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Summary
I determined the dynamic mechanical properties of single relaxed cardiac fibers from

the Dungeness crab Cancer magister. Single fibers were mechanically isolated,
chemically skinned and subjected to small-amplitude sinusoidal length perturbations
over a wide range of strain rates and sarcomere lengths to characterize their viscoelastic
behavior. The observed mechanical properties, together with transcardiac pressure
recordings and ultrastructural measurements, were related to the overall function of the
heart.

Single fibers, often longer than 1mm, could be mechanically dissected from the heart
of Cancer magister. They typically ranged from 20 to 100 mm in diameter and were
surrounded by a 100–400nm thick extracellular matrix. In situ, under normal
physiological loads, the heart of Cancer magister generated transcardiac pressures of
about 1000Pa and beat at 1Hz, while the sarcomere lengths of fibers changed by 10 %
from about 4.0 to 4.4 mm during contractions. The total stiffness of all fibers increased
from approximately 0.01MPa to 1MPa in the sarcomere length range from 3.8 to 6.0mm
and increased two- to threefold with a rise in strain rate from 0.01 to 5rad s21. In the
physiological range of sarcomere length (4.0–4.4 mm) and strain rate (0.5–1.2rad s21),
single cardiac fibers behaved viscoelastically, with average values for the relative energy
dissipation ranging from 0.5 to 0.7. The volume fraction of the extracellular matrix
correlated positively with the stiffness of single cardiac fibers.

On the basis of these results, I propose a dual role for the viscoelastic behavior of
Cancer magister cardiac fibers: (1) the viscous energy dissipation confers dynamic
mechanical stability at the level of the single fiber, and (2) the storage and return of elastic
strain energy saves energy at the level of the whole heart.

Introduction

The passive mechanical behavior of cardiac and skeletal muscle is commonly viewed
as dominantly elastic, with any viscous component contributing little to the muscle’s
overall mechanical behavior (see Hoyle, 1983; Gordon, 1989). It is widely believed that
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the functional role of this mechanical behavior is to prevent overextension of the fibers.
The importance of this function has been emphasized in vertebrate cardiac muscle, which
is considerably stiffer than skeletal muscle (Strobeck and Sonnenblick, 1989).

Meyhöfer and Daniel (1990) have recently measured the dynamic mechanical
properties of extensor fibers from the shrimp Pandalus danae . These fibers are rapidly
loaded during the shrimp’s escape maneuver. The extensor fibers are characterized by a
large viscous component in their mechanical behavior. Although the implications of such
high viscous damping are not clear, Meyhöfer and Daniel (1990) suggested that such
damping may provide dynamic stability to rapidly deformed cells.

A challenge to the dynamic stability hypothesis comes from mechanical data from
muscle fibers that experience slow and continuous deformations. One might argue that
the rapid nature of the escape response and the discontinuous mode of operation of the
extensor fibers represent a very specialized mechanical environment that requires a
unique mechanism, namely viscous damping, to maintain mechanical stability. However,
a few authors have reported some form of viscoelastic behavior in other passive muscles.
For example, Pinto and Fung (1973) measured the stress relaxation behavior of rabbit
papillary muscle, and Buchthal and Rosenfalck (1957) demonstrated hysteresis during
sinusoidal oscillation of isolated frog fibers. In order to test whether the observation of
viscoelastic mechanical behavior is applicable to a wider variety of muscle, I investigated
the dynamic mechanical properties of a slowly and continuously operating muscle
system: crustacean cardiac fibers.

Cardiac muscle is an ideal system with which to address this challenge. Hearts beat
continuously and relatively slowly, and the physiologically relevant loading regime of
cardiac fibers can be determined. However, single vertebrate cardiac fibers are small and
are usually obtained through enzymatic cell isolation procedures. Unfortunately,
enzymatic digestion destroys the extracellular matrix, which is believed to be a major
determinant of the mechanical behavior of passive muscle fibers (Ramsey and Street,
1940; Tidball, 1986; Sonnenblick and Skelton, 1974). I overcame this difficulty by
developing a single-fiber preparation from the heart of the Dungeness crab Cancer
magister. Individual fibers, often longer than 1000mm, can be obtained by mechanical
dissection.

The main purpose of this paper is to describe the dynamic mechanical properties of
single cardiac fibers over a wide range of sarcomere lengths and strain rates, including
those that are physiologically relevant. Using such data, I address the following
questions. (1) Is the cardiac muscle system characterized by viscoelastic behavior?
(2) Is there significant viscous energy dissipation in the physiologically relevant range of
sarcomere lengths and strain rates? (3) How do the mechanical properties of the single
fibers relate to the overall function of the system?

Materials and methods

Animals

All experiments were carried out on single fibers isolated from hearts of the Dungeness
crab Cancer magister. Healthy animals were obtained from a local vendor and held in a
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large tank connected to the recirculating seawater system of the Department of Zoology,
University of Washington, Seattle. The temperature was maintained between 12 and
13˚C. Animals that were kept longer than 2–3 days were regularly fed a diet of mussels or
clams.

Pressure measurements

To determine the range of physiologically relevant frequencies and strain rates,
transcardiac pressure recordings were made with a pressure transducer (Statham)
connected to PE-40 Tygon tubing. The pressure transducer and tubing were filled with
Millipore-filtered sea water. This apparatus had a frequency response well in excess of
20Hz. A hole, located directly over the heart, was drilled into the dorsal carapace of a
crab using a small dentist’s drill. The bevelled end of the Tygon tubing was inserted into
the heart and secured with dental wax. The crab was returned to a small seawater
aquarium (0.5 m30.5 m30.15m deep, 12–13˚C) and allowed to move around freely.
Crabs recovered quickly from this procedure and began ventilating normally within a
very short time. All crabs studied survived this procedure without any complications.

Pressure transducer signals were conditioned using a standard Wheatstone bridge
amplifier and collected with a data acquisition system (described below) at 200Hz
sampling frequency. Several records each containing 16383 data points (record length
greater than 80s) were saved on floppy disk for later analysis. The pressure transducer,
calibrated with known heads of water, had a sensitivity of 596.3Pa V21.

Cell isolation

Crabs were killed by rapidly destroying the brain with a large pair of bone rongeurs.
The dorsal aspect of the carapace was carefully removed. The heart was excised and
immersed in a large Sylgard dish (Sylgard 184 Elastomer, Dow Corning) containing
cooled calcium-free crustacean Ringer (for details of all solutions, see the next
paragraph). At this point, the heart was usually still beating, because the blood inside the
heart had not been exchanged completely for calcium-free Ringer. The heart, pinned
down at its lateral margins and the dorsal side, containing the four ostia, was carefully cut
open with small scissors. This procedure exposed two relatively small groups of fibers
running in the anterior–posterior direction. These groups of fibers were then removed and
placed in a Sylgard-lined dish containing a cooled skinning solution with 0.5% of the
detergent Chaps {3-[(3-cholamidpropyl)-dimethylammonio]-1-propanesulfonate,
Sigma} to solubilize the cell membranes. After 30s, the skinning solution was washed
out with several changes of relaxing solution (see below) to ensure complete removal of
the detergent. The groups of fibers were pinned down with fine stainless-steel minuten
pins (0.1mm diameter, Fine Science Tools) and placed on a cooled black aluminum stage
under a high-power dissecting microscope (Zeiss). Single fibers were dissected from
these bundles using Dumont no. 5 forceps with extra-fine tips and a pair of ultrafine
Vannas spring scissors. Fibers longer than 1000mm could be dissected routinely from
these bundles, and it was not uncommon to obtain fibers longer than 2000 mm. Fibers
showing any signs of mechanical damage were rejected.
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Solutions

The intracellular solutions used for experiments reported in this paper were prepared
according to the methodology described by Fabiato and Fabiato (1979). Solutions for
skinned fiber preparations (intracellular solutions) contained several ligands [EGTA
(Sigma), ATP (Sigma), ADP (Sigma), phosphate and a buffer)], metals (Ca2+, Mg2+, K+)
and H+. The steady-state concentration of each species in a complex mixture of these
metals and ligands is described by the multiple equilibria between individual metals and
ligands. In addition, the stability (or binding or association) constants describing
individual metal and ligand interactions depend on temperature and ionic strength. Given
the ionic strength, the pH and the free and/or total concentration of relevant metals and
ligands, the total and free concentrations of each chemical species were calculated by
solving the system of equations describing all equilibrium states. This calculation was
carried out using a modified computer program generously provided by Dr A. M. Gordon
(Department of Physiology and Biophysics, University of Washington, Seattle). The
equilibrium constants were taken from various references summarized in the paper of
Brozovich et al. (1988, Table 1). I used Mops (Sigma) as a buffer; its concentration was
iteratively determined such that a total ionic strength of 200mmol l21 and a pH of 7.0 was
maintained in all solutions. The major anion was propionate. The exact composition of
the three solutions is given in Table 1.

Experimental chamber

The experimental chamber was approximately 17mm long, 8mm wide and 4mm high.
The sides were cut from 1mm thick microscope slides (2948, Corning) and assembled
with silicone rubber (Dow Corning) in the middle of a 75mm by 50mm microscope slide.
During experiments, this chamber was pressed firmly against the Peltier-cooled copper
stage with a set of microscope slide clips to ensure proper cooling of the solution in the
chamber. Temperature was monitored with a digital thermocouple thermometer (TH 65,
Wescor).

Mechanical testing apparatus

The mechanical testing apparatus consisted of a length displacement generator and a
force transducer between which the single fiber was mounted. From instantaneous
measurements of the length perturbations of the fiber and the resulting forces, all the
required mechanical properties could be calculated. Sinusoidal deformations were used
throughout all experiments reported here. The length displacement driver and force
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Table 1. Solutions used in the experiments

Concentrations (mmol l−1)

Total Total Free Free Total Total Total
Solution Na+ K+ Mg2+ Ca2+ EGTA ATP MOPS Chaps pH

Ca2+-free Ringer 440 10 26 <10−5 5 10 7.4
Skinning 130 3.16 10−6 20 4.15 46.2 0.5 % 7.0
Relaxing 130 3.16 10−6 20 4.15 46.2 7.0



transducer were each mounted on x,y,z-micromanipulators (460-XYZ, Newport),
attached to the stage of a large industrial microscope (UM-3, Nikon). The microscope
stage (modified from a Nikon industrial microscope stage, type 23402) was equipped
with two Mitutoyo stage micrometer heads (series 152) that allowed movement of the
stage in the x- and y-directions with 1mm precision. In addition, the central portion of the
stage could be move in the z-direction and had a thermally isolated copper plate that was
cooled by a Peltier (FC-06-66-05L, Melcor) element.

Force transducer and bridge amplifier

The force transducer was made from a small piece of brass 0.05mm thick, 9mm wide
and 6mm long. A pair of fine stainless-steel needles was silver-soldered to the end of this
beam. The needles were ground flat and carefully demagnetized. A pair of semiconductor
strain gauges (Micro Engineering II) was mounted on each side of the beam using an
epoxy adhesive (M-Bond 610, Micro-Measurements). These four gauges formed a
Wheatstone bridge that was powered with 4mA of current and the output of which was
amplified with a precision instrumentation amplifier (AD 624, Analog Devices). The
major sources of error degrading the performance of the force transducer are thermal
shifts in the gauge factor and the resistance of individual strain gauges. To minimize these
thermal errors, the bridge amplifier was equipped with a passive resistor network.

The force transducer was calibrated by suspending small weights made from aluminum
foil from the tips of the horizontally mounted transducer and recording the resultant
signals. The force transducer used for the experiments described in this paper had a
sensitivity of 121.96 V mN21 and behaved extremely linearly over the range of forces
measured here, as indicated by the good fit to a linear regression model (r2=0.9997,
N=60). The displacement sensitivity of the transducer was measured by displacing its tip
dynamically with the piezoelectric length driver (see below). This force transducer had a
displacement sensitivity of 0.602 Vmm21. Again, this relationship was extremely linear
(r2=0.9998, N=80). Using both calibration results, the compliance of the transducer was
calculated to be 0.202 mN21. The resonance frequency of the transducer was 150Hz.
Test samples of small pieces of rubber and steel wire showed no measurable phase lag
between displacement and force signals at all frequencies below 150Hz. At 150Hz,
however, significant ringing was noted in the force transducer.

Length displacement driver and sensor

The length driver was a piezoelectric bimorph to which a pair of needles identical to
those on the force transducer was mounted. The deformation of the bimorph was
controlled by the voltage applied to the crystal. Since the exact displacement of a
piezoelectric bimorph changes with both load and frequency, the actual movement of the
driver must be tracked. This was done using an electro-optical method with very high
spatial and temporal accuracy. The position of the needle pair on the length driver,
imaged with a long working distance objective (Nikon M Plan 40, 0.5 NA), was projected
onto a diffuse silicon detector (Spot 2D, United Detector Technology). The detector
consisted of two individual photodiodes, 1.25mm32.5mm in size, separated by a very
small gap (approximately 0.1mm). The detector was positioned in the phototube so that
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the image of the needle was projected onto the light-sensitive surface in the same
direction as the gap between the two diodes and covered approximately equal areas of
both diodes. The image magnification was chosen such that half of each photodiode was
covered. The ouputs of the diodes were monitored with standard transimpedance
amplifiers (OPA 111 BM, Burr Brown). The difference between the signals from the two
diodes was linearly proportional to the displacement of the needle (given constant
illumination) and, owing to the high common-mode rejection of the differential amplifier
(INA 101 BM, Burr Brown), contained little noise. The halogen light source of the
microscope was operated with a stabilized d.c. power supply to avoid the intensity
fluctuations associated with standard a.c. operation. In addition, an analog circuit (DIV
100, Burr Brown) was built to divide the difference between the outputs by their sum.
This procedure made the displacement signal independent of the intensity of illumination.
The optical sensor had a frequency response better than 10kHz. Calibration was
accomplished with a filar micrometer. The sensitivity of the displacement sensor was
103.3mV mm21 and was linear over the measurement range from 0 to 50 mm
(r2=0.99998, N=9).

Computer control and acquisition system

Sinusoidal length changes and data acquisition were both under computer control. The
analog output port of the data acquisition board (DT 2801, Data Translations) was
programmed to drive a voltage-to-frequency converter (XR-2206, Exar). In this way,
both the amplitude and the frequency of the sine wave were under computer control. The
output of the voltage-to-frequency converter was fed into a high-voltage power buffer
(Underware Electronics) that controlled the piezoelectric length driver.

Instantaneous force and displacement signals were collected with the analog input port
of the data acquisition board. Either 1024 or 2048 points of each signal were sampled.
The acquisition rate was set to sample exactly an integer number of sine waves (at least
16). A typical experimental run proceeded as follows: (1) amplitude and frequency of the
sine wave were set; (2) the single fiber was oscillated for an integer number of sine waves
at that particular frequency and amplitude, and instantaneous voltages corresponding to
force and displacement were digitized and stored in RAM; (3) these two steps were
repeated for 20 or 25 frequencies ranging from below 0.1Hz to about 50Hz. At the end of
the last experiment, all data and control variables were stored on floppy disk for later
processing.

An eight-pole two-channel low-pass Bessel filter limited the bandwidth of the force
and displacement signal to reduce noise and to prevent aliasing. The filter was built with
highly stable universal filters (UAF 41, Burr Brown) and low temperature coefficient
resistors (Caddock Electronics). This device had identical transfer functions for both
channels. Thus, no difference could be detected in the phase shift between the two
channels.

Sarcomere length

Sarcomere length was determined by standard laser diffractometry (Squire, 1981).
After a fiber had been loaded into the apparatus, the beam of a He–Ne laser was passed
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through the center of the fiber. The laser was mounted on a y,z-micropositioner (430,
Newport) with ultrafine micrometer screws to adjust the position of the beam in the fiber
precisely. The distance between the primary diffraction lines was measured opto-
electronically. Refraction of the diffraction lines at the solution–glass and glass–air
interfaces was taken into account (Squire, 1981).

Opto-electronic measurement of the distance between the diffraction primaries was
based on a photodetector (Spot 2D, United Detector Technology) similar in design to the
one employed for position-sensing of the length driver. The sensor was mounted on a
single-axis translating stage (430, Newport), equipped with a Vernier micrometer, and
moved laterally until the relative position of the centroids had been determined. The
distance between the primary diffraction lines was then simply the difference between the
two relative centroid positions. This method was extremely precise; with good diffraction
patterns, differences of 0.01mm in sarcomere length could be detected.

Experimental protocol

Single fibers were isolated as described above and loaded into the mechanical testing
apparatus. Throughout mechanical testing, fibers were kept in relaxing solution at
12–13˚C. Uniformity of sarcomere length in fibers was evaluated by moving the laser
beam laterally and measuring sarcomere length at several locations along the length of the
fiber. If non-uniformities exceeded 0.2mm, the fiber was rejected. In addition, the quality
of fibers was evaluated under 1003 magnification (103 CF Plan lens, NA 0.30, Nikon
and 103 oculars, CFW, Nikon) using the measurement microscope and brightfield
illumination. Any irregularities in the striation pattern or apparent injuries led to the
rejection of the fiber.

Fibers of satisfactory quality were put under light tension by increasing their length
slightly. Fiber length was determined by moving the mounted fiber under 1003

magnification using the stage micrometer heads. This method allowed estimation of the
fiber length (the length between the two microclamps) to approximately 1 mm. Fibers
were then tested dynamically and the data were stored for later processing. This
procedure was repeated at several different sarcomere lengths for each cell: fiber length
was increased and the new fiber length and sarcomere length were measured.

Electron microscopy and extracellular matrix volume fraction

At the end of the experiments, fibers were fixed for electron and light microscopy. This
allowed me (1) to verify independently the sarcomere length estimates from laser
diffractometry, (2) to determine the potential physiological range of sarcomere length
from the lengths of myofilaments, and (3) to determine the cell cross-sectional area,
perimeter and volume fraction of extracellular matrix. Fiber length and cross-sectional
area entered directly into the calculation of mechanical properties; hence, direct
measurement of the irregular cross-sectional area from sections was necessary to reduce
the variability of mechanical data between individual fibers.

Fibers were fixed by immersion in a solution of 5% glutaraldehyde (EM grade, Ted
Pella) in 0.1mol l21 sodium cacodylate (Ted Pella). The pH of the solution was adjusted
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to 7.0. The fibers remained immersed in fixative for at least 20min while clamped in the
apparatus before they were removed and transferred into a fresh volume of fixative.
Fibers were stored in fixative at 5˚C until further processing.

In addition, a few pieces of cardiac tissue from intact fiber bundles were fixed for
morphological and ultrastructural observations. One of the following fixatives was used:
(1) 3% glutaraldehyde in 0.1mol l21 sodium cacodylate with 18% sucrose (Baker);
(2) 3% glutaraldehyde and 1.5% paraformaldehyde (Polysciences) in 0.1mol l21 sodium
cacodylate with 18% sucrose, 5mmol l21 EGTA and 4mmol l21 magnesium chloride;
(3) 4% glutaraldehyde in 0.2mmol l21 sodium cacodylate buffer. Included in this last
fixative were 0.4mol l21 sucrose, 0.1mmol l21 sodium chloride, 3mmol l21 EGTA and
3 mmol l21 magnesium chloride. The pH of all fixatives was adjusted to 7.4. Fixative was
perfused into the heart by direct injection. All fixatives were about equally successful in
preserving the contractile apparatus of these cardiac fibers, but preservation of the
cytoplasmic ground substance proved very difficult. The third fixative produced
moderately better results in preserving the fine structure of the cytoplasm.

Primary fixative was carefully washed out in 0.1mol l21 sodium cacodylate buffer and
fibers were then postfixed for 1h in 1% osmium tetroxide, buffered in 0.1mol l21 sodium
cacodylate. The postfixative was washed out with 0.1mol l21 sodium cacodylate buffer
and distilled water, and the fibres were then rapidly dehydrated in a graded series of
ethanols. Fibers were infiltrated with a standard mixture of Epon (Polybed 812,
Polysciences) using propylene oxide (analytical grade, Baker) as intermedium. Each fiber
was bisected lengthwise. One piece was oriented in the embedding mold such that a cross
section could be obtained, while the other was oriented for longitudinal sectioning.

The cross-sectional area and perimeter of each fiber were determined by preparing a
0.5 mm cross section and digitizing camera lucida tracings of these sections. Tracing
were prepared with a 1003 oil-immersion objective (Nikon, 1.3 NA) and the highest
magnification setting on the camera lucida (Nikon).

Since the extracellular matrix (ECM) measures only between 100 and 400nm in these
fibers, its thickness had to be estimated by transmission electron microscopy (TEM).
From each fiber, thin sections were cut in both the longitudinal and cross-sectional
directions using a diamond knife (Diatome). Longitudinal sections were cut
perpendicular to the long axis of the fiber to avoid compression. For cross sections, care
was taken that the whole cross section was included. In each direction, five grids, each
containing between 5 and 10 sections, were prepared. Sections were stained with uranyl
acetate and lead citrate in the usual manner and viewed with a Philips 300 TEM.
Quantitative measurements were made from a series of negatives documenting the
morphology of the ECM at 50–100 mm intervals. About 25–50 measurements were taken
from each cell. Negatives had an image magnification in the range from 5000 to 10000
times. Negatives of a calibrated replica grating (Ted Pella) at the same magnifications
were included. The actual thickness of the ECM was measured directly from the
negatives with the aid of a calibrated ocular micrometer and a dissecting microscope. 

The volume fraction of the matrix (VECM) is given by:

VECM = tmeanP/A , (1)
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where tmean is the mean thickness of the matrix, P is the fiber perimeter or ECM length
and A is the cross-sectional area of the fiber.

Longitudinal sections were also used to estimated the myofilament length. The length
of actin and myosin filaments and the sarcomere length were measured, from a set of
randomly taken electron micrographs, in the same manner as described above.

Data analysis

Calculation of signal amplitudes and phase

The viscoelastic behavior is described by a complex valued modulus. This quantity was
calculated in the following way: the one-sided power spectral (often called autospectral)
density function was estimated using the fast Fourier transform (FFT) method (Bendat
and Piersol, 1986, 1980, Priestley, 1981):

Gxx(fk) = [2/(NDt)]|X(fk)|2 {k = 0, 1,..., N/2}, (2)
where:

fk = k/NDt {k = 0, 1, 2,..., N 21} (3b)

and j is taken to be the complex number √–1, N is the total number of data points in the
record of length T, Dt is the sampling interval and X(f) is the finite Fourier transform of
the time series xin (displacement or force record). I used a modified Cooley–Tukey
algorithm (Borland International) for implementing the FFT method. The force and
displacement records were transformed together as one single complex data record
(Bendat and Piersol, 1986) using a rectangular data window. In addition, estimation of the
one-sided autospectral density function gives an estimate of the harmonic amplitudes.
Because an integer number of sine waves was contained in each data record, all the power
of the signal is contained in a single complex pair of Fourier coefficients at the relevant
frequency, rejecting noise outside the narrow signal band (bandwidth 1/T) centered at the
frequency nw/T (nw denoted an integer number of waves in the record). This signal
processing strategy successfully eliminated most of the thermal noise of the force
transducer.

The noise spectral density of the transducer is approximately 500mV/√Hz at 0.1Hz
and drops very steeply to 0.4mV/√Hz at 1.0Hz. However, since I collected 16 waves of
data in the frequency range of 0.1Hz, the noise signal entering into the data band is
estimated to be approximately 125mV. At a typical signal amplitude of 1V, this noise
corresponds to less than 2.0% of the power of the signal. At only slightly higher
frequencies, the signal-to-noise ratio improves dramatically, because the noise power
spectral density drops off so sharply.

The displacement sensor noise and resolution were limited by the bit resolution of the
data acquisition board. I estimated the noise autospectral density to be 1mV/√Hz at
0.1Hz. The noise drops to about half this value at 1.0Hz. Thus, the displacement noise
spectral density is about 10nm/√Hz (unity gain of the differential amplifier stage).
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The phase between the force and displacement signal is calculated from the cross-
spectral density function:

Gxy(fk) = [2/(N∆t)][X*(fk)Y(fk)], {k = 0, 1, 2,..., N/2} (4)

where X(f) and Y(f) are the finite Fourier transforms of the time history records of force
and displacement. The quantity X*(f) is the complex conjugate of X(f). Note that the
cross-spectral density function is complex; it is often expressed as:

Gxy(fk) = Cxy(fk) 2 jQxy(fk), {k = 0, 1, 2,..., N/2} (5)

where Cxy(fk) is the one-sided coincident spectral density function and Qxy(fk) is the one-
sided quadrature spectral density function (Bendat and Piersol, 1986; Priestley, 1981).
With these spectral density functions, the phase spectrum is estimated directly by:

uxy(fk) = tan21[Qxy(fk)/Cxy(fk)]. (6)

Calculation of corrected stress, strain and phase

Since the force transducer undergoes small displacements, its motion and associated
phase must be taken into account when computing amplitudes and phases. The corrected
strain amplitude is given by:

|e(fk)| = {[A(fk) − B(fk)cosuxy(fk)]2 +[B(fk)sinuxy(fk)]2}1/2/l0 , (7)

where A(fk) is the amplitude of the displacement length driver, B(fk) is the amplitude of
the force transducer displacement, uxy(fk) is the phase shift between the displacement and
force signals (as calculated from equation 6) and l0 is the length of the fiber. The
amplitudes A(fk) and B(fk) are calculated from the appropriate power spectral density
functions and calibrations. The adjusted phase (d), that is the phase shift between stress
and strain, is given by:

d(fk) = uxy(fk) − tan−1{B(fk)sinuxy(fk)/[B(fk)cosuxy(fk) − A(fk)]}. (8)

The stress amplitude, s(fk), requires no correction and is calculated by:

s(fk) = F(fk)/A , (9)

where F(fk) is the amplitude of the force signal and A is the cross-sectional area of the
fiber. F(fk) was calculated, with the appropriate calibrations, from the force power
autospectral density function (see equation 2). For fiber lengths other than the one at
which the fiber was fixed, the cross-sectional area was calculated using the optically
measured length and assuming constant fiber volume.

Calculation of moduli

The total dynamic stiffness is defined as:

|E*(fk)| = |s(fk)| / |e(fk)| , (10)

and is a measure of the resistance to dynamic deformation (Wainwright et al. 1976; Fung,
1981, 1984; Ferry, 1980). This quantity is identical to the magnitude of the complex
valued modulus E* and, for brevity, is called the complex modulus. I will also refer to the
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total stiffness as the complex modulus. With a known phase and the complex modulus,
two additional moduli are defined:

E′(fk) = |E*(fk)|cos[d(fk)] (11a)

and
E0(fk) = |E*(fk)|sin[d(fk)] . (11b)

The elastic (storage) modulus, E9, represents the component of the stress response of the
fiber that is in phase with the strain. Thus, it measures the ability of the fiber to store and
return mechanical strain energy. The viscous or loss modulus, E0, measures the out-of-
phase component of the stress response and hence quantifies the extent to which the fiber
dissipates mechanical strain energy. The complex modulus (not its absolute value) is
therefore equal to:

E*(fk) = E9(fk) + jE0(fk). (12)

There is one more useful expression to describe the viscoelastic behavior of muscle
fibers:

tan[d(fk)] = E0(fk)/E9(fk). (13)

This ratio of the viscous to the elastic modulus is equal to the tangent of the phase angle
between stress and strain (Wainwright et al. 1976) and therefore measures the relative
energy dissipation of a viscoelastic material.

Analysis of pressure signals

Pressure records were analyzed by calculating the power spectral density functions.
Records were cut into seven data sets each containing 4096 points. Data sets overlapped
by 50%. Data were tapered with a Hanning window to reduce side-lobe leakage and the
finite Fourier transforms were calculated as described above. The smoothed autospectral
density function was constructed by first adjusting the scale factor for the loss due to data
windowing and then calculating the ensemble average of the autospectral density
function (Bendat and Piersol, 1986; Press et al. 1989).

Fitting a model to the mechanical response function

In order to condense and summarize the mechanical response surface of a number of
fibers, I fitted the data to the following functions:

|E*(e
.
,sl)| = {[a + b(slD)c] (1 + d[1 − exp(− ee

.
)]} (14)

and
tan[d(e

.
,sl)] = f +[(ge

.
)/(1 + he

.2 + ke
.
slD + lslD2)] (15)

where e
.
and slD are defined as:

e
.
= |de/dt| = 2πfre (16)

and
slD = 100[(sl − 3.7) / 3.7]. (17)

Here a, b, c, d, e, f, g, h, k and l are the variables of the model that need to be determined.
The variable fr stands for the frequency of oscillation. A model for both the total stiffness
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|E*(e,sl)| and the relative energy dissipation, tand(e,sl), was chosen to represent the
viscoelastic behavior of the mechanical response surface. The independent variables in
both models are strain rate (e

.
) and the relative sarcomere length extension (slD) (as a

percentage) normalized to the low end of the physiological range of sarcomere length (for
cardiac fibers: 3.7mm).

The actual fitting (optimization of the parameters) of these nonlinear models was
accomplished with a Levenberg–Marquardt algorithm (Press et al. 1989). I used the least-
squares criterion as the figure-of-merit function. To evaluate whether the appropriate
stopping conditions and the global minimum had been found, the least-squares
minimization of the model was repeated with a wide variety of reasonable starting
estimates for the variables. Consistently, all iterations ‘walked’ to the same minimum.
The goodness of fit of the model was determined with F-test statistics (Bevington, 1969;
Seber and Wild, 1989) assuming that the errors are independent and that they have zero
mean, consistent variance and follow a normal distribution. Multiple regression equations
were compared as outlined by Zar (1984).

Results

Morphology and ultrastructure of single cardiac fibers

Single cardiac fibers from large crabs typically range from 20 to 100 mm in diameter
(Fig. 1). They contain numerous myofibrils that resemble those of skeletal muscle: each
myofibril is about 2–4 mm wide and is characterized by a regular striation pattern. No
intercalated discs were found (Fig. 1) in these or in any other sections. However, in
contrast to skeletal muscle, these cardiac fibers have a large cytoplasmic volume fraction
(Fig. 1A,B) and are often connected by cytoplasmic bridges. Also, individual fibers are
not densely packed, but are separated in the intact heart. They often have highly irregular
cross sections whose areas typically range from 1500 to 8400 mm2 (see also Table 3).

The ultrastructural organization of cardiac myofibrils is fairly standard with I-bands,
A-bands, Z- and M-lines and H-zones forming the characteristic striation pattern of the
sarcomere (Fig. 1C). Myosin filaments in this preparation were about 3 mm long, whereas
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Fig. 1. Morphology of intact cardiac muscle from Cancer magister. All micrographs shown in
this figure were obtained from tissue fixed by direct injection of fixative into the heart. All
sections were obtained from the same bundle of fibers that was used in the mechanical
experiments. Sections for light microscopy were stained with Toluidine Blue. (A) High-
magnification light micrograph of part of a single cardiac fiber. Individual myofibrils (m),
about 2–4 mm wide, with the typical striation pattern are clearly visible. The cytoplasm (c)
contains numerous mitochondria and nuclei (nu). Scale bar, 20 mm. (B) Longitudinal section
through the fiber bundle from which single fibers for mechanical experiments were dissected.
Individual fibers are separated by about 50 mm. The cytoplasm forms a wavy pattern on the
fiber surface. Scale bar, 60 mm. (C) Low-magnification electron micrograph of several
sarcomeres. The A-bands with the myosin filaments (my), I-band (I), H-band and Z-lines (Z)
are clearly visible and give individual myofibrils their characteristic pattern of repeating
sarcomeres. In addition, the band containing actin filaments (ac) can be discerned and the M-
lines (M) are well defined. Mitochondria (mi) are located between individual myofibrils. Scale
bar, 2mm.
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actin filaments measured approximately 1.8 mm (a larger sample from several
experimental fibers will be described below). Numerous mitochondria are located
between individual myofibrils (Fig. 1C).

Actin and myosin filaments are arranged in a hexagonal lattice (Fig. 2B). Each thick
filament is surrounded by six thin filaments, and each thin filament faces two thick
filaments. This packing structure gives a ratio of three thin filaments for each thick
filament.

The cytoplasmic compartment of these cardiac fibers is rich in mitochondria (Fig. 2C);
the ground substances of the cytoplasm has a granular appearance in the electron
microscope (Fig. 2C). The extracellular matrix (ECM) covering the surface of these
fibers ranges from about 100 to 400nm in thickness. In the example shown in Fig. 2C, the
ECM is about 250nm thick.

Physiological range of loading frequencies, pressures and sarcomere lengths

The physiological range of loading frequencies and pressures was evaluated from
transcardiac pressure recordings (Fig. 3). Ventilating crabs that moved slowly in the
recording tank generated transcardiac pressure differences of approximately 1000Pa at a
beat frequency of approximately 1Hz (Fig. 3A). The corresponding power spectrum
(power spectral or autospectral density function) of the entire time series (Fig. 3C) clearly
shows (1) that the heart beats with a fundamental frequency of 1Hz; (2) that most of the
power is contained at that fundamental frequency, since the autospectral density drops
more than 20dB to the harmonic frequencies; and (3) that changes in the beat frequency
are very small, as indicated by the sharpness of the peak at the fundamental frequency. In
Fig. 3B, a pressure record from a quiescent crab with reduced ventilation is shown.
Interestingly, during periods of reduced circulatory demand, intracardiac pressure is
reduced and the heart intermittently stops beating. However, as shown on the
corresponding power spectrum (Fig. 3D), the cardiac beat frequency remains close to
1 Hz. The intracardiac pressure under this condition drops to approximately 500Pa. For
these organisms, cardiac output appears to be regulated by bouts of cardiac activity with a
conservative intra-bout frequency.

The physiological range of sarcomere length is based on two different microscopical
observations. First, sarcomere length measurements from in situ fixations of cardiac
tissue indicated that the physiological sarcomere length is close to 4.0 mm (Fig. 2). This
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Fig. 2. Fine structure of myofibrils from the heart muscle of Cancer magister . (A) Detailed
electron micrograph of a single sarcomere from a longitudinal section. Actin and myosin
filaments (my) are clearly visible. The myofibrillar surface is ensheathed in a fenestrated
cisternal and tubular sarcoplasmic reticulum (sr). At the level of the H-zone, the sarcoplasmic
reticulum is closely associated with T-tubules in dyad and triad configurations (d). Scale bar,
1 mm. (B) High-magnification cross section through a myofibril. The regular pattern of thick
or myosin (my) and thin or actin (ac) filaments shows the packing ratio of three thin for each
thick filament. Scale bar, 250nm. (C) Transverse section of a cardiac fiber showing the
ultrastructural organization at the fiber edge. Directly beneath the cell membrane (cm),
numerous large mitochondria (mi) are found in the granular cytoplasm (c). The extracellular
matrix (ecm) is located directly above the cell membrane; it is about 250nm thick. Scale bar,
1 mm.
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measurement is likely to represent the lower end of the range of sarcomere length, since
the hearts always contracted upon the injection of fixative. A second estimate comes from
the measurement of the myofilament length of experimental cells. Actin and myosin
length estimates from transmission electron microscopy of five experimental cells
(Table 2) indicate that 100% myofilament overlap occurred in the sarcomere length
range 3.8–4.0mm. Thus, the lower end of the physiological range of sarcomere lengths is
expected to be close to 4.0 mm.

The in situ strain of cardiac fibers can be estimated from the thermodilution
experiments of D. D. Jorgensen (personal communication). This work shows that, during
a typical heartbeat, 20–30% of the cardiac volume is ejected. During sustained exercise
on a treadmill, this fraction might rise to close to 50%. These conditions yield tissue
strains of about 10% and 20% respectively.

These results, taken together, strongly suggest that the heart of Cancer magister beats
at 1Hz and does not modulate its beat frequency. The sarcomere length during a ‘normal’
beat cycles through a 10% length excursion from about 4.0 to 4.4 mm. Under strong
circulatory demand, this strain is likely to increase to 20%. These findings imply that
physiological strain rates fall into a range of strain rates from 0.5 to 1.2rad s21. The
intracardiac systolic-to-diastolic pressure difference is approximately 1000Pa.

Mechanical properties

Mechanical properties of single cardiac fibers

Several general trends, illustrated for an individual fiber (Figs 4 and 5), emerge. The
total stiffness (or complex modulus) of all fibers increases by approximately two orders of
magnitude from roughly 0.01 to 1MPa over the sarcomere length range from about 3.8 to
6.0 mm. In addition, the total stiffness increases weakly (two- to threefold) at each
sarcomere length over the strain rate range 0.01–5rads21. The elastic modulus expressed
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Fig. 3. Cardiac pressure. (A) Transcardiac pressure was recorded from an unrestrained crab
that was allowed to move around freely. The time series shown was recorded from a crab that
moved slowly in the recording aquarium and was ventilating strongly. The slow transient
shifts in the baseline pressure are due to changes in the vertical position of the animal. Data
were collected at 200 points per second. The entire record was 16384 points (81.9s) long;
only 10s of the total record is shown. (B) This pressure record was recorded from a crab that
was resting in the recording aquarium and had significantly reduced its ventilatory activity.
The systolic–diastolic pressure difference is only about 500Pa and for a period of about 15 s
the heart ceased to beat. (C) Power spectral density function of the cardiac pressure record
shown in A. The spectral density was referenced to 1.593105 Pa2 Hz21. Most of the power of
the signal is contained in the relatively narrow band at 1Hz; the next harmonic frequency at
2.0Hz contains only about 5% of the signal power. The background noise drops off fairly
steeply with frequency, as is to be expected from a strain-gauge-type pressure transducer.
There is no signal component below 1Hz. (D) Power spectral density function of the pressure
record shown in B. The spectral density was referenced to 2.173104 Pa2 Hz21. Again the
fundamental beat frequency is at 1Hz and has a narrow peak. The harmonics at 2 and 3Hz
account for approximately 2% of the signal. Thus, under low circulatory loading, the beat
frequency of the Cancer magister heart does not change, cardiac pressure declines from about
to 1000Pa to 500Pa, and the heart might temporarily stop beating.



as a function of sarcomere length and strain rate follows a similar pattern to the complex
modulus. The absolute values of the elastic modulus at a given sarcomere length and
strain rate are usually no more than a factor of two lower than those observed for the
complex modulus. An interesting pattern, however, emerges for the viscous behavior of
these fibers. At low strain rates, the viscous modulus is nearly an order of magnitude
lower than the elastic modulus at the same sarcomere length. However, at these low
sarcomere lengths, the viscous modulus rises very steeply with strain rate (about 10-fold
over the strain rates used here) and approaches, or even exceeds, the magnitude of the
elastic modulus at the higher strain rates used in these experiments (0.5–5rad s21). At
relatively longer sarcomere lengths, the viscous modulus increases only weakly or even
falls slightly.

The behavior of individual moduli as a function of sarcomere length and strain rate has
an interesting effect on the relative energy dissipation [tand=(E99/E9); Fig. 5]. For each
single fiber, the relative energy dissipation reaches quite large values (0.6–1.0) for shorter
sarcomere length (<4.5 mm) and strain rates above 0.5rad s21. This range of sarcomere
lengths and strain rates for which high values of energy dissipation occur corresponds to
the physiologically relevant range.

Two general results emerge from these observations and are consistent with previous
results on shrimp extensor cells (Meyhöfer and Daniel, 1990). Single cardiac fibers from
the heart of the crab Cancer magister are viscoelastic, and their relative energy
dissipation is large for physiologically relevant sarcomere lengths and strain rates, but
considerably smaller outside this range. Such a high value for the relative energy
dissipation indicates that as much as half of the mechanically imparted energy is
dissipated viscously.

Strain rate versus frequency

The modulus of a linearly viscoelastic material depends on the frequency of the length
perturbation when infinitesimal strains are used (Fung, 1981; Ferry, 1980). For finite-
amplitude perturbations applied to non-linear viscoelastic materials, however, the
instantaneous value of the stress depends not only on the instantaneous strain value but
also on the entire history of the strain, which includes all of its derivatives (Christensen,
1982). Thus, to a first-order approximation, we might expect that the mechanical
properties of a non-linear viscoelastic material would depend on the rate of strain and
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Table 2. Lengths of myofilaments

Myosin Actin

Length Length
Cell (mm) S.D. N (mm) S.D. N

1 3.29 0.155 24 1.97 0.121 24
2 3.58 0.307 18 2.07 0.252 17
3 3.05 0.131 21 1.77 0.064 29
4 3.23 0.160 25 1.84 0.133 29
5 3.13 0.247 18 1.71 0.166 17
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Fig. 4. Dynamic mechanical properties of a single cardiac fiber. The complex (A), elastic (B)
and viscous (C) moduli are plotted as functions of strain rate and sarcomere length. Each circle
indicates the location of a measured data point; data points for the same sarcomere length are
connected by a straight line. All data were collected from the same single cardiac fiber. The
sarcomere lengths (increasing modulus) were 4.3, 4.5, 4.65, 4.8, 5.1, 5.15, 5.45, 5.65, 5.85 and
6.15 mm. Note the logarithmic scales. All moduli increase strongly with sarcomere length. The
viscous modulus at short sarcomere lengths exhibits the largest dependence on strain rate.
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would not simply be frequency- or amplitude-dependent. Indeed, observations on large-
amplitude deformations of tendon and skin support this idea (Wainwright et al. 1976). To
determine experimentally whether this first-order approximation applies, a few fibers
were oscillated through the same set of frequencies with two distinct strain amplitudes
differing by about one order of magnitude. In Fig. 6 the phase (d) from such an
experiment is plotted as a function of both frequency and strain rate. The phase variable
was chosen for this analysis because it is the most sensitive to changes in strain rate and
frequency. The results of these experiments show that nearly identical results arise from
fixed values of strain rate and not from fixed values of frequency (Fig. 6).

Analysis for non-linearity

The non-linearity (distortion) for one particular experiment is analyzed by first
estimating the autospectral density of the mechanical response (force signal) at the
fundamental and harmonic frequencies. Following Bendat and Piersol (1986), the total
power is then calculated from:

Pt = [ |Gxx(mfk)|2]1/2 {m = 1, 2, 3,..., 7}, (18)
where

k = nw/T . (19)

All variables are defined the same way as in the Materials and methods section, and nw is
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Fig. 5. Relative energy dissipation of a single cardiac fiber. The relative energy dissipation for
the same fiber as in Fig. 4 is plotted as a function of strain rate and sarcomere length. Data
points from the same sarcomere length are connected by straight lines. Sarcomere lengths
increase with declining relative energy dissipation and are the same as listed for Fig. 4.



the integer number of sine waves in the record of length T. Since the power vanished very
quickly after the fourth harmonic, only the fundamental (m=1) and the first six harmonic
frequencies (m=2 to m=7) were included in the calculations. The relative amplitudes of
the fundamental and harmonics were then estimated from:

Am = [Gxx(mfk)/Pt ]1/2 . (20)

The relative amplitude of the force (here A1 or in general the output signal) represents the
linearity of the signal. In addition, I estimated the distortion or non-linearity in the force
signal by using the above-calculated relative amplitudes:

L = A1 , (21a)

7

D = 3^ |Am|241/2
. (21b)

m 2

In Fig. 7 the linearity (L), distortion (D) and relative amplitudes of the harmonics (A2–A5)
are shown as a function of strain rate for an entire experimental run. This particular
experimental run was chosen because the strain in these experiments was 0.89%, which
was slightly above the mean of 0.8771±0.0321% (N=1014) for all experiments reported
in this paper. Most of the non-linearity is accounted for by the first two harmonic
amplitudes (1 and 2 in Fig. 7A). The total distortion does not exceed 0.08. Thus, the total
non-linear power is less than 0.64% and the linearity is better than 99.6%. On the basis of
these measurements, I conclude that the perturbations used for the work reported here
were sufficiently small to justify a linear analysis.
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Fig. 6. Comparison between frequency (A) and strain rate (B). The phase angle (d) of two
different sets of sinusoidal experiments is plotted as a function of frequency and strain rate.
For both experiments, the same fiber was oscillated at the same 25 frequencies, but in the first
experimental run the mean strain amplitude was about 0.36%, whereas in the second run it
was close to 3.6%. Data points from the same experimental run (same strain amplitude) are
connected by straight lines. The mean sarcomere length of the fibers was kept constant at
4.3 mm for both experiments.
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Average mechanical behavior of single cardiac fibers

Although several distinct trends emerged from the analysis of single fibers, an
appreciable variability between individual fibers was also apparent. Accordingly, I
pooled data from 10 single cardiac fiber experiments to quantify such trends. First,
mechanical properties were sorted, according to sarcomere length and strain rate, into
small bins of each variable. The mean and standard deviation of each mechanical measure
were determined and data from the same range of strain rates were plotted against
sarcomere length (Fig. 8). The strain rate bins were selected to contrast the mechanical
behavior of the fibers inside the range of physiologically relevant loading with that
outside. For the three ranges of strain rates, the complex and elastic moduli, plotted on a
logarithmic scale, increase approximately linearly over the sarcomere length from 3.8 to
6.2 mm, indicating a possible exponential or power relationship between these moduli and
sarcomere length. The average total stiffness (complex modulus) of these fibers rises
from roughly 0.01MPa at 3.8–4.0 mm to 1MPa at 6.0 mm at the lower strain rates
(0.001–0.5rad s21); the same moduli are about two- to threefold larger at higher strain
rates (up to 10rad s21).
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Fig. 7. Analysis of nonlinearity. The relative amplitudes of the second to fifth harmonic (2–5)
and total harmonic distortion (D, open circles) are depicted as a function of strain rate for a
typical experimental run. For these measurements, the magnitude of the distortion is indicated
by the relative harmonic amplitude scale on the left-hand side of the figure. The total harmonic
distortion reaches a maximum of about 0.08 at close to 1rad s21. The calculated linearity as a
function of strain rate is also plotted in this figure (L, filled squares). It reaches its minimum of
0.996 at 1rad s21, indicating that the signal is linear. The scale for linearity is given on the
right-hand side of the figure. The sarcomere length was 4.8 mm and the mean strain amplitude
for the sinusoidal perturbations in this experiment was 0.89%.



The ratio of viscous to elastic moduli (tand) shows an interesting dependence on
sarcomere length and strain rate. At low strain rates (<0.5rad s21), the relative energy
dissipation is independent of sarcomere length and is low, with values ranging between
0.1 and 0.2. However, at higher strain rates, the relative energy dissipation depends on
sarcomere length. It can reach values near 1.0 at 3.8–4.2 mm sarcomere lengths and drops
to values of approximately 0.15 at sarcomere length of 5.0 mm and above. In the relatively
narrow range of physiological sarcomere lengths and strain rates (0.5–1.2rad s21, 4.0–4.4
mm), the relative energy dissipation reaches an appreciable value of about 0.5–0.7
(Fig. 8, middle column).

Mechanical response surfaces for single cardiac fibers

The results presented in the previous sections show that the mechanical responses of
single cardiac fibers depend on both sarcomere length and strain rate and, therefore, form
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Fig. 8. Average mechanical behavior of single cardiac fibers. The complex modulus (E*),
elastic modulus (E9) and relative energy dissipation (tand) are plotted for three strain rate bins
(0.001–0.5, 0.5–1.2 and 1.2–10rad s21) as a function of sarcomere length. The second bin
encompasses the physiological range of strain rates, whereas the other two bins are outside this
range. Data from 10 cells were pooled for this analysis. For the moduli, one standard deviation
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specified below each mean. Moduli are plotted on a logarithmic scale and change by about two
decades over the sarcomere length range from 4 to 6 mm. The behavior of all moduli in the
different strain rate bins is approximately similar. The magnitude of the relative energy
dissipation, however, changes from strain rate bin to bin; in the physiological range of strain
rates and sarcomere lengths (4.0–4.4mm), the average relative energy dissipation is about 0.6.
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Fig. 9



a complex three-dimensional response surface. To evaluate and quantify this response
surface better, mechanical data were fitted to descriptive equations (equations 14 and 15)
and then plotted together with the model as stereopairs. As described in the Materials and
methods section, I chose one model to represent the total stiffness and another model to
described the relative energy dissipation. In Fig. 9, stereopairs of three-dimensional plots
relating the total stiffness to relative sarcomere length and strain rate are shown. Note that
relative sarcomere lengths of 1.0 and 1.7 are equivalent to absolute sarcomere lengths of
3.7 mm and 6.29mm, respectively (see equation 17). The relationship between the relative
energy dissipation and the independent variables sarcomere length and strain rate is
depicted in Fig. 10.

Inspection of the stereopairs (Figs 9 and 10) reveals the same general trends described
above. (1) The total stiffness of single cardiac fibers rises steeply with sarcomere length
and weakly with strain rate (Fig. 9). (2) The relative energy dissipation depends strongly
on sarcomere length and strain rate (Fig. 10).

The response surfaces fitted to the data demonstrate that the relative energy dissipation
exceeds values of 1.0 for low sarcomere lengths (1.0–1.2 relative sarcomere length) and
high strain rates (1–10rad s21) (Fig. 10). From these values, the relative energy
dissipation declines smoothly with increasing sarcomere length and with decreasing
strain rates (Fig. 10). In the predicted physiological range of sarcomere lengths and strain
rates, the response has a steep gradient, especially with respect to strain rate. Note,
however, that the gradient with respect to sarcomere length at the largest strain rate
appears to be underestimated because of the lack of data points at large sarcomere lengths
and high strain rates. At strain rates below 0.1rad s21, the response surface is essentially
flat for all sarcomere lengths. The response surface fitted to the relative energy dissipation
data suggests the possible existence of a maximum. However, this finding should be
treated with great care. The response surface contains too few data with strain rates
beyond the possible maximum, and part of the response surface extends slightly beyond
the region evaluated by data points.

The steep increase of the total stiffness response surface as a function of sarcomere
length can be approximated by a power function with an exponent of about 2.3 (Fig. 9;
equation 14). The total stiffness also increases with strain rates above 0.1rad s21. Again,
the steepest change of the total stiffness with respect to strain rate falls into the
physiologically relevant range. The model predicts a total stiffness of about 45kPa for a
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Fig. 9. Mechanical response surface of single cardiac fibers: linear three-dimensional plot of
the total stiffness as a function of sarcomere length and strain rate. The total stiffness of 10
single cardiac fibers and the model fitted to the data are plotted in stereopairs as a function of
relative sarcomere length (referenced to 3.7 mm) and strain rate. 1014 data points were used
for each these plots. The stereopair at the top of the figure shows only data, the one in the
middle includes a coarse grid of the model, to allow a comparison between the data and the
model, and the bottom pair shows the model displayed with a finer grid. The following
variables were obtained when the model (equation 14) was fitted to the data using the least-
squares method: a=6555.6Pa, b=52.753Pa, c=2.3252, d=1.5713 and e=1.2499(rad s21)21.
The good fit of the model to the data is indicated by the r2 value of 0.899 and the F-value of
1269.0 (5 and 1009 degrees of freedom).
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single cardiac fiber at a sarcomere length of 4.2 mm, deforming at a strain rate of
0.6rad s21. Values of all fitting variables are summarized in the respective figure legends.

The complex modulus and relative energy dissipation models provide good fits to their
respective mechanical measurements. This conclusion is strongly supported by a
goodness-of-fit analysis of the overall regression. The observed F-ratios exceed the
selected percentage point of the F-distribution [F0.001(1),5,1009≈4.10, Zar 1984] by more
than 100-fold (see legends of Figs 9 and 10), indicating that the model is a highly
significant predictor in the sense that the range of response values predicted by the models
is extremely large compared with the standard error of the response (Draper and Smith,
1981). In addition, the r2-values for the complex modulus model and relative energy
dissipation model are large with respective values of 0.899 and 0.928. Therefore, about
90% of the variability in the complex modulus and relative energy dissipation is
explained or accounted for by the fitted models. The stereopair plots also establish that the
residuals achieve approximate homoscedasticity. In this context, it is important to
remember that the number of individual cells used in this analysis is relatively small
whereas the total number of data points is large.

Relationship between mechanical data and the extracellular matrix

The role of the extracellular matrix as a determinant of the passive mechanical behavior
of single cardiac fibers was investigated by relating the volume fraction of ECM to a
measure of their mechanical properties (Table 3). In Fig. 11 the typical ultrastructural
appearance of experimental fibers is shown. The thickness of the ECM was measured
from electron micrographs as depicted in Fig. 11B,C. I chose to relate the ECM volume
fraction to the total dynamic stiffness at 5.6 mm and 2Hz, because this required the least
interpolation between measurements. The strain rates for these measurements range from
0.06 to 0.08rad s21.

Estimates of the mean thickness of the extracellular matrix for individual fibers vary
between 178 and 269nm and do not correlate well with the total stiffness of fibers. It
appears, therefore, that this measurement cannot account for the nearly 10-fold variation
in total stiffness. However, since fiber dimensions are also quite variable, the estimates of
the ECM volume fraction exhibit a different pattern (Fig. 12). The following relationship
emerges: a larger ECM volume fraction correlates with a stiffer fiber. Regression
analyses on both the mean values and all measurements (see Fig. 12 legend) suggest that
a linear relationship exists between the ECM volume fraction and the total dynamic
stiffness.
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Fig. 10. Mechanical response surface of single cardiac fibers: three-dimensional plot of the
relative energy dissipation as a function of sarcomere length and strain rate. The relative
energy dissipation (tand) depends on sarcomere length and strain rate and reaches its largest
values at short sarcomere lengths and high strain rates (note the reverse relative sarcomere
length axis). The least-squares best fit for the relative energy dissipation model (equation 15)
produced the following values for variables and measures of goodness of fit: f=0.23168,
g=0.8205(rad s21)21, h=0.1808(rad s21)22, k=0.012669(rad s21)21, l=0.02459, r2=0.928,
F=739.61, d.f.=5 and 1009, N=1014. Notice that the model predictions of high values of tand
at longer sarcomere lengths and the highest strain rates extend over the data domain.



Discussion

This paper describes the dynamic mechanical properties of passive single cardiac fibers
of the Dungeness crab Cancer magister for a wide range of sarcomere lengths and strain
rates, including those that are physiologically relevant. These measurements revealed
strong viscoelastic behavior similar to that reported for shrimp extensor cells (Meyhöfer
and Daniel, 1990). Cardiac fibers from Cancer magister are therefore not purely elastic,
as has tacitly been assumed in most studies on the passive mechanics of skeletal and
cardiac fibers (for example, Magid and Law, 1985; Fabiato and Fabiato, 1978; Fish et al.
1984).

Several main findings arise from the data: (1) the elastic and viscous moduli of these
cardiac fibers depend upon both sarcomere length and strain rate; (2) their relative energy
dissipation is large in the physiologically relevant range of sarcomere lengths and strain
rates; and (3) there is a positive and statistically significant correlation between the
relative amount of ECM and the total dynamic stiffness. The implications that these
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Table 3. Relationship between fiber geometry, dynamic stiffness and extracellular matrix
(ECM)

ECM thickness VECM

(nm) (%)
Area Perimeter E*

Cell (mm2) (mm) (MPa) Mean S.D. Mean S.D. N

1 1496 195 0.66 178.3 40.55 2.32 0.52 41
2 1582 263 2.95 238.9 75.34 3.97 1.25 46
3 8431 761 1.26 268.5 78.69 2.42 0.71 40
4 6944 548 0.34 195.7 59.64 1.55 0.47 66
5 1175 149 0.80 189.7 51.24 2.40 0.65 22

The dynamic stiffness for all five cardiac fibers analyzed was referenced to a sarcomere length of
5.6 mm and a frequency of 2Hz.

N is the number of electron microscope measurements of the thickness of the ECM and the volume
fraction of the ECM (VECM) is given as a percentage.

Fig. 11. Ultrastructure of single experimental cardiac fibers from Cancer magister.
(A) Detailed electron micrograph of a longitudinal section showing the sarcomere structure of
a fiber that had been used for dynamic mechanical experiments. The A-band (my) and I-band
(I) as well as the Z-line (Z) and M-line (M) are well preserved, allowing the measurements of
sarcomere length and the length of the myofilaments. The effectiveness of the Chaps skinning
procedure is illustrate by the disruption of the sarcoplasmic reticulum (arrow). Scale bar,
1 mm. (B) Transmission electron micrograph of a cross section of the edge of a single cardiac
fiber. The extracellular matrix (ecm) is well preserved in experimental fibers (see also C) and
hence the thickness can be measured from such material. Note the disruption of all membrane
systems; the cell membrane has virtually disappeared, and the large mitochondria usually
found directly beneath the cell membrane (compare with Fig. 2C) have been destroyed. Scale
bar, 1 mm. (C) Transmission electron micrograph of a longitudinal section of an experimental
fiber, showing good structural preservation of the myofibrillar filaments and the extracellular
matrix. The sarcomere length in this fiber was approximately 6.0 mm. A, A-band; I, I-band.
Scale bar, 2mm.



results have for cardiac function are discussed below and related to my stability
hypothesis. First, however, I will compare the morphology and ultrastructure of the
cardiac fibers of Cancer magister with those of related animals. I then ask if these
measured dynamic mechanical properties of the cardiac preparation appear reasonable by
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comparing them with previous mechanical measurements on other cardiac muscle fibers.
I conclude this paper by examining the energetic consequences of these mechanical
properties for cardiac function and discuss the possible structural basis of the above data.

Morphology and ultrastructure of cardiac muscle fibers

The ultrastructure of muscle fibers from the heart of the crab Cancer magister closely
resembles that of crustacean skeletal fibers: myofibrils exhibit the characteristic cross-
striation pattern of bands and lines, numerous mitochondria populate the cytoplasmic
compartment, and an extensive membrane system of tubules and sarcoplasmic reticulum
is present in these fibers. Similar observations have been reported for cardiac fibers from
the lobster Homarus americanus (Anderson and Smith, 1971; Smith and Anderson,
1972), the horseshoe crab Limulus polyphemus (Sperelakis, 1970) and a few other
crustaceans (for a summary of much of this work, see Sanger, 1979; Hoyle, 1983). More
importantly for these experiments, single cardiac fibers in crustaceans, while being
considerably smaller than their skeletal counterparts, are huge compared with vertebrate
single cardiac fibers and can therefore be dissected mechanically.

The resting sarcomere length of Cancer magister cardiac fibers was estimated to be
between 3.8 and 4.0 mm on the basis of sections of fixed tissue in situ and myofilament
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Fig. 12. Relationship between the volume fraction of ECM and the complex modulus. The
volume fraction of extracellular matrix (ECM, expressed as a percentage) is plotted for five
fibers as a function of the complex modulus (5.6 mm, 2.0Hz). The standard error of the mean is
indicated by the vertical lines. The linear fit to all data points (not the mean) is shown by the
thick lines, and the 95% confidence interval is shown by the thin lines (r2=0.916, F=242.8,
P<0.001). A regression on the mean values is also highly significant (r2=0.936, F=43.8,
P≈0.007).



length measurements from experimental fibers. In this context, it is important to
remember that a considerable degree of variability, reflected by the error (standard
deviation) of the myofilament lengths, was associated with these measurements. Such a
degree of variability of a morphological characteristic is not uncommon for crustacean
muscle (Atwood, 1973; Sanger, 1979; Franzini-Armstrong et al. 1986). This estimate of
the resting sarcomere length falls approximately into the middle of the range
(1.8–6.6 mm) of sarcomere lengths observed for other crustacean cardiac fibers (Hoyle,
1983) and therefore does seem not unreasonable. Unfortunately, it is not clear whether the
observed uncertainty is based on variability between single fibers, between individual
animals, or both, because each experimental fiber was dissected from a different animal.

Some important morphological features deviate from the pattern commonly observed
for crustacean skeletal fibers: the myofibrillar volume fraction is small in Cancer
magister cardiac fibers (only about 50%) and under physiological conditions these fibers
are separated by appreciable distances (40–70 mm is a common range). Because of the
limited ultrastructural information available for crustacean cardiac fibers, it is unclear
whether these morphological characteristics are unique to cardiac fibers from Cancer
magister. In contrast to Anderson and Smith’s (1971) finding in the lobster, discs were
not found in histological sections several millimeters long of cardiac fibers from Cancer
magister, suggesting that such discs are possibly absent or at least occur considerably less
frequently than expected from vertebrate cardiac muscle. The presence of cytoplasmic
bridges between adjacent cells is not entirely surprising for crustacean muscle, where it
has long been assumed that larger muscle fibers are formed by the fusion of several
smaller ones (Hoyle and Smyth, 1963). The separation between individual cardiac fibers
has not been described previously. Note that all morphological and ultrastructural
observations are based entirely on observations of the relatively small anterior–posterior
oriented groups of myocytes, from which all experimental fibers were dissected. The
results are therefore appropriate for interpreting mechanical data, but any other inferences
drawn from the observations should be considered in the light of this limitation.

General passive mechanical behavior of cardiac muscle fibres

Are the passive mechanical properties of single cardiac fibers described in this paper
consistent with previously reported results? A comparison with skeletal muscle fibers
(Meyhöfer and Daniel, 1990) provides a partial answer to this question. Briefly, the
magnitude and general trends of moduli are quite similar to those described previously for
shrimp extensor fibers. Moduli range from 0.01 to 1MPa with changes in sarcomere
length and strain rate and, in the physiological range, the relative energy dissipation
reaches values of 0.5 and above (Meyhöfer and Daniel, 1990).

Direct comparison between my measurements and existing data is somewhat difficult
because dynamic mechanical measurements on passive cardiac muscle are rare, and the
few published data often do not examine the physiological range of sarcomere lengths
and strain rates or consider different physiological states (rigor or active) of the muscle.
There are also many observations on static mechanical properties that indicate a large
variability in the passive mechanical properties between cardiac fibers of different
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animals and different preparations (Fish et al. 1984; Fabiato and Fabiato, 1978; Tarr et al.
1979; Winegard, 1974). Moreover, most studies assume that only the elastic component
of the passive behavior is important in determining forces that resist the elongation of
muscle fibers. Data do not support this assumption and such static mechanical tests will
always lead to underestimates of the total passive stiffness by as much as an order of
magnitude. For example, Helber’s (1980) measurements of the stiffness of relaxed frog
muscle fibers show a 1Hz dynamic stiffness that is about five times larger than the static
modulus at the same sarcomere length. This observation holds for the entire sarcomere
length range from 2.1 to 3.0 mm. Similarly, Brady (1984) reports complex moduli for rat
single fiber stiffness between 0.1 and 1MPa, whereas complex moduli calculated from
the passive stiffness measurements of Fabiato and Fabiato (1978) are about an order of
magnitude lower.

Nonetheless, some basic features of my observations can be confirmed by results from
vertebrate dynamic experiments. For example, Pinto and Fung (1973) measured the stress
relaxation and the elastic as well as the frequency response functions of rabbit passive
papillary muscle. Their results agree with my findings of viscoelastic behavior of Cancer
magister single cardiac fibers. They also found a strong nonlinear dependence of total
stiffness on length and a weak dependence on strain rate (frequency). For the reference
length of their muscles, they report a complex modulus of about 0.01MPa, a measure that
is consistent with those measured here. Unfortunately, Pinto and Fung (1973) reported no
sarcomere lengths and each of their experimental results is based on a single preparation.
Total stiffness measurements of single rat cardiac myocytes (15kPa, 5Hz, 1.9 mm) (Ross
and Brady, 1989; Brady and Farnsworth, 1986) agree well with my overall stiffness
measurements from Cancer magister. Thus, at least to an order of magnitude, my
estimates of cell stiffness are consistent with previous findings. Unlike past results,
however, I measure a much larger range of independent variables.

Use of mechanical response surfaces and choice of models

The mechanical data presented here characterize the dynamic mechanical behavior not
only in the relatively narrow physiological range of sarcomere lengths and strain rates,
but also well beyond this range, describing a three-dimensional mechanical response
surface for passive cardiac fibers. The relatively simple descriptive models describe the
mean magnitude and gradient of the mechanical response as a function of sarcomere
length and strain rate, permit statistical comparisons between different fiber types or
treatments (E. Meyhöfer, in preparation) and provide algebraic expressions for direct
comparison with other cells as well as for direct calculations of work requirements for
cell deformations.

The selection of the specified functions reflects relationships that are either expected
from the response of a simple viscoelastic body (Fung, 1981) or based on experimental
observations. The total stiffness for single cardiac fibers increases approximately
exponentially with sarcomere length. Such a relationship is indirectly supported by many
static stiffness measurements on vertebrate cardiac fibers (for example, Fish et al. 1984;
Fabiato and Fabiato, 1978) as well as by numerous studies on skeletal fibers (Gordon,
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1989). However, the increase in dynamic stiffness with sarcomere length for the multiple-
fiber cardiac preparation (E. Meyhöfer, in preparation) is better modelled by a linear
relationship. To be able to compare different preparations statistically, it is necessary to fit
all data sets to the same model. I therefore chose a power function, which provides a good
fit for both the linear and the exponential relationships. The increase in the total dynamic
stiffness with increasing strain rate is described by an inverse exponential multiplier. This
form was suggested by the behavior of a standard linear model (Fung, 1981).

The dependence of the relative energy dissipation on strain rate is entirely based on
Fung’s (1981) standard viscoelastic model calculations. To account for the decrease in
the relative energy dissipation as a function of sarcomere length, two terms increasing the
value of the denominator of equation 15 with increasing sarcomere length were included.
This choice was completely empirical, but proved very effective in that it was both simple
and successful. One of these terms consists of the fitted multiple of the sarcomere
length–strain rate product. This term allows the response surface to flex such that the
apparent maximum of the relative energy dissipation could shift to lower strain rates with
increasing sarcomere length. However, for none of my data sets was this possible pattern
statistically verified by using the above model (equation 15), probably because the
variability is large relative to this trend.

The models provide a surprisingly good description of the data. As outlined in the
results section, the fitted surfaces are statistically highly significant. The addition of
further variables to the models does not significantly reduce the residual sum of squares,
indicating that the remaining variance is probably due to interfiber variability and not to
an inadequate model. Note that the mechanical behavior of cardiac fibers predicted from
these models for sarcomere lengths and strain rates outside the measured range is likely to
be inaccurate. This limitation is especially severe if a steep gradient is located close to the
margin of the observed data, as is the case for the possible maximum in the relative
energy dissipation (see Results section).

Viscoelastic responses in the physiological parameter space: a basis for dynamic
stability?

Given that the viscous component of the mechanical behavior is large in the middle of
the physiological range of strains and strain rates, one must ask how significant such
values are to the overall energetics of the heart. Using the data presented in this paper, I
examine whether the passive energy dissipation in the cardiac fibers is large relative to the
useful work done by these fibers.

The total useful work done by the heart during each beat is estimated from the
pressure–volume work using the relationship:

W = DPDV , (22)

where W is the pressure–volume work, DP is the systolic transmural pressure difference
and DV is the stroke volume. Equation 22 is an approximation of the integrated time-
dependent pressure–volume product, and provides satisfactory estimates of the pressure
volume work (Schmidt and Thews, 1983). In addition, I neglect any work done in fluid
accelerations, because estimates indicate that this work accounts for only approximately
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1 % of the pressure–volume work. Given a total volume of 2ml for the filled heart of a
crab, a stroke volume of 30% of the volume of the filled heart (DV 0.6ml for ‘normal’
cardiac activity) and a cardiac pressure of 1000Pa, the pressure–volume work is
estimated to be about 631024 J heartbeat21.

The energy dissipation by the cardiac tissue is estimated from:

Ed = 0.5E9e2Vh , (23)

where Vh represents the volume of cardiac tissue. The strain amplitude e is estimated to be
0.1 under physiological conditions (see Results section). The mass of a heart from crabs
of the size used in this study (range 0.6–0.8kg) is close to 2g (range 1.8–2.5g), which
gives an approximate volume of 2.031026 m3. With a complex modulus of 45kPa and a
value of 0.6 for the relative energy dissipation, a loss modulus of 23kPa is calculated
from equation 11b. Hence, the energy dissipated in the cardiac fibers during the extension
phase of each beat of the heart will be 2.531024 J. If we assume that the same passive
loss modulus is present during active shortening of the cardiac fibers, then the total
amount of energy viscously dissipated rises to 5.031024 J per cardiac cycle. This
assumption is substantiated by Tidball’s (1986) finding that a significant fraction of the
viscous modulus is associated with the extracellular matrix, which is probably not
affected by the active state of the fiber. Presumably, the same conclusion is also true for
titin (connectin) and nebulin, which are now implicated as major sources of passive
muscle stiffness (Horowits et al. 1986; Wang et al. 1991). This result suggests that
cardiac fibers viscously dissipate a significant amount of the mechanically imparted
energy, compared with the useful work done by the heart – nearly 80% of the
pressure–volume work. Although these calculations are admittedly rough, even a several-
fold change in any of the estimates will not change this basic conclusion that the viscous
energy dissipation is large. I cannot, therefore, reject my viscous stability hypothesis.
Instead, I propose that the high viscous damping of these fibers provides internal stability.
A key question that arises here is what forms of mechanical instability can occur.

I can envisage three different forms of instability in the cardiac muscle system:
(1) unstable motions of the whole heart, leading to undamped oscillations or ringing,
(2) instabilities at the level of the single fiber in the form of non-uniform strain
distributions along the length of a single fiber and (3) instabilities at the level of
individual sarcomeres that cause disruptions in the regular striation pattern.

Instabilities of the whole heart (form 1) can be controlled by active mechanisms
(innervation of the heart, spread of excitation signal), energy removal associated with the
blood flow and its viscous loss or passive (viscous) damping the tissues of the heart. The
relative importance of these control mechanisms is unknown, but I consider it unlikely
that viscous damping in the cardiac fibers is necessary to achieve stability of the whole
heart.

Stability at the single fiber level (form 2) requires some mechanism to dissipate
mechanical strain energy, since active control at such a local level (for example, strain
sensing and excitation feedback on the sarcomere) does not seem feasible. I believe that
viscous damping of muscle is of great importance for the dynamic mechanical stability at
this level of organization. For instance, in the case of shrimp muscle cells, Meyhöfer and
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Daniel (1990) argued that the impulsive loading of the fibers during the escape response
of the shrimp causes a deformation wave that will propagate along the length of the fiber
with a velocity proportional to the square root of the elastic modulus (Timoshenko et al.
1974). In the absence of any viscous damping, the strain gradient associated with this
propagating wave of deformation will be extremely steep and will yield large strain non-
uniformities that may damage the internal structures. Cardiac fibers, however, are not
impulsively loaded, which suggested (see Introduction) the possibility that viscous
damping of these fibers is, for energetic reasons, undesirable and unnecessary to achieve
internal stability. However, cardiac fibers are continuously loaded, and continuous input
of energy into any system with mass and elasticity, but without any damping or
mechanism to remove energy, can lead to unstable responses with undamped oscillations
and ringing. Such instabilities can result in large internal strain non-uniformities. In
contrast to the shrimp extensor system, I speculate that instability in a hypothetical
cardiac muscle system without viscous damping would develop over many heart beats,
not instantaneously.

The basis for such an argument follows from two key characteristics of vibrating
systems with finite mass and elasticity. In the simplest case, a single mass with some
attachment will, under continued input of vibrational energy, undergo displacements of
infinite amplitude if any of that energy is near the resonant frequency of such a system
(Timoshenko et al. 1974). Only with some finite amount of viscous damping can such a
system respond in a stable manner to continued energy input. For such a case, ever greater
damping leads to ever lower amplitudes of internal displacement.

A system consisting of a single mass, however, only illustrates the importance of
damping. In a continuum model of a single cell, the mass and elasticity are spatially
distributed. Thus, there is no single mass value and no single resonant frequency that
characterize the system. Instead, waves of internal displacement travel along the cell
(Schoenberg et al. 1974; Truong, 1974; T. Daniel and E. Meyhöfer, in preparation) at a
characteristic velocity (equal to the square root of the elastic modulus divided by the
density of the fiber), leading to an infinite set of resonant frequencies corresponding to the
set of integer multiples of the number of waves present along the fiber (Farlow, 1982).
Under such conditions, any continued input of energy at any one of the resonant
frequencies will lead to infinite amplitudes of internal strain. With viscous damping, the
steady-state amplitude will be constrained.

Although the steady-state characteristics can be clearly defined (Farlow, 1982), the
transient response to vibrational motion of such a viscoelastic system is more
problematic. Both the approach to steady state and the magnitude of the steady-state
strain distribution are determined by the relative amount of viscous energy dissipation.
Larger damping leads both to a slower rate of approach to the steady state and to a lower
magnitude of internal strain at the final steady state. Thus, a passive cardiac fiber exposed
to cyclic loading will develop internal strain uniformities that will build up over time. In
the absence of any viscous damping, those non-uniformities will rise to infinite values as
long as some component of the driving frequency is at any one of the resonant
frequencies.

Horowits and Podolsky (1988) addressed an important component of the stability
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problem at the level of the single sarcomere (form 3, see above): the positional stability of
the thick filament in the sarcomere. Based on previous work on the structure and function
of the proteins titin and nebulin (Maruyama et al. 1984, 1985; Wang, 1985; Gassner,
1986; Horowits et al. 1986; Higuchi and Umazume, 1985), they argued that the position
of the myosin filament is stabilized by these large elastic proteins, which connect the
myosin filament to each Z-disk. Perturbations of myosin from its center position would
strain that elastic link. Thus, myosin movement causes a (passive) resting force that
opposes any further myosin movement. Clearly, this mechanism depends quantitatively
on the active and passive length–stiffness relationship, the sarcomere length and the
initial myosin perturbation. Horowits and Podolsky (1988) formulated a ‘dynamic’ model
that related these variables to thick filament displacement and displacement velocity.
Assuming that titin is completely elastic and accounts for all of the observed resting
tension, and using standard force–velocity and force–length relationships and the usual
sarcomere structure, they found (1) that above 2.8 mm, the thick filament position was
stable, even during very long contractions, although it was unstable under the same
conditions (contraction slower than 80s) in the absence of titin, and (2) that during
passive stretching, some force to recenter the myosin filament would be present if the cell
was extended beyond 2.6 mm. Their first conclusion is substantiated by electron
microscopical evidence (Horowits and Podolsky, 1987), but the long contraction time
required for asymmetries to develop are physiologically not relevant and they concluded,
therefore, that the primary physiological role of the titin filament may be to recenter the
myosin filament during passive stretching and thus to prevent the slow accumulation of
asymmetries in the sarcomere striation pattern over several contraction cycles.

The elastic stability hypothesis of Horowits and Podolsky provides an interesting
alternative to my viscous stability hypothesis. However, I believe several aspects of their
model need to be addressed. (1) Physiological strains in muscle fibers are typically only
10–20%; thus, for the fibers used, which have a resting length of 2.2 mm, the proposed
mechanism might not act over the relevant range of sarcomere length but might only
provide ‘protection’ against such instability at extreme sarcomere strains. (2) The model
assumes that all of the resting stiffness of psoas fibers is produced by titin. In the next
section, I discuss some of the lines of evidence supporting the idea of additional sources
of stiffness in passive fibers. Any reduction of the stiffness due to titin reduces
quantitatively the ability of the proposed mechanism to provide mechanical stability
(3) Titin, if it accounts for most of the passive behavior in the relevant range of sarcomere
lengths, as argued by Horowits et al. (1986), is viscoelastic, as shown by the stress
relaxation in their published tension records. (4) The proposed static model does not
consider dynamic perturbations in fiber length and their consequences. The response of
the model to dynamic strain (sarcomere length) non-uniformities and to steep strain
gradients is unclear. Any mechanism that yields stability based on an increased passive
elasticity of the muscular system is potentially undesirable, because increased passive
elastic (or viscoelastic) resistance reduces contraction velocity and, hence, power output
(Mirsky and Krayenbuchl, 1981; Pollack, 1970; Natarajan et al. 1979). Thus, the ‘elastic
stability mechanism’ might well be energetically more expensive than viscous damping.
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Elastic energy storage in the physiological parameter space: is the crustacean heart a
mechanical resonator?

In a manner similar to the viscous energy losses, we can estimate the elastic energy
stored during passive extension of the heart using the following relationship:

Es = 0.5E9e2Vh . (24)

Using the above estimates and equation 11a, the elastically stored energy amounts to
about 3.831024 J. This energy can be returned during the contractile phase.
Nevertheless, the structure(s) extending the heart during the refilling phase of the cardiac
cycle has to provide the energy to overcome the sum of elastic and viscous resistances,
which amount to 3.831024 and 2.531024 J, respectively, giving a value that is larger
than the pressure–volume work done by the heart. This estimate does not include any
pressure–volume work necessary to fill the heart.

These calculations raise an important question: which structure or physiological
function is responsible for extending and filling the heart? Hearts of crustaceans, and
arthropods in general, are suspended by a number of elastic ligaments that connect the
heart to adjacent apodemes of the exoskeleton (Krijgsman, 1952). It seems plausible that
the heart of Cancer magister operates as a resonating system, in which passive strain
energy is continuously exchanged between the passive component of the cardiac fibers
and the ligaments. My calculations indicate that the ligaments must elastically store and
then return at least 6.331024 J in each cardiac cycle, whereas the muscle fibers store and
return 3.831024 J. A comparison with the useful work done (pressure–volume work,
6.031024 J) shows that the elastic energy stored (energy savings) represents a significant
component of the energy budget for a heart beat. Assuming that the fluid-dynamic energy
losses associated with the pumping action of the heart are about half the pressure–volume
work (an extremely pessimistic estimate) and purely elastic behavior in the ligaments,
then the total work (pressure–volume work, stretching of the ligaments, energy
dissipation in the fluid and the cardiac fibers) done by the heart in a single beat is
approximately 1.8mJ; about 3.831024 J of this energy was elastically stored and
returned. Although such calculations are only approximations, they indicate an energy
saving of about 20%, which suggests the possibility that the heart pump in this system
behaves as a resonating system.

Circumstantial evidence for the resonance behavior comes from pressure recordings.
When a heart starts to beat again after a rest period (Fig. 3) its pressure amplitude rises
over several beat to a new steady state. Such behavior is to be expected from a resonant
system. There is, however, no direct evidence that the system has a resonance at 1Hz. In
fact, it is possible that the slow increase in cardiac pressure after a rest period is due to a
phenomenon similar to the Treppe observed for vertebrate cardiac muscle (Huntsman and
Feigl, 1989). Nevertheless, I find it very interesting that the heart of all animals always
beats at exactly one frequency (very close to 1Hz) and that it stops intermittently to adjust
to lowered circulatory demands (Fig. 3B) rather than following the vertebrate strategy of
regulating the beat frequency.

In this discussion, I have presented results supporting two apparently conflicting
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hypotheses: that the heart of Cancer magister dissipates energy to attain dynamic
mechanical stability; and that it simultaneously stores and returns elastic strain energy in
a resonating system to conserve energy. I believe there is no conflict. The need for
viscous energy dissipation at the level of the single fiber for mechanical strain stability
does not preclude efficient and energy-saving strategies from the cardiac system.

What is the structural basis for the mechanical behavior?

The significant linear relationship between the ECM volume fraction and the total
stiffness suggests that the ECM is an important determinant of the passive mechanical
behavior of the heart. My measurements do not, however, explain the extent to which the
ECM determines the passive mechanics. Different structural components and mechanism
have been implicated as the source of passive stiffness. Unfortunately, only very few
studies have relied on dynamic mechanical measurements.

Several different structures and physiological functions have been implicated in
passive dynamic stiffness: (1) the ECM (Tidball, 1986; Winegard, 1974); (2) the
extracellular skeletal framework with its large collagen and elastin fibers, large
intercellular struts (bundles of collagen fibrils) and microthreads and fibrils (Robinson
et al. 1983, 1985; Borg et al. 1981a,b; Orenstein et al. 1980; Tarr et al. 1979); (3) titin
(connectin, projectin), nebulin and possibly other large structural proteins associated with
myofibrillar structures (Granzier and Wang, 1993; Horowits et al. 1986; Hu et al. 1990;
Maruyama, 1986; Maruyama et al. 1977a,b,c; Wang et al. 1991); (4) viscous forces
associated with the sliding motion of filaments in the sarcomere (Ernst, 1977); (5) weak
actin–myosin interactions (Brenner et al. 1982, 1984; Granzier and Wang, 1993); and
(6) short-range elasticity (Hill, 1968).

A detailed comparison of these various mechanisms is beyond the scope of this
discussion, but some exclusions can be made. For example, the short-range elasticity of
muscle and the weak binding of acto-myosin in relaxed muscle are unlikely to contribute
significantly to the (total) stiffness of muscle; the elastic limit of the short-range elasticity
(Hill, 1968) is so small that physiological length changes (and even small sinusoidal
length perturbations, Helber, 1980) exceed it by more than 100-fold. Weak acto-myosin
interactions in vertebrate skeletal muscle fibers lead to measurable changes in fiber
stiffness only in low ionic strength solutions and when rapid stretches are applied
(Brenner et al. 1982, 1984), suggesting that such crossbridges do not contribute to passive
fiber stiffness under physiological conditions. Granzier and Wang (1993) recently
reported that fibers from the indirect flight muscles of the waterbug Lethocerus also
exhibit weak acto-myosin interaction at physiological ionic strength, but their stiffness
measurements were carried out using very rapid length changes (2.2kHz sinusoids). For
cardiac fibers, such deformation rates are well above the in vivo strain rates and are
physiologically not relevant. Furthermore, if the dynamic mechanical properties
measured in the present study were based on weak crossbridge interactions, we would
expect the stiffness to decline linearly with increasing sarcomere length. However, both
the elastic and viscous moduli increase steeply with sarcomere length.

The viscous resistance due to the relative sliding of thick and thin filaments can be
calculated directly by adopting the following simplified geometry for muscle: the thick

244 E. MEYHÖFER



filament is a cylinder with radius ri that is displaced along its axis in a larger cylinder of
radius ro formed by the six actin filaments surrounding the thick filament. The viscous
force on a single myosin filament moving with velocity v is given by:

Fv = 2phlv/[ln(ri/ro)], (25)

where h denotes the viscosity of the fluid in the gap between the two cylinders (Huxley,
1980; notice the misprint in the formula on page 66). This formula is the solution of a
simplified version of the Navier–Stokes equation, from which inertial terms have been
dropped and the fluid density and viscosity are to be assumed constant. With the
appropriate boundary conditions, the velocity can be found as a function of radius r (for
an outline of this approach, see Bird et al. 1960), and the viscous shear force on a single
filament (Fv) can be determined from the spatial velocity gradient. For the cardiac muscle
of Cancer magister, I assume the following values. The radius of the thick filaments,
measured from electron micrographs (Fig. 2B), is approximately 8nm. I estimate the
radius of the cylinder formed by the actin filaments to be 25nm. The overlap of actin and
myosin at 4.0 mm (lower end of physiological range) is about 1.5mm and the viscosity of
the fluid in the interfilament space is about 2.031023 Pas (see discussion in Huxley,
1980). I estimate the relative sliding velocity of the filaments for my experimental
perturbations from a root-mean-square value of the strain rate. The sliding velocity
equivalent to the physiological strain rate of 0.6rad s21 is 6.331027 ms21. Thus, the
viscous force on a single myosin filament is approximately 1.0310214 N. With about
331014 myosin filaments per square meter (myofibrillar volume fraction equals 0.5) and
a typical strain of about 1% in the experiments reported here, the resultant viscous
modulus is approximately 300Pa. This calculation is obviously very rough, but it
indicates that the viscous modulus expected from the relative sliding of the filaments is
significantly smaller than the measured value (less than 10% of my lowest value for E99).
This result is in agreement with Huxley’s (1980) calculation that the viscous stress due to
filament sliding at the fastest shortening velocity represents a negligible fraction of the
maximum isometric stress. In addition, on the basis of the linear dependence of the
viscous force Fv (equation 23) on the filament overlap (l), I expect the force to decline
linearly with increasing sarcomere length. However, exactly the opposite observation is
true (e.g. Fig. 4), further supporting the idea that the viscous moduli observed here are not
due to interfilament viscosity, but are based on a different mechanism.

This leaves two different structural components to be considered: the large myofibrillar
proteins titin (connectin, projectin) and nebulin, and the extracellular structural matrix,
including the ECM (basement membrane). The work in this paper provides sound
evidence that the ECM in cardiac fibers of Cancer magister plays an important role in the
passive mechanical behavior at longer sarcomere length (above 5.0 mm), where the
ultrastructural data presented here were collected. The strong linear correlation between
the ‘amount’ of ECM and the mechanics of the fiber suggests that a large component of
the mechanical behavior at this sarcomere length is determined by the ECM.
Unfortunately, this study does not provide direct observations at shorter sarcomere
lengths, and it is difficult, if not impossible, to extrapolate these results to shorter
sarcomere lengths.
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Further support for the role of the ECM in the passive behavior comes from the
dynamic mechanical experiments of Tidball (1986), who showed that the ECM is a major
contributor to the total dynamic stiffness. Upon enzymatic digestion of the ECM, the total
stiffness declined about threefold, whereas the viscous modulus declined about tenfold.
Tidball’s data also help us to understand the large variability in the moduli reported here.

The potential role of connectin (titin), nebulin and related proteins has been stressed.
The experiments of Horowits et al. (1986, also see above discussion) provide strong
evidence for a function for these macromolecules in the passive mechanical behavior.
However, I am not convinced by the claim (Horowits et al. 1986; Murayama, 1986;
Magid and Law, 1985) that these structural proteins account for almost all of the passive
stiffness. For example, Magid and Law (1985) argue that, in frog skeletal muscle at fibres
lengths below 3.8 mm (resting length is about 2.2 mm), the resting tension resides in the
myofibrillar component, not in the connective tissue. However, their own data show that
the modulus of mechanically skinned fibers (ECM stripped off) is only about half that of
intact single fibers.

On the evidence currently available, I consider it more probable that both the
extracellular matrix with its associated connective tissue and the myofibrillar proteins are
important determinants of the passive mechanics of single fibers. The stability hypotheses
proposed here and by Horowits and Podolsky (1988) provide a possible explanation for
the need for both components: myofibrillar proteins, such as connectin, provide positional
stability for myosin filaments at longer sarcomere lengths, whereas the viscous damping
endows fibers with a mechanism providing stability against length non-uniformities.

This work was supported by a grant from the Whitaker Foundation to T. Daniel. I wish
to thank Dr T. Daniel for his help throughout the duration of this project. Drs T. Daniel
J. Howard, A. M. Gordon and an anonymous referee read versions of the manuscript and
provided many helpful suggestions. The author is currently a fellow of the Washington
Affiliate of the American Heart Foundation.
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