
 

There are four possible behavioral states in the swimming
system of the pteropod mollusc 

 

Clione limacina; these include
no swimming activity (passive sinking), slow swimming, fast
swimming and escape swimming (Arshavsky et al. 1985a–d,
1989, 1992; Satterlie and Spencer, 1985; Satterlie, 1991a,b,
1993). The primary focus of this series of papers is on
transitions between the different states: specifically, initiation
of swimming, changes from slow swimming to fast swimming
and variations of speed within slow and fast swimming speeds.
Escape swimming involves different neural mechanisms and
its examination is beyond the scope of the current study.

In the previous paper, a cluster of pedal serotonin-
immunoreactive neurons (Pd-SW cells) was described which
produced peripheral modulation of muscle contractility in the
swimming system of Clione limacina (Satterlie, 1995). Since

the
interneuron or motoneuron activities, it was suggested that the
role of the immunoreactive neurons was in producing subtle
changes of speed, such as acceleration within the limits of slow
or fast swimming, but not a change from one to the other. The
Clione limacina locomotory system is capable of more
dramatic speed changes that involve an increase in wing-beat
frequency achieved, in part, by a reconfiguration of the pattern
generator through the activation of two previously inactive
interneuron types (most notably the plateau-potential-
producing type 12 interneurons: Arshavsky et al. 1985d, 1989).
This change is accompanied by the recruitment of general
excitor motoneurons (Satterlie, 1993) which, in turn, activate
fast-twitch fatigable parapodial muscle cells and directly
mediate enhanced contraction of the slow-twitch muscle cells
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erneurons, an increase in general excitor motoneuron
ivity and activation of type 12 interneurons and pedal
ipheral modulatory neurons. Cells from the anterior
ebral cluster also increased swim frequency, increased
ivity in the swim motoneurons and activated type 12
erneurons, pedal peripheral modulatory neurons and
 heart excitor neuron. The time course of action of the
erior cluster neurons did not greatly outlast the
ation of spike activity, while that of the posterior cluster
rons typically outlasted burst duration. It appears that
 two discrete clusters of serotonin-immunoreactive
rons have similar, but not identical, effects on swim
rons, raising the possibility that the two serotonergic

l groups modulate the same target cells through different
lular mechanisms.

 words: serotonin, swimming speed, modulation, cerebral
rons, mollusc, Clione limacina.
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celeration in Clione limacina can occur via
ts to pattern generator interneurons and motor
d through peripheral inputs to the swim

e. In the previous paper, peripheral modulation
im muscles was shown to increase wing
. In the present paper, central inputs are
at trigger an increase in swim frequency and

e in motor neuron activity. In dissected
s, spontaneous acceleration from slow to fast
ncluded an increase in the cycle frequency, a
olarization in the swim interneurons and an

 the intensity of motoneuron firing. Similar
 be elicited by bath application of 1025 mol l21

Two clusters of cerebral serotonin-
ctive interneurons were found to produce
 of swimming accompanied by changes in
tivity. Posterior cluster neurons triggered an
swim frequency, depolarization of the swim
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active during slow swimming (Satterlie, 1993). The
from slow to fast swimming thus includes enhanced
ial contractility in addition to an increase in wing-beat
y. A search for neurons that might be involved in such

s of gear’ should focus on cells that produce, in whole
rt, similar changes in pattern generator interneurons
g those added to the pattern generator during fast

ng) and swim motoneurons. These responses can be
d through bath application of serotonin to intact

and reduced electrophysiological preparations
sky et al. 1985a; Kabotyansky and Sakharov, 1990;
, 1991a,b). We therefore decided to initiate our search
-modulating neurons by concentrating on serotonin-

reactive cells. There are relatively few serotonin-
reactive neurons in the central nervous system of
limacina (Satterlie et al. 1995). Likely candidates

visible with the Rhodamine filters. Controls in which known
non-immunoreactive neurons were injected with dye and
subjected to immunohistochemical analysis supported our
contention that a qualitative color difference could be used to
counteract the ‘bleed over’ problem.

Results
Spontaneous acceleration from slow to fast swimming,

which appeared both as an increase in cycle frequency and as
an increase in the force of muscle contraction, was
accompanied by characteristic changes in the activity of both
pattern generator interneurons and swim motor neurons.
Increases in cycle frequency in interneurons included a tonic
depolarization that typically lasted for the duration of fast
swimming (Fig. 1A). At the motor neuron level, the general

. A. SATTERLIE AND T. P. NOREKIAN
 the two medial clusters of neurons found in the
 ganglion since these form axon tracts that run in the
pedal connectives (Satterlie et al. 1995). These cells
en found to exert an excitatory influence on central
 of the swimming system as well as having more global
ver systems that are altered in parallel with swimming

hanges, such as heart acceleration. The two cerebral
 anterior and posterior, produce distinct but synergistic
ry inputs to the various cells of the swimming system,
ng an interesting complication to the organization of
tonergic system responsible for the modification of
ng speed in Clione limacina.

Materials and methods
al collection, maintenance, dissection,
histochemical and electrophysiological techniques are
ibed previously (Satterlie et al. 1995; Satterlie, 1995)
the following exceptions: combined dye-
/immunohistochemical experiments (double-labelling
ents) were performed in two ways. In some
ions, a 4 % solution of the fixable dye Cascade Blue
lar Probes, Inc.) was pressure-injected via the
g electrode. The primary advantage of using Cascade
hat the excitation/emission spectra do not overlap with
 the Rhodamine label on the secondary antibody used
unohistochemistry, thus providing a superior

son of filled cells with antibody-labelled cells during
itching. The disadvantage was that although our

 Blue fills adequately illuminated the cell bodies of
 cells, they were not bright enough to give a clear
f the axon branches of these cells. For this reason, we
d a 5 % solution of Carboxyfluorescein (Molecular
Inc.) as the injected cell marker, which produced

ly bright fills that marked axons and axon branches.
h there was some ‘bleed over’ when viewing the
ine-labelled cell(s) with the Fluorescein filter, the
fluorescein produced a green color that was clearly
from the yellowish fluorescence of the Rhodamine-
 immunoreactive neurons. Carboxyfluorescein was not

excitor motor neurons
mode during the chan
showed significant inc
(Fig. 1B; Satterlie, 19
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wash-out of the mianser
 were typically recruited into the spiking
ge to fast swimming or, if spiking, they
reases in the number of spikes per burst
93). Small motor neurons typically did
 change in firing activity apart from the
 a slight increase in the intensity of burst
ycle.
f the serotonin antagonist mianserin to
blocked episodes of fast swimming and
s of invariant slow swimming in which
g movements stayed between 0.75 and
ing with sea water produced a gradual
y of swim frequency and the appearance
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g speed occurs at the arrow. Note the baseline
mpanies the increase in cycle frequency. 

ity in a general excitor motoneuron. An
ing speed changes the activity of the
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e cells located closer to the margin produced similar
. Cr-SP cells were relatively small (soma diameter up to
) and difficult to find. Their identification was based on
ffect on swimming, which was a marked acceleration.

1-3

581-3

Cerebral
ganglion

Pedal
ganglion

Schematic diagram of the cerebral ganglia (A) and the central
cerebral, pedal and pleural ganglia (B,C) showing the location
bodies of the cerebral serotonergic anterior cells (Cr-SA) and
bral serotonergic posterior cells (Cr-SP) (filled circles in A)
 axonal morphology of individual Cr-SA (B) and Cr-SP (C)
. In all diagrams, anterior is to the top. The large open circles

nt landmark somata used for orientation purposes.
ts of fast swimming. This suggested that serotonergic
to the swimming system played a role in central

ion of swimming speed.
est whether the proposed target cells for serotonin
ation were indeed responsive to serotonin, 1025 mol l21

in was bath-applied while recording from swim
urons, swim motor neurons, pedal 5-HT cells, type 12
urons and heart excitor neurons. In all preparations, the
ere chemically isolated through the use of high-Mg2+

ns. In all cases, the cells were depolarized following the
n of serotonin (Fig. 2) and returned to the normal resting
ane potential following wash-out (not shown).
more, depolarizing responses were blocked by bath
tion of 1025 mol l21 mianserin, suggesting that all
cell types in the swimming system were directly
ive to serotonin.

he basis of the locations of the cerebral immunoreactive
s reported in the first paper in this series (Satterlie et al.

and a preliminary electrophysiological survey of
l immunoreactive neurons, we concentrated on two
 cell clusters. Both are located on the dorsal or dorso-
side of the cerebral ganglia and member neurons

that th
effects
25 mm
their e
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Pd-SW 20 mV 

Fig. 3. 
ring of 
of cell 
the cere
and the
neurons
represe
 axon branches to each pedal ganglion. One cluster is
 towards the anterior side of the cerebral commissure,
he other is to the posterior side. These cells will be
 to as posterior cluster cells (Cr-SP) and anterior cluster
r-SA) (see Fig. 3A).

Posterior cluster cells

 posterior cluster contained three or four
oreactive neurons slightly separated from one another.
ing on how the preparation was pinned, some of the
ere found on the margin of the ganglion and could be
d from the ventral side. One of the Cr-SP cells, which
nsistently located medial to the others, produced
es characteristic of swim acceleration and was capable
ting swimming activity in non-swimming preparations.
jority of our recordings were conducted with this cell.
ations of other cells in the posterior cluster indicated

Dye injections revealed that Cr-SP neurons sent a single axon
to the contralateral cerebral ganglion through the cerebral
commissure (Fig. 3C). The axon then descended to the
contralateral pedal ganglion via the cerebro-pedal connective
and across to the ipsilateral pedal ganglion through the pedal
commissure. The axon produced extensive branching
arborizations in both pedal ganglia and somewhat less
extensive branching in the two cerebral ganglia.

To verify that the recorded/filled cells were indeed
serotonin-immunoreactive neurons of the posterior cluster, the
cells were injected with the dyes Cascade Blue or
Carboxyfluorescein and subjected to serotonin
immunohistochemistry (with Rhodamine-conjugated
secondary antibody). In four out of four preparations, including
both the medial and marginal cells, the filled cells also showed
serotonin immunoreactivity (Fig. 4).

Cr-SP neurons were silent in about half of the preparations
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A

ng experiments were conducted in which
 injected with Carboxyfluorescein and subjected
mmunohistochemistry (Fig. 6). 
of experiments strongly suggested that all the
 the anterior cluster had the same physiological
 as the same morphology. First, in each of five
owed regular or irregular firing activity during
ng activity in the others. When active, their firing
could be roughly correlated with the activity of the
urons: increased frequency of swimming movements
ompanied by increases in firing frequency in Cr-SP
. During periods of active inhibition of swimming, the

double-labelli
neurons were
to serotonin i

Two sets 
neurons from
effect as well

B

ouble labelling of a Cr-SP neuron. In A, the
ganglia were subjected to serotonin

istochemistry using a Rhodamine-conjugated
y antibody. The large cells at the top are the
bral cells. The arrowhead indicates the dye-filled
h is also shown in B, where the neuron has been

h Cascade Blue. Note that the axon is not visible
 dye. Scale bar, 200 mm.
eurons displayed fast bursts of IPSPs (Fig. 5A). When
peared while simultaneously recording from cells of
mming system, including swim interneurons, swim
eurons or pedal peripheral modulatory neurons, the
nhibition was always common to both recorded
, although the individual IPSPs did not always appear
nchronous.

Anterior cluster cells

cerebral ganglion contained a tight cluster of seven or
otonin-immunoreactive neurons on the anterio-medial
near the cerebral commissure (Fig. 3A). All neurons
 cluster had soma diameters in the range 15–20 mm.
eurons were designated Cr-SA neurons. The main
gical effect of Cr-SA cell activity was the initiation of
ng or a significant acceleration of swimming. To verify
orded cells were indeed serotonin-immunoreactive,

different preparations, three separate cluster neurons were
penetrated, recorded and filled. Second, in each of four double-
labelling preparations, two dye-filled neurons that exhibited
serotonin immunoreactivity appeared in different areas of the
cluster.

Each Cr-SA neuron had the same morphology, with one
large axon running through the ipsilateral cerebral ganglion to
the ipsilateral cerebro-pedal connective (see Fig. 3B). The
axon extended to the ipsilateral pedal ganglion then across the
pedal commissure to the contralateral pedal ganglion. In each
pedal ganglion, the axon branched extensively, particularly in
the region close to the origin of the wing nerve. Unlike Cr-SP
neurons, Cr-SA neurons did not have noticeable branches in
the cerebral ganglia (compare Fig. 3B and Fig. 3C). All Cr-SA
neurons showed irregular spontaneous spike activity which
correlated with the activity of the swim neurons and Pd-SW
neurons.
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iating swimming activity. (C) During existing swimming activity,
and a baseline depolarization in the swim interneurons (compare
ce is 1 s. The chart speed in C is the same as in B.
Influences on swim interneurons

on-swimming preparations, induced bursting in Cr-SP
s was able to initiate swimming provided that the spike

wit
slow
neu

Interneuron

Cr-SP

C

Dual recordings from a Cr-SP neuron and a swim interneuron. (A) W
ron. (B) Stimulated spike activity in a Cr-SP neuron was capable of init
 of spikes in a Cr-SP neuron triggered an increase in swimming speed 
olarization here with that in Fig. 1A). The tick interval on the time tra
ncluded more than four or five action potentials (based
erimental firing rates of approximately 20 Hz; Fig. 5B).
imming preparations, spike bursts in Cr-SP neurons
ed an immediate swim acceleration that appeared in the
cle following the initiation of the burst (Fig. 5C). The

ration, which was accompanied by a baseline
rization in the swim interneurons, outlasted the stimulus
to 10 s (for a burst of 1 s duration at about 40 Hz). The
e depolarization was similar to that seen in interneurons
 spontaneous speed changes (compare Fig. 5C with
). 
n bathed in high-Mg2+, high-Ca2+ sea water, inputs
r-SP neurons to swim interneurons were reduced to

rizing slow waves that were up to 8 mV in amplitude
hich outlasted the stimulus burst by at least 1–2 s (data
own). No responses were seen following a single spike
r-SP neuron, nor following low-frequency bursts. Only

Swim acceleration was blocked in preparations that were
bathed in the serotonin antagonist mianserin (1025 mol l21).
Induced bursting in Cr-SP neurons that normally produced
swim acceleration had no effect in mianserin-treated
preparations. Furthermore, in preparations bathed in high-
Mg2+, high-Ca2+ saline with added mianserin, the swim
interneuron slow waves described above were not observed.

In non-swimming preparations, activation of an individual
Cr-SA neuron produced initiation of activity in the swim
central pattern generator and swim motor neurons. In
preparations that showed swimming activity, activity in a Cr-
SA neuron caused a marked acceleration in swim interneuron
activity (Fig. 7A). In contrast with Cr-SP neurons, the period
of swim acceleration typically did not greatly outlast the period
of Cr-SA firing.

Following the application of high-Mg2+, high-Ca2+ sea
water, Cr-SA cell activity produced a compound monosynaptic
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tlasted Cr-SP bursts by approximately 1 s (data not shown).
 with other preparations, mianserin reversibly blocked Cr-
e swim interneurons following each spike burst in Cr-
 (Fig. 7B). This PSP, as well as the acceleration of

ou
As

B

uble-labelling experiments indicate that recorded
urons are also serotonin-immunoreactive. (A)
 immunoreactivity demonstrated using a
e-conjugated secondary antibody. (B)
uorescein fill of a recorded Cr-SA neuron. The
e label is visible in the Carboxyfluorescein

ut Carboxyfluorescein is not visible in the
e filters. Scale bar, 50 mm. The arrowheads mark

cell body in A and B.
g activity in normal preparations, was blocked by
l l21 mianserin.
2 interneurons have cell bodies in the pleural ganglia

 recruited into the pattern generator during fast
g (Arshavsky et al. 1985d, 1989). These cells
 receive only IPSPs from the pattern generator during
imming, but produce distinct cycle-locked plateau
s when activated during the change to fast swimming.
tivity was able to initiate plateau activity in type 12
ons in non-swimming preparations (Fig. 8A) and to
lateau production in slow swimming preparations

). In preparations in which type 12 interneurons
 produced plateaus, Cr-SP stimulation produced a
eline depolarization similar to that found in swim
ons.

Mg2+, high-Ca2+ sea water reduced the Cr-SP-induced
 to small (1–3 mV) slow wave depolarizations that

SP cell inputs to type 12 interneurons.
As with Cr-SP neurons, induced firing in Cr-SA cells

triggered plateau potentials in type 12 interneurons, typically
for the duration of the induced burst. The excitatory effect of
Cr-SA cells on type 12 cells was also blocked by 1025 mol l21

mianserin. 

Influences on motor neurons

Cr-SP neuron activity had a distinct affect on general excitor
motor neurons (GEMNs). In slow swimming preparations in
which the GEMNs were not spiking, but merely receiving
subthreshold synaptic activity from the pattern generator,
induced firing in Cr-SP neurons initiated cycle-locked general
excitor spiking (Fig. 9A). In preparations in which GEMNs
were producing a single spike or a few spikes per cycle, Cr-
SP activity converted the GEMN output to robust bursts of
spikes per cycle (Fig. 9B). In both cases, the period of
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phase (dorsal movement) of the wing cycle, with no
put during the depressor phase. Cr-SP bursts produced a
ift of type 12 activity to plateau activity. The tick interval
races is 1 s.
sed firing in GEMNs did not greatly outlast the period
-SP firing. In records in which GEMNs showed a
neous change from the non-spiking mode to the spiking
 the Cr-SP cell exhibited spontaneous firing activity.
h preparations bathed in high-Mg2+, high-Ca2+ sea
 Cr-SP spikes produced small synaptic potentials
V) in GEMNs (data not shown). Cr-SP bursts produced
ting synaptic potentials in GEMNs; however, the
ic potentials did not faithfully follow individual spikes
-one. Mianserin reversibly blocked the excitatory inputs
MNs.
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the elevator 
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on the time t
ced firing in individual Cr-SA neurons also produced
cant activation of general excitor motor neurons
0A). During existing swimming activity, Cr-SA bursts
ed an acceleration of general excitor activity as well as
line depolarization of the motor neurons (Fig. 10B).
neous swim accelerations showed similar increases in

eneral excitor and Cr-SA activities (Fig. 10B). When the
 neurons were spiking, Cr-SA activity greatly increased
ensity of the spike bursts. The connection was deemed
ynaptic by the same test used for swim interneurons;
er, in this case, each Cr-SA spike produced a single large
 the general excitor (Fig. 11A). The EPSPs had a short
nt latency, typically under 5 ms. EPSPs in these tests,
creases in general excitor activity in normal preparations,
blocked by bathing the preparation in 1025 mol l21

erin (Fig. 11B).
ll motor neurons were relatively unresponsive to Cr-SP

activity via monosynaptic connections (Fig. 12A,B). The small
motor neuron responses did not significantly outlast the Cr-SA
burst. Bathing the preparations in high-Mg2+, high-Ca2+ sea
water revealed large-amplitude (up to 10 mV) compound
EPSPs with each Cr-SA spike burst (Fig. 12B). The
connections from Cr-SA cells to small motor neurons were
blocked by mianserin.

Influences on pedal 5-HT neurons

In the previous paper (Satterlie, 1995), the medial
serotonergic neurons of the pedal ganglia (Pd-SW cells) were
shown to have a strictly peripheral modulatory influence over
the swimming system and their spontaneous firing activity was
shown to be loosely correlated with swimming speed.
Spontaneous spike activity in Cr-SP cells was likewise loosely
tied to spike activity in Pd-SW cells (Fig. 13A). Active
inhibition of swimming resulted in inhibition of both cells
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. Through a combination of physiological recording
ble labelling, the heart excitor was shown to be
reactive for serotonin (Fig. 15C,D). Heart excitor
were excited by Cr-SA activity (Fig. 15B) with a
eously (Fig. 13A). Induced firing in Cr-SP cells was
of initiating spike activity in Pd-SW cells (Fig. 13B).
 the preparation in high-Mg2+, high-Ca2+ sea water
revealed that two types of synaptic responses were
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and dou
immuno
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B
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General excitor

r-SP neurons activate
excitor motor neurons.
ced Cr-SP bursts change
ral excitor activity from
subthreshold synaptic

o phasic spiking activity.
n general excitors are
r-SP activity triggers an

in firing intensity in each
e of swimming activity.
interval on the time traces
d in Pd-SW cells by Cr-SP inputs: fast synaptic
ls which were followed by slow depolarizing waves
2–5 s and up to 15 mV in amplitude; Fig. 13C). Pd-SW
 not influence Cr-SP activity in these or untreated

ions. As with other cells, Cr-SP inputs to Pd-SW cells
cked by 1025 mol l21 mianserin.
 neurons also produced weak excitatory responses in
neurons. In spontaneous recordings, there was a

 correlation between spike activity in the two neuron
ig. 14A). When stimulated to burst, Cr-SA activity
itiated Pd-SW cell spiking or increased its frequency
B). The effect persisted in high-Mg2+, high-Ca2+ sea
d was blocked by mianserin.
vsky et al. (1990) have identified an asymmetrical
n the left pedal ganglion that provides excitatory inputs
art. An asymmetric immunoreactive soma was found
ame position as the heart excitor in the left pedal

connection that was weak and blocked by mianserin. There
was a loose correlation between the firing activity in Cr-SA
neurons and heart excitors (Fig. 15A).

Discussion
Cerebral serotonin-immunoreactive neurons from two

different clusters were found to produce acceleration of
swimming speed in Clione limacina through global excitatory
effects on swim interneurons, swim motor neurons, type 12
interneurons, pedal serotonin-immunoreactive neurons and
heart excitor neurons (Fig. 16). One of the cerebral cell types
(Cr-SP) was undoubtedly found by Arshavsky et al. (1992) and
was referred to as a ‘cerebral locomotion excitor’. The cerebral
cells are believed to utilize serotonin as a neurotransmitter/
neuromodulator on the basis of several lines of evidence. First,
double-labelling experiments show that the recorded and filled
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 Serotonin is used as a modulator in a variety of
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ing (McPherson and Blankenship, 1991), leech
ing (Nusbaum and Kristan, 1986; Nusbaum, 1986),

flight (Claasen and Kammer, 1986), lamprey swimming
s-Warrick and Cohen, 1985; Grillner and Matsushima,
 swimming in embryonic amphibians (Woolston et al.
Sillar and Simmers, 1994) and cat locomotion (Barbeau
ossignol, 1990). In Aplysia brasiliana, both bath-applied
nin and stimulation of cerebro-pedal connectives were

slow to fast swimming. This change 
of the pattern generator through the 
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interneurons, whose cell bodies lie
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to be effective stimuli for the initiation of rhythmic
dial flapping (Parsons and Pinsker, 1989; McPherson and
nship, 1991). Furthermore, a pair of cerebral neurons has

ound in the C cluster region; they are capable of initiating
swim motor programs (Blankenship et al. 1993). These
ot only trigger swimming movements but also produce
EPSPs in POP neurons, which are similar in function to
-SW neurons of Clione limacina. It is possible, therefore,
e cerebral neuron pair of A. brasiliana may be at least
nally similar to one type of cerebral serotonin-
oreactive neuron of Clione limacina. If so, it is
ting that putative swim ‘command’ neurons of animals
im infrequently not only serve that function in animals
im nearly continuously but also have a function in the

ration of swimming, most notably to change the pattern
tor and motor neuron activities to produce a change from

particularly since the modes of action of the two groups are
slightly different. In general, the posterior cluster neurons (Cr-
SP cells) produce excitatory effects that tend to outlast the
period of Cr-SP cell activity. In monosynaptic tests, these cells
tend to produce slow depolarizing wave-type voltage changes
in their targets, including swim interneurons, Pd-SW cells and
type 12 interneurons. Exceptions included both the general
excitor and the small motor neurons, which received fast EPSP-
type inputs. The most notable interaction was between Cr-SP
cells and Pd-SW cells, since they included fast EPSPs followed
by a large slow wave. In contrast, anterior cluster cells (Cr-SA
cells) tend to produce fast EPSP-type responses that do not
outlast the period of Cr-SA cell firing. Monosynaptic EPSPs
were recorded from the swim interneurons, general excitor
motoneurons, small motoneurons and Pd-SW cells. Cr-SA cells
produce particularly strong excitation of both the general
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mechanistically, is the notion that two populations of
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HE

Fig. 16. Schematic diagram showing the influence of Cr-SA and Cr-
SP neurons on the various cells of the swimming system. Only half
of the swimming system is shown. All connections are excitatory;
open triangles represent fast EPSP-type inputs, filled triangles
represent connections that utilize slow depolarizing waves and are
modulatory. The swimming system is simplified so that it does not
show the mixture of excitatory and inhibitory connections that
produce the alternation of dorsal and ventral wing movements. CPG,
central pattern generator; GEMN, general excitor motor neuron;
SMN, small motor neurons; FT, fast-twitch musculature; ST, slow-
twitch musculature; HE, heart excitor neuron. Other abbreviations as
given in the text.
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ntical target cells are able to produce different responses
se target cells. The conditions of activation of the two
al groups during normal behavior patterns are not known.
rticular, it is not known whether the two groups are
imes activated together and sometimes activated
tely. At least three behavior patterns involve a dramatic
se in swimming speed: ‘normal’ fast swimming, escape

ing and the acquisition phase of feeding. The roles of
o cerebral groups in these and other behavior patterns are
tly being evaluated.
h groups of cerebral neurons provide excitatory input to
-SW neurons, which have been shown to modulate swim
e contractility (Satterlie, 1995). Cerebral serotonin
ns can thus increase muscle contractility in two ways: by
tion of Pd-SW neurons and by activation or enhancement
 activity of the swim motoneurons, particularly the
l excitor motoneurons.
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on and that can inhibit swimming activity. Similar cells
een described by Arshavsky et al. (1992) and referred

cerebral locomotion inhibitors’. Cerebral inhibitory cells
ot been systematically studied to determine whether they

ce widespread or more localized effects.

 thank Dr A. O. D. Willows, Director of Friday Harbor
atories, for providing space and generous assistance, and

drugs in the locomotor pattern and on cutaneous reflexes of the
adult spinal cat. Brain Res. 514, 55–67.

BLANKENSHIP, J. E., LAURIENTI, P. J. AND GAMKRELIDZE, G. N. (1993).
Candidate command neurons for Aplysia swimming are tentatively
identified in cerebral ganglion. Soc. Neurosci. Abstr. 19, 1599.

CLAASEN, D. E. AND KAMMER, A. E. (1986). Effects of octopamine,
dopamine and serotonin on production of flight motor output by
thoracic ganglia of Manduca sexta. J. Neurobiol. 17, 1–14.

GRILLNER, S. AND MATSUSHIMA, T. (1991). The neural network
underlying locomotion in lamprey – synaptic and cellular
mechanisms. Neuron 7, 1–15.

HARRIS-WARRICK, R. M. AND COHEN, A. H. (1985). Serotonin
modulates the central pattern generator of locomotion in the
isolated lamprey spinal cord. J. exp. Biol. 116, 27–46.

KABOTYANSKY, E. A. AND SAKHAROV, D. A. (1990). Neuronal
correlates of serotonin-dependent behavior in pteropod mollusc
Clione limacina. J. higher nerv. Activ. 40, 739–753 (in Russian).

MACKEY, S. AND CAREW, T. J. (1983). Locomotion in Aplysia:
Triggering by serotonin and modulation by bag cell extract. J.
Neurosci. 3, 1469–1477.

MCPHERSON, D. R. AND BLANKENSHIP, J. E. (1991). Neural control of
swimming in Aplysia brasiliana. III. Serotonergic modulatory
neurons. J. Neurophysiol. 66, 1366–1379.

NUSBAUM, M. P. (1986). Synaptic basis of swim initiation in the leech.
III. Synaptic effects of serotonin-containing interneurones (cells 21
nd Alison Satterlie and Dr Claudia Mills and the rest of
iday Harbor dock-walkers for help in collecting animals.
tudy was supported by NIH grant R01 NS27951.

References
VSKY, YU. I., BELOOZEROVA, I. N., ORLOVSKY, G. N., PANCHIN,
V. AND PAVLOVA, G. A. (1985a). Control of locomotion in

ine mollusc Clione limacina. I. Efferent activity during actual
fictitious swimming. Expl Brain Res. 58, 255–262.
VSKY, YU. I., BELOOZEROVA, I. N., ORLOVSKY, G. N., PANCHIN,
V. AND PAVLOVA, G. A. (1985b). Control of locomotion in

ine mollusc Clione limacina. II. Rhythmic neurons of pedal
lia. Expl Brain Res. 58, 263–272.

VSKY, YU. I., BELOOZEROVA, I. N., ORLOVSKY, G. N., PANCHIN,
V. AND PAVLOVA, G. A. (1985c). Control of locomotion in

ine mollusc Clione limacina. III. On the origin of locomotory
hm. Expl Brain Res. 58, 273–284.

and 61) on swim CPG neurones (cells 18 and 208). J. exp. Biol.
122, 303–321.

NUSBAUM, M. P. AND KRISTAN, W. B., JR (1986). Swim initiation in
the leech by serotonin-containing interneurones, cells 21 and 61. J.
exp. Biol. 122, 277–302.

PARSONS, D. W. AND PINSKER, H. M. (1989). Swimming in Aplysia
brasiliana: Behavioral and cellular effects of serotonin. J.
Neurophysiol. 62, 1163–1176.

SATTERLIE, R. A. (1991a). Electrophysiology of swim musculature
in the pteropod mollusc Clione limacina. J. exp. Biol. 159,
285–301.

SATTERLIE, R. A. (1991b). Neural control of speed changes in an
opisthobranch locomotory system. Biol. Bull. mar. biol. Lab.,
Woods Hole 180, 228–233.

SATTERLIE, R. A. (1993). Neuromuscular organization in the
swimming system of the pteropod mollusc Clione limacina. J. exp.
Biol. 181, 119–140.

SATTERLIE, R. A. (1995). Serotonergic modulation of swimming speed



930

in the pteropod mollusc Clione limacina. II. Peripheral modulatory
neurons. J. exp. Biol. 198, 905–916.

SATTERLIE, R. A., NOREKIAN, T. P., JORDAN, S. AND KAZILEK, C. J.
(1995). Serotonergic modulation of swimming speed in the
pteropod mollusc Clione limacina. I. Serotonin immunoreactivity
in the central nervous system and wings. J. exp. Biol. 198,
895–904.

SATTERLIE, R. A. AND SPENCER, A. N. (1985). Swimming in the
pteropod mollusc, Clione limacina. II. Physiology. J. exp. Biol.
116, 205–222.

SILLAR, K. T. AND SIMMERS, A. J. (1994). 5HT induced NMDA
receptor-mediated intrinsic oscillations in embryonic amphibian
spinal neurons. Proc. R. Soc. Lond. B 255, 139–145.

WILLARD, A. L. (1981). Effects of serotonin on the generation of the
motor program for swimming by the medicinal leech. J. Neurosci.
1, 936–944.

WOOLSTON, A. M., WEDDERBURN, J. F. S. AND SILLAR, K. T. (1994).
Descending serotonergic spinal projections and modulation of
locomotor rhythmicity in Rana temporaria embryos. Proc. R. Soc.
Lond. B 255, 73–79.

R. A. SATTERLIE AND T. P. NOREKIAN


