip, and whose chordwise position is a
quarter of the chord behind the leading edge. The use of this ' quarter-chord point'
for the centre of lift of a wing section follows from the theory of thin aerofoils, and
is a good approximation for most real wing sections (Abbott & Doenhoff, 1959).

Strip: 1 5 10

Fig. 8. The pigeon's outstretched wing replaced by ten rectangular strips of equivalent area
(numbered at bottom). Solid circles mark the assumed centres of lift of the strips, and bending
and twisting arms with respect to the humerus for each strip are drawn perpendicular to their
respective axes. The method of finding the centre of lift of the whole wing in gliding (hollow
star) and in hovering (solid star) is explained in the text, and the calculation is set out in
Table 1.

A torsion arm and a bending arm are now measured for each strip with respect to
the humerus (Fig. 8) and the radio-ulna (Fig. 9). The torsion arm is the distance
between the centre of lift of the strip and the neutral axis of torsion of the bone (assumed
to coincide with the axis of the cylindrical part of the bone in the case of the humerus).
The bending arm is the distance between the centre of lift of the strip and an axis at
right angies to the torsion axis. This axis passes through the centre of rotation of the
head of the humerus in Fig. 8 and through the average point of failure in bending of
the radio-ulna in Fig. 9.
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Gliding—location of centre of lift

If speed and local lift coefficient are constant across the span, the lift for each strip is
proportional to its area, and the lift distribution is the same as the area distribution
(Fig. ioa). These conditions represent gliding flight.

Strip: 1

Fig. 9. Moment diagram as Fig. 8, but for the radio-ulna. Only those strips (1-7) distal to the
distal end of the radio-ulna are considered in the moment calculation (Table 2).

If the area of the ith strip is sit and its torsion arm about the humerus tit then the
lift on the strip applies a twisting moment proportional to s^ to the humerus. The
total twisting moment Mt of the lift about the axis of the humerus is the sum of the
contributions made by each strip, that is

t=10

Mt = £siti. (1)

Mt, referred to as a ' moment' actually has the dimensions of volume, since wing
area has been substituted for lift force. To obtain the mean torsion arm I for the
whole wing, M, is divided by the total wing area, S

1 = §• (2)

Similarly, if the bending arm of the ith strip is bt, the total bending ' moment' is

Mb = S *A- (3)

and the mean bending arm 5 is _ Mb
(4)
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In Table 1 this calculation is carried out for the humerus, and the mean bending
arm is found to be 12-4 cm., while the mean torsion arm is 7-0 cm. These distances
are marked relative to their respective axes in Fig. 8, giving the point marked with a
hollow star. This is the centre of lift in gliding, and may be regarded as the point
through which the lift appears to act.

Table 1. Moment analysis for humerus, from Fig. 8

Gliding Hovering

Strip

1

2

3
4
5
6
7
8
9

1 0

Totals

Area
(cm.2)

21-6

25-S
2 7 9
32-1
36-2
4 0 8

40-0
399
38-3
1 5 0

3I7-3

Flapping
radius
(cm.)

28-s
25-5
22-5
19-5
1 6 5
13-5
10-5

7-S
4'5
2-3

—

Bending
arm

(cm.)

237
2 1 3

186
1 6 1

1 3 7
11-4

9 2
7-2
4-8
3 0

—

Torsion
arm

(cm.)

1 5 6
1 3 8
12-3
10-4
8-8
6-8
4-6
2 ' 2
O I

-O'9

Bending
'moment'

(cm.3)

5 1 2

S43
519
5 i 6
496
465
368
287
184
45

3.935

Twisting
' moment'

(cm.3)

337
352
343
334
319
277
184
88
4

- 1 4

2,224

1

'Lift'
(cm.4)

17,500
16,600
14,100
12,200
9.9OO
7.4OO
4,400
2,200

8 0 0

1 0 0

85,200

Bending
' moment'

(cm.5)

415.500
354.OOO
262,000
196,000
136,000
84,000
40,000
16,000
4,000

0

1,507,000

Twisting
' moment

(cm.6)

273,000
229,000
173,000
127,000
87,000
50,000
20,000

5,000
0

0

964,000

Mean bending arm (cm.)
Max. bending moment (kg. wt. cm.)
Max. lift (kg. wt.)
Ultimate load factor (g)
Mean torsion arm (cm.)
Max. twisting moment (kg. wt. cm.)
Max. lift (kg. wt.)
Ultimate load factor (g)

124
170

1-72
8-8

7-0
124

1-77
90

17-0
I-I2
57

11-3
12-4
no
5-6

Loading of the humerus

The bending moment M&(ult) and the twisting moment M((u l t ) at which the
humerus breaks having been found, two estimates are available for the maximum
lift Lmax which the wing can develop without breaking the humerus. Lmax is
obtained by dividing each maximum moment by the appropriate moment arm. The
mean bending arm 5 is the distance between the centre of lift and the centre of
rotation of the head of the humerus, but the humerus failed, on average, at a point
2-5 cm. distal to this. Therefore Lmax is given by

M,
-z-5

i7*o

1F9
Similarly, from the twisting measurements

7-0
= 1-77 kg. wt.

The average weight of the pigeons used was 393 g. wt., so if the body is assumed to
contribute no lift, each wing must carry half the weight, or 196 g. wt., in a straight,
unaccelerated glide. The bending and torsional strengths of the humerus are thus

15 Exp. Biol. 46, 2
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sufficient to carry 8-8 and 9-0 times the weight respectively. The humerus may be
said to have 'ultimate load factors' of 8-8 and 9-0 in bending and torsion respectively.
The similarity of the two figures indicates that the humerus is about as likely (or
unlikely) to break in bending as in torsion.

Table 2. Moment analysis for radio-ulna, from Fig. 9

Gliding Hovering

Strip

1

2

3
4
5
6
7

Totals

Area
(cm.2)

2 1 6

25-5
27-9
3 2 1

36-2
4 0 8
4 0 0

224-1

Flapping
radius
(cm.)

28-5
2 5 5
2 2 5

1 9 5
1 6 5
13-5
1 0 5

Bending
arm

(cm.)

2 0 0

17-4
1 5 0

12-3
9-a
7-1

4'3

Torsion
arm

(cm.)

n - 6
1 0 0

8 1

6-6
5°
3 7
2 5

Bending
' moment'

(cm.3)

432
444
418

395
358
289
1 7 2

2,508

Twisting
'moment'

(cm.3)

2 5 i

255
2 2 6

2 1 2

1 8 1

1 5 1
1 0 0

1.376

'Lift1

(cm.4)

17.500
16,600
14,100
12,200
9,900
7,400
4,400

82,100

Bending
'moment'

(cm.6)

350,000
289,000
211,000
150,000
98,000
53.ooo
19,000

1,170,000

Twisting
' moment8

(cm.1)

203,000
166,000
114,000
80,000
50,000
27,000
11,000

651,000

Mean bending arm (cm.)
Max. bending moment (kg. wt. cm.)
Max. lift (kg. wt.)
Ultimate load factor (g)
Mean torsion arm (cm.)
Max. twisting moment (kg. wt. cm.)
Max. lift (kg. wt.)
Ultimate load factor (g)

n-2
io-6
095
69
6-1
766
126
9 1

14-2
io'6
o-75
4-0

79
7-66
097

Pennycuick & Parker (1966) found that the pectoralis insertion is strong enough to
apply a maximum bending moment of 10-2 kg. wt. cm. about the centre of rotation
of the head of the humerus. Dividing this by B, the corresponding lift would be
0-82 kg. wt., or 4-2 times the half-weight. If the lift exceeded this amount, the
pectoralis would presumably be forcibly extended (assuming that the muscle is not
capable of breaking its own insertion), and the wings would rise, so preventing the
lift from becoming great enough to break the humerus. One may conclude from this
that it would be practicable, and safe, for a pigeon to develop lift equal to about four
times its own weight in gliding flight, and that the ultimate strength of the humerus
would stand about z\ times this. It may be said that the ' proof load factor' is about
four, with the ultimate load factor being about 2.\ times as great.

In glider design a proof load factor of 4 would be considered low, 6 being more
usual. An ultimate load factor of 15 times the proof load factor would, however,
normally be regarded as giving an adequate margin of strength, so that ultimate load
factors are commonly around 9 in gliders, as in the pigeon.

An important difference is that, whereas virtually any aircraft can be broken up in
flight by violent application of the controls at high speed, it appears that the pigeon
would not be able to break its wings in this way. The wings would be forced up, so
relieving the load, before the lift could become dangerously large.

Lift equal to 4 times the weight (4^) is as much as a prudent glider pilot would
intentionally apply in flight, and the pigeon, for the reason just given, can go up to
about the same limit without danger. This limits the maximum acceleration which
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can be applied normal to the flight path, and hence the minimum turning radius. For
instance, if the pigeon is assumed to be able to develop a maximum lift coefficient of 3,
which is reasonable, if not conservative, in view of the calculations set out below
(pp. 231-232), it would be able to circle at a speed of 11-5 m./sec. with 750 of bank,
and its minimum turning radius would be 3-4 m.

Loading of the radio-ulna

Since none of the flight feathers insert on the humerus in the pigeon, one may be
reasonably confident in assuming that the moments set up by the lift are applied in
toto to its distal end. In the case of the radio-ulna the lift contributed by strips 8-10
approximately (Fig. 8) acts along the length of the radio-ulna, and is not applied to its
distal end. These strips represent 29-4 % of the area, and hence of the lift on current
assumptions, but as can be seen from Fig. 8 their moment arms in both bending and
torsion would be small with respect to the radio-ulna. Their moment contributions
would therefore be small as well as doubtful, and to simplify matters they are neglected.

The moments acting on the distal end of the radio-ulna are assumed to be due to
the lift on strips 1-7, as shown in Fig. 9, in which bending and torsion arms for these
seven strips are drawn in. The mean bending and torsion arms for this distal part
of the wing with respect to the radio-ulna are calculated as before (Table 2), and the
resulting centre of lift in gliding is marked with a hollow star in Fig. 9. By the same
reasoning as before, the lift acting through this point, sufficient to break the radio-
ulna in bending, would be 0*95 kg. wt., while 1-26 kg. wt. would be required to
break it in torsion. The lift carried by strips 1-7 would be 70-6 % of the half-weight,
i.e. 138 g. wt., so that the ultimate load factors of the radio-ulna in bending and torsion
are 6-9 and 9-1 respectively. Once again there is no danger of these values being
approached before the pectoralis muscle is forcibly extended.

Hovering—centre of lift

The calculation of the position of the centre of lift in hovering proceeds as for the
gliding case, except that the lift on each chordwise strip is'no longer proportional to the
area of the strip, because each strip is moving at a different speed. The speed of the
z'th strip is proportional to its flapping radius, rit which is the spanwise distance
between the centre of lift of the strip and the centre of rotation of the head of the
humerus. The lift is therefore proportional to the product of the area of the strip and
the square of the flapping radius—assuming as before that local section lift coefficient
is constant over the whole span.

The resulting lift distribution is compared with the gliding lift distribution in
Table 3 and Fig. 10, the total lift represented being the same for both curves. The lift
is now concentrated on the distal part of the wing—the proximal parts, although
large in area, develop little lift because they are only moving slowly. Eighty-two per
cent of the lift is developed on the distal five strips, in the hovering case, as opposed to
45 % in the gliding case.

Loading of the humerus

The calculation of mean bending and torsion arms for the humerus in hovering is
set out in Table 1 (the ' moments' now have dimensions L5), and the centre of lift in
hovering thus located is marked with a solid star in Fig. 8.

15-2
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It can be seen that the centre of lift is considerably further out in hovering than in
flapping, and this, of course, reduces the maximum lift which can be developed
without breaking the humerus. The bending strength of the humerus would limit
the lift to iT2 kg. wt. {S'Jg), and the torsional strength would limit it to I-IO kg. wt.
($-6g). The maximum lift which could be carried by the pectoralis tendon would be
580 g. wt. (2-9^). Once again it would not be possible to develop enough lift to break
the humerus, though the ratio of the ultimate to the proof load factor is reduced to
about 2 in hovering, instead of z\ as in the gliding case. Aerodynamical considerations
(see below, pp. 231-232)) suggest that the wing would be able to develop only mar-
ginally over lg in hovering, so in fact there is a substantial reserve of strength.
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Fig. 10. Spanwise lift distribution calculated in (a) gliding and (b) hovering. From Table 3.

Table 3. Lift distribution in gliding and hovering

Strip
1

2

3
4
5
6
7
8
9

1 0

Total (1 wing)

Gliding lift
(g- wt.)

1 3 3
1 5 8
1 7 2
1 9 8
2 2 4
2 5 2
24-7
24-6
23-7

9-3

196-0

Hovering lift
(g. wt.)

40-2
38-2
32-5
2 8 1
22-8
1 7 0
IO-I

5-i
i -8
O-2

i960
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Loading of the radio-ulna

The hovering lift distribution (Fig. 10b) shows that only 3-6% of the lift would be
developed on strips 8-10, as opposed to 29-4% in the gliding case, so one may assume
with greater confidence than in the gliding case that the moments applied to the
distal end of the radio-ulna are entirely due to the lift on strips 1-7.

The calculation set out in Table 2 shows that the radio-ulna would fail in bending if
the total lift on strips 1-7 exceeded 0-75 kg. wt. (4-0^) and in torsion if it exceeded
0-97 kg. wt. (5-i£).

Lift coefficient in hovering

The lift coefficient CL is a dimensionless number which enables direct comparisons to
be made between wings of different sizes flying at different speeds. It is the ratio of the
lift to a standard force, the latter being the product of the wing area and the pressure
which would be obtained in a blind tube pointed upstream. It is given by

°L =

where L is the lift in dynes, p the density of the fluid in g./c.c, v the speed in cm./sec,
and S the wing area in cm.2 If all the relevant quantities are expressed in some other
compatible system of units (like the F.P.S. system, for instance) the same lift coefficient
results.

If a pigeon is assumed to be hovering in such a way that the lift during the down-
stroke just equals the weight, the lift on each chordwise strip can be obtained from
Table 3, while its area is given in Table 1. The density of air is taken as 1-22 x io~3

g./c.c, the sea level value in the I.C.A.O. standard atmosphere.
The remaining quantity required to calculate CL is the speed of the strip, which is

equal to the product of the flapping radius (listed in Table 1) and the angular velocity
of the wing. Pennycuick & Parker (196 ) found that pigeons at take-off, which approxi-
mates to hovering, could flap their wings 8-9 times per second, through an angle of
1420, and that the downstroke lasts for about two thirds of the cycle. This gives an
average angular velocity of about 33 radians/sec, during the downstroke.

Since the calculation of lift distribution was based on the assumption that CL does
not vary across the span, Eqn. (5) can be solved using data for any strip, and the
answer should be the same whichever one is chosen. For instance, using values from

" ' lift L = 40-2 x 981 = 3-94 x 1 o4 dynes;

flapping radius r=28#5 cm.;

angular velocity w = 33 radians/sec;

speed v = rw = 94O cm./sec;

area S=21-6 cm.2,

C = 2 x 3-94 x io4

L 1-22 X IO~3 X 94O2 X 21*6

Higher lift coefficients than this have been obtained from aircraft wings without
using active boundary-layer control devices, but this has been done at Reynolds
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Numbers in the region of a few millions. In the hovering pigeon the Reynolds
Number varies across the span (Fig. 11), but would be between 40,000 and 50,000
for strips 1-6. It is difficult to obtain lift coefficients above about 1-5 at Reynolds
numbers as low as this (Schmitz, i960), and although the pigeon's wing is elaborately
slotted, its performance in this respect is somewhat startling.

Pigeons definitely can hover in still air (inside a pigeon loft, for instance), even
if only for a few wingbeats, and can indeed generate lift slightly over their weight,
sufficient to accelerate them into normal flight, so there seems no escape from the
conclusion that the maximum lift coefficient, averaged over the span, must be in the
region of 3^. If the assumption of constant lift coefficient over the span were abandoned,
it would follow that the local lift coefficient of some parts of the wing would have to be
higher still.
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Fig. 11. Spanwise Reynolds number distribution in hovering.

Owing to the difference in velocity distribution it does not necessarily follow that
the same maximum lift coefficient can also be achieved in gliding flight, but if it
could, the minimum gliding speed would be about 5-4 m./sec. (18 ft./sec, 12 m.p.h.).
This should be accessible to measurement.

SUMMARY

1. Simple methods are described for applying known bending and twisting moments
to pigeon bones. The ultimate bending and torsional strengths of the humerus and
radio-ulna are determined.

2. Lift distributions are calculated from a strip diagram on the assumption that
local lift coefficient is constant across the span. The position of the centre of lift is
calculated for {a) gliding, in which the relative air speed is entirely due to the forward
motion of the bird; and (b) hovering, in which it is entirely due to rotation of the
wing about the shoulder joint.

3. Estimates of the ultimate load factor of the humerus in bending and twisting
yielded 8-8 and 9-0 respectively in gliding, and 5-7 and 5-6 in hovering. Corresponding
figures for the radio-ulna were 6-9 and 9-1 in gliding, and 4-0 and 5-1 in hovering.

4. The pectoralis insertion is strong enough to apply 4-2£ in gliding and 2-9^ in
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hovering, so the muscles would be forcibly extended before any danger could arise
of the bones being broken by excessive lift.

5. A lift coefficient of at least 3-4 is achieved during the downstroke of hovering.

The bending apparatus was built by Mr B. Knights, who also carried out the
torsional strength tests on humeri. Mr W. R. H. Andrews made the torsion apparatus,
and carried out the torsional strength measurements on radio-ulnae.
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