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Summary

Muscle force, electromyogram and length were monitored in the medial head of
the gastrocnemius (MG) muscle in freely hopping wallabies ( Thylogale billardierii
Desmarest).

During take-off hops from rest, MG muscle developed force with an isometric
contraction. For constant-speed hops, force was produced in MG muscle during
rapid stretch. The muscle resisted this stretch with a constant impedance that was
independent of hopping speed. The rate of stretch of the muscle during high-speed
hopping was as high as 1ms~' (5-6 muscle lengths persecond) at the onset of
stretch and slowed to no stretch at the peak of force. Since the mechanical
impedance was constant while the stretch velocity changed, there was no
significant viscosity present in the muscle.

The tendon stretched by 3-2% at 7kmh™" hopping and by 4-4% at 18kmh~!
hopping. Elastic energy storage in the tendons increased with hopping speed but
the percentage of total work done by elastic recoil of the whole muscle did not
increase at higher hopping speeds.

The significance of the muscle stretch is in producing high forces rapidly and, in
addition, there is considerable energy storage in the tendons.

Introduction

Dawson & Taylor (1973) reported that red kangaroos (Macropus rufus) hopping
on a treadmill did not increase their oxygen consumption as their hopping speed
increased from 9 to 22kmh™'. To explain this phenomenon, Dawson & Taylor
suggested that as speed of travel increases so also does energy storage in the
tendons and ligaments of the rear limbs and tail. Release of these increased
amounts of stored energy through elastic recoil was postulated to reduce the
energy requirements of locomotion as speed increased. The Achilles tendons,
particularly large in the macropodid marsupials, were considered a major
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contributor. Such an increasing percentage of energy recycling would seem not to
be generally true, since oxygen consumption increases with increasing speed of
travel in a variety of quadrupedal eutherian mammals (Taylor er al. 1970, 1982),
although the lion appears to be an exception (Chassin et al. 1976).

For two reasons Dawson & Taylor’s popular hypothesis can be questioned.
First, gait character in cats is known to alter when they are travelling on a treadmill
(Miller & Van der Burg, 1973; Stuart et al. 1973; Wetzel et al. 1975), as it does in
humans (Nelson et al. 1972) and small (<3kg) hopping animals (Thompson et al.
1980). Second, it is important to note that most of Dawson & Taylor’s red
kangaroo data are from a single animal. Indeed, in untrained small hopping
animals an observation similar to Dawson & Taylor’s was made before the animals
became accustomed to the treadmill (Thompson et al. 1980). I have therefore used
another marsupial with comparable muscle structure and comparable gait charac-
ter to test directly the hypothesis put forward by Dawson & Taylor. To do so L have
made direct estimates of whether progressively increasing energy storage occurs in
the hindlimb tendons as hopping speed increases in the wallaby Thylogale
billardierii.

To study the mechanics of the medial head of gastrocnemius (MG) muscle and
to assess its energy storage capacity over the maximum range of hopping speeds,
muscle force, length and electromyogram (EMG) were measured continuously
and directly in unrestrained wallabies hopping freely over a 24 m stretch of flat
ground. This was done using radiotelemetry techniques and high-speed cinema-
tography over open ground to avoid the problems with locomotion on treadmills.
Using these techniques, the evidence points to a decreasing or constant percentage
of energy returned by elastic recoil rather than an increasing percentage as
required by Dawson & Taylor’s hypothesis.

Materials and methods

Ten wallabies (Thylogale billardierii) were employed in this study. Two
wallabies of 4-5kg (wallaby no. 5) and 7-0kg (wallaby no. 6) were successfully
implanted with force gauges and EMG electrodes in the MG muscle of the right
hind leg. A further four animals, with no surgical implants, were used as controls
to check that the gait of the implanted wallabies was not affected by the implants.

The technology for these experiments was developed using an additional four
animals. These were also used to verify that the gait was not significantly different
from that of the control animals. Two of these animals were also included in the
measurements of muscle fibre and tendon dimensions in order to establish the
range of values that exist between animals.

Preparation of animals

The wallabies were anaesthetized with a mixture of ketamine hydrochloride
(4mgkg™") and xylazine (2mgkg™"') given intramuscularly. The gastrocnemius
tendon was split into medial and lateral sections over a small length and a ‘buc
transducer slipped over the MG tendon to measure force. The design of t
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transducer was a larger version of that used by Walmsley er al. (1978). A
semiconductor strain gauge (BLH type SPB1-20-35) was fixed to the long arm of
the stainless-steel buckle, using water-resistant Araldite epoxy type K138, and
then coated with Epoxylite 6001. The buckle transducer was calibrated by placing
it on a string and suspending various weights. It gave a linear response to over
100N. EMG was recorded with a pair of twisted, Teflon-insulated, stainless-steel
wires that were bared for 2mm and drawn through the MG muscle.

Telemetry

Stranded stainless-steel wires from the buckle transducer and from the EMG
electrodes were passed subcutaneously to a dual-in-line package electronic socket
(Utilux SO series) that was bolted to the skull and insulated and reinforced with
dental acrylic (Paladur).

During recording sessions, an FM radio telemetry unit (Griffiths, 1984) was
fitted to the wallabies in a shoulder harness and was connected to the head socket
on the animal by a lightweight cable. The telemetry unit with batteries and
shoulder harness weighed less than 100g and would transmit over a distance of
20-30m.

The buckle transducer signal was amplified differentially and low-pass filtered
with a cut-off frequency of 550 Hz. The EMG was amplified differentially and
band-pass filtered with cut-off frequencies at 30 and 550 Hz. It was then time-
multiplexed, along with a ground reference voltage and the force signal, and sent
to the radio transmitter.

The radio signal was received by an omnidirectional aerial and the multiplexed
signal recovered by tapping the output of the intermediate-frequency amplifier of
a commercial FM tuner. The signal was then demultiplexed and the force and
EMG were stored on a portable FM tape recorder.

A high-speed ciné camera (Milliken model DBM-5) was used to film the
wallabies. To synchronize the film frames with the EMG and force, a pulse from
the camera shutter was used to trigger a counter. This, in turn, provided a coded
count of the frames taken. This code was recorded on the third channel of the tape
recorder. The first and last frames taken were also marked on the edge of the film
by a neon lamp within the camera. The wallabies were filmed at 200 or

400 picturess™".

Experimental procedure

Before recording from the wallabies, five dots were placed on the shaved right
leg as a means of computing joint angles and MG muscle length. Black dots were
made using an oil-based felt pen and were surrounded by a white ring of typing
correction fluid. The dots were placed on the anterior superior iliac spine, on the
top of the femur on the most lateral aspect of the greater trochanter, on the lateral
malleolus of the fibula, on the end of the metatarsal and on the large toe-nail. A
.t was not placed on the knee because the skin was too loose and could slide from

e lateral to the medial surface of the leg during hopping. At the conclusion of the
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recording experiments, the wallabies were killed and the lengths of both femur
and tibia were measured. The knee position could then be calculated trigonometri-
cally along with all joint angles (Griffiths, 1984). The distances from the MG origin
to the centre of rotation of the knee joint, and from insertion to ankle joint, were
also measured. With joint angles calculated from the marked dots, the MG muscle
length was then also calculated trigonometrically (Griffiths, 1984). The velocity of
muscle stretch was obtained by differentiating the equation to a fifth-order
polynomial regression of the muscle length data.

Recordings were made from wallabies in a large outside enclosure with the
animals being released from one corner to hop along the fence to the far corner
(about 24 m). The animals were filmed by panning with the high-speed camera
over a distance of 8 m in the middle of the fence, while recordings of force and
EMG were made continuously. The chain-link fence provided distance markers
and any small parallax errors were corrected by reference to a system of lines
drawn on the ground perpendicular to the fence. The film provided a measure of
joint angle, MG length, hopping speed and style. Instantaneous hopping speed of
the wallabies was measured from the film as stride length divided by the duration
of the step cycle (i.e. time from one foot lift to the next foot lift). 234 constant-
speed hops were analysed in the six wallabies for comparison of gait.

The four phases of the step cycle (F, E1, E2, E3) are as defined by Philippson
(1905). In the wallaby the F phase starts when the large toe-nail leaves the ground
and the hip, knee and ankle flex, bringing the leg up close to the body. The E1
phase starts midway between when the knee and then the ankle start to extend in
preparation for placing the foot on the ground. The E2 phase begins at first contact
of the foot (usually the large toe-nail) with the ground. During E2, the knee and
ankle yield under the force of landing and the hip extends. Midway between when
the ankle and then the knee start to re-extend is the beginning of the E3 phase.
During E3 the knee and ankle extend along with the hip, thrusting the wallaby
forward in a ballistic manner until a new step cycle commences when the foot
leaves the ground.

Isometric contractions

Wallabies nos 4 and 5 were anaesthetized and the MG muscle exposed in order
to measure the rate of rise of force in ‘isometric’ contractions, as opposed to during
the stretch that occurred during normal hopping. The hindlimb was rigidly
clamped in a steel frame and the tendon attached to a steel frame via a T-shaped
bar (Morgan et al. 1978). Supramaximal voltage and frequency were used to
stimulate the MG nerve and the rate of rise of the force was measured during the
onset of an isometric contraction at the optimal length.

Sarcomere measurements

To estimate the average stretch occurring per half sarcomere (the amount that
could return energy by elastic recoil) during the E2 phase of the stretch cycle’
was necessary to know the number of sarcomeres in series in the muscle fibres.
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the end of the experiments, the MG muscle was fixed in 10 % formalin in 0-9 %
saline. Single muscle fibres were teased out and the total length of tendon in series
with the muscle fibres was also measured. The average sarcomere length in the
muscle fibres was measured using He—Ne laser techniques (Iwazumi & Pollack,
1979) and the number of sarcomeres in series was calculated by dividing the muscle
fibre length by the average sarcomere length.

Results

Of the six wallabies used in these experiments, three required long periods of
training. Two of these animals received implanted devices, whereas the third acted
as a control animal, housed and trained in the same manner, but without
implanted transducers. A further three wallabies were filmed that were wild,
untrained and housed outside in the large enclosure. All six animals had the same
step cycle pattern (Griffiths, 1984) and no changes could be found that reflected a
change in gait in the animals with the implants. The three wild animals could hop
at speeds of up to 28km h™!, whereas the normal maximum speed for the wallabies
housed indoors was 18-25kmh™"'. The difference in speeds would appear to be
one of physical fitness only.

Two gaits were normally used by the thylogale wallabies. At slow speeds, and
when starting slowly from rest, the slow progression gait was used (i.e. at least two
feet or paws were in contact with the ground throughout the step cycle) and
produced low MG forces (Fig. 1A). The tail was not used for support in this gait,
as it is in red kangaroos (Morton & Burton, 1973). At higher speeds the wallabies
used a hopping gait.

When the wallabies started hopping from rest for a fast take-off, the first step
cycle did not involve the forelimbs and will be referred to as a bipedal take-off hop.
This step resembled that of normal hopping, and force production in the MG was
more rapid and reached higher levels (Fig. 1B) than during slow progression.

Fig. 1C illustrates the MG muscle forces for a sequence of hops from bipedal
take-off, through constant-speed hopping and finishing with a slow progression
step. A small amount of passive tension often appeared during the swing phase
owing to the stretch of parallel elastic components. These are the smaller force
peaks that appear in Fig. 1C.

Constant-speed hopping

In constant-speed hopping, the MG muscle developed an EMG during the E1
phase about 30-40 ms prior to foot contact. The muscle was shortening at this time
and there was no force produced. The EMG reached maximal levels just prior to
foot contact. On landing, the toe-nail of the large fourth digit made contact first
and dug into the ground, preventing slippage. A few milliseconds later the pad
under the phalanges made contact, resulting in a very rapid and strong stretch of

e ankle extensor muscles (Fig. 2A, C). This resulted in a rapid rise in force
!’ig. 2B) that reached a maximum at the end of the stretch. Both the knee and the
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Fig. 1. Wallabies began hopping with either a slow progression (A) step cycle using all
four limbs and producing small MG forces, or a bipedal take-off (B) step cycle that was
very similar to constant-speed hopping except that the force increased more slowly.
The second force peaks in A and B are constant-speed hops. (C) Force and EMG in
MG muscle for a sequence of hops from a bipedal take-off through eight normal hops
and finishing with a slow progression step. Stretch of the muscle during the swing phase
produced small passive forces (arrows).

ankle yielded during the E2 phase, with the ankle yielding more at higher hopping
speeds.

The foot provided a lever with a mechanical advantage of 0-77 during the E2
phase when the muscle was being stretched. The foot pad acted as the fulcrum.
The applied force was provided by the mass of the wallaby accelerating under
gravity, and was applied down the tibia to the talus. The load came from the
stretch of the ankle extensor muscles. This low mechanical advantage protected
the ankle extensor muscles from high forces when they were being stretched.
During the E3 phase, the lever type changed (from class III to class II). The foot
pad still acted as the fulcrum, the ankle extensor muscles now providing the
applied force and the load being the tibia resting on the talus. Under these
circumstances the mechanical advantage was 1-3 which enhanced the influence gy
these muscles in accelerating the animal in a ballistic manner.
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Fig. 2. MG muscle length (A}, force (B) and velocity of movement (C) during a hop at
a constant speed of 1Skmh™' (wallaby no.6). A positive velocity represents stretch of
the muscle and a negative velocity represents shortening. A fifth-order polynomial
regression was fitted to the length data to get the best fit. The equation for the velocity
curve (C) was then produced by differentiating the equation to the polynomial
regression of the length data.

Over the full range of hopping speeds, the wallabies landed with the MG muscle
at about the same length. For wallaby no.6 (Figs 2, 3) this length was about
190mm. At higher speeds of travel, the MG was stretched by larger amounts
(Fig. 3A) and produced larger forces (Figs 3B, 4). The velocity of this stretch was
very high at the start of the E2 phase (Fig. 3C), but declined as the muscle
produced more force with which to resist the imposed stretch. This can be seen
more clearly in Fig. 5. During the E2 phase the relationship between muscle force
and length was linear (Fig. 6), showing that the MG muscle resisted the stretch
with a constant mechanical impedance. For wallabies nos 5 (N=23) and 6
(N = 33) this constant impedance was independent of the speed of travel (Fig. 7).

Since muscle force increased with speed (Fig. 4) and the mechanical impedance
was constant, the amount of stretch of the muscle also increased as determined by
the value of the mechanical impedance. This increased stretch at higher speeds

as accompanied by a decrease in the E2 phase duration, resulting in a faster
elocity of stretch of the muscle. As a result of the rapid stretch of the active



446 R. I. GRIFFITHS

210~ A 100T B
-7 T~
7/ N -
2054 7 \ 1——16-4kmh™! \
- / \ 2——15-2kmh™" 75 \
E -1
E 1 \ 3——I11-1kmh \
= 200+ \ 4- - - Take-off > \
& 2 \ = \
3 4 \ 8 504
2 195~ \ S \
3 \ \
25
190 ‘\ \
c4 \
\4
185 = = | 0 —
0 100 200 300 0 200
10y~
0 C
T 0-54
E
E
2z
g
S 0-0+ - -
by
-~
~ -~ \4
-0 | :
0 200 300
Time (ms)

Fig. 3. A comparison of MG length (A), force (B) and velocity (C) during three
constant-speed hops at speeds of 11, 15 and 16km h™" (solid lines), and a bipedal take-
off hop (dashed line) from wallaby no.6. The length of stretch and the force both
increased at higher speeds of travel in constant-speed hopping. The bipedal take-off
hop produced force much more slowly than constant-speed hops and the muscle was
not stretched during the rise in force as it was in constant-speed hopping.

muscle, the force increased at a rate 10 times faster than that measured later
during the initiation of supramaximal isometric contractions (performed on the
same wallaby under anaesthesia at the end of the experiment). During the E3
phase, the electrical activity ceased while force was continuing to decline.

The areas under the force vs length curves (Fig. 6) during stretch are a measure
of the work performed on the muscle during the E2 phase. During the subsequent
shortening in the E3 phase, a similar amount of work is performed by the muscle,
but only a portion of this will come from recoil of elastic structures. The work done
on the muscle during stretch and by the muscle during shortening increased witi
hopping speed in both animals up to 18kmh~'. Above this speed, wallaby no.
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Fig. 4. Muscle force for constant-speed hopping over the full range of speeds at which
wallabies nos 5 and 6 could travel. Quadratic regression lines are fitted to the data.
Wallaby no.5; N =30. Wallaby no.6; N =88

increased its hopping speed by a more rapid increase in hop frequency rather than
by an increase in stride length, and muscle force and work per hop remained
constant.

Bipedal take-off

Five bipedal take-off hops were recorded from wallaby no.6. These hops all had
the same essential properties; one example is shown in Figs 1, 3, 5 and 6. The
resting MG muscle length in this wallaby was 197-199 mm when standing quietly.
The muscle was stretched to 206 mm before generating force in a bipedal take-off
(Fig. 6D) and the force was developed during an essentially isometric contraction
(Figs 5, 6D). This resulted in a much slower rate of rise of force than in constant-
speed hopping, where the MG muscle was rapidly stretched. In the bipedal take-
off hops the time to peak force was 90-160 ms, or 2:7-4-0 times the time taken
during constant-speed hops of similar speed. For bipedal take-off hops about twice
as much work is done by the muscle during shortening than for a constant-speed
hop of similar speed (Fig. 6).

Muscle fibre and tendon properties

To estimate the movement of the muscle fibres during the E2 phase, the tendon
stretch was subtracted from the overall muscle stretch (Fig. 8). The muscle stretch
was that measured in Fig. 6 with the muscle having constant mechanical
impedance. The curve for tendon is an extrapolation for the whole tendon from
measurements on a section of isolated free tendon (Proske, 1980) performed on a

ylogale of the same size and kept in the same reserve. This assumes that the unit

ompliance of the tendon that runs along the muscle belly is the same as that for
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Fig. 5. Relationship between force and velocity of movement in the four hops shown
in Fig. 3. When the wallaby lands on the ground during constant-speed hopping (1-3,
arrows) the initial stretch of the MG muscle is very fast and slows down as the muscle
force builds up to resist the stretch. Force production in the bipedal take-off hop (4)
occurs during an essentially isometric contraction. During the E3 phase, shortening
velocities of over 200mm s~ occurred at a force of 75N (0-6 of maximal isometric
force) when hopping at high speed (16-4kmh™").

the free tendon. By subtracting this expected tendon yield from the total
movement, a measure was calculated that included muscle fibre movement and
any change in length due to a change in pennation angle of the muscle fibres, but
with no means of separating the two components. When stretch was first applied to
the muscle during E2, it appeared that the muscle fibres that were shortening in E1
prior to footfall continued to shorten due to the higher tendon compliance at low
forces.

Table 1 summarizes the measurements of the number of sarcomeres in series
and tendon length. Using the curve for tendon compliance in Fig. 8 and forces
from Fig. 4 the tendon would be stretched by 3-2% (5-4mm) at 7kmh~! and by
4-4% (7-5mm) at 18kmh™".

Discussion
Mechanics of the MG muscle
When in the hopping gait, the MG muscle is stretched on landing but the musc/®
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Fig. 6. Force vs length plots for MG muscle for the four hops of Fig. 3. The thick lines
show force rising during the E2 phase, from zero at footfall (arrows) to peak levels at
the end of stretch. The thin lines are the force declining during the propulsive E3
phase. During constant-speed hopping the muscle resisted stretch with a constant
mechanical impedance. The areas under the graphs are a measure of the work done on
the muscle during stretch or by the muscle during shortening.

Table 1. Muscle fibre and tendon measurements

210

Average
Mass sarcomere Tendon length
Wallaby (kg) no. (mm)
1 57 9728 (16) 140-1 (10)
2 72 8908 (6) 156-5 (6)
5 4-5 7799 (13) 171-1 (13)
6 7-0 10952 (28) 170-1 (28)

The number of samples from each muscle is given in parentheses.
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fibres initially shorten, with the tendon being stretched by applied forces at each
end since it has a much higher compliance at low tensions (Viidik, 1972, 1973,
Proske, 1980; Rack & Westbury, 1984). As force increases, the muscle fibres are
stretched as well by the now stiffer tendons. The external stretch of the MG muscle
takes up all of the tendon yield, effectively reducing the major part of the series
elastic compliance (SEC) and allowing the muscle fibres to reach a high level of
force in a much shorter period. This effect has been described previously by Hill
(1951). Shortening of the muscle fibres during stretch of the whole muscle has also
been recorded in cats (Griffiths & Hoffer, 1987).

Stretch of a contracting muscle will usually produce an enhancement of force
(Abbott & Aubert, 1952; Joyce et al. 1969; Cavagna & Citterio, 1974) by as much
as 70 % of the maximal isometric force. Since no hops at constant speed produced
a force in the MG muscle more than 5 % above the maximal tetanic force, even at
the fastest hopping speeds that the wallabies could achieve, it seems that maximal
excitation of the muscle did not occur in the hopping gait. This is a similar result to
that of Walmsley et al. (1978), who found that force in cat MG during slow
galloping was less than 25 % of the maximal isometric force. However, the fastest
speeds reached in these cats was less than one-third of maximal.
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Fig. 7. The mechanical impedance of the MG muscle during the E2 phase of constant-
speed hopping was constant and independent of the speed of travel in the two wallabies
shown. The impedance was 107+ 1-6Nmm~! (N=33) in wallaby no.6 and
9:6+ 1-9N mm™" (N = 23) in wallaby no.5 (mean *+ s.p.). The mechanical impedance
of the MG muscle during the E2 phase stretch was constant, with correlation
coefficients in the range 0-97-1-0 in 56 of the 59 hops analysed.
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Fig. 8. For a constant-speed hop at 17 km h~! (wallaby no.6) the MG muscle produced
a force of 115N and had a mechanical impedance of 10-7N mm~" (muscle line). The
curve for tendon is an extrapolation of a curve produced on a section of free tendon. By
subtracting the movement in the tendon from that in the whole muscle, muscle fibre
length changes and any length change due to a change in pennation angle can be
calculated (muscle fibre line). The muscle fibres continue to shorten until the force
reaches 13N.

Constant mechanical impedance of an ankle extensor muscle during stretch has
been suggested by Houk (1979) and Houk & Rymer (1981) to be maintained by
skeletomotor reflexes. In the MG muscle of the wailaby, a constant mechanical
impedance was measured and is composed of two major elements. The first of
these is an elastic stiffness present in the tendons, and it is in series with the second
element, a relatively inelastic stiffness provided by the muscle fibres when they are
stretched by a length greater than the short-range stiffness (Joyce ez al. 1969; Rack
& Westbury, 1974). The velocity of muscle stretch during the E2 phase changed
from maximum values approaching 1-0ms~" at the onset of stretch to 0ms™" at
peak length, but the mechanical impedance of the muscle was constant throughout
the stretch (Fig. 6). At high hopping speeds MG was stretched at faster rates, but
the mechanical impedance was again unaltered (Fig. 7). These results show no
external sign of viscosity in the muscle. If the muscle had significant viscous
properties, the force should have risen more steeply during the early stages of the
stretch when the velocity was higher than at the end of the stretch. By contrast,
Rack (1966) found cat soleus muscle did have viscous properties, but under
conditions of slow sinusoidal stretches. The disparity may result from the large
differences in the experimental conditions since, in the freely hopping wallabies,
the stretch rate was much higher than Rack used and the muscle stimulation during
normal locomotion was not constant.

Bipedal take-off hops

!In the bipedal take-off hops, the force rose during an essentially isometric
ntraction and the tendons yielded as determined by their compliance. The
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muscle fibres shortened and took up this yield. Hill (1938) suggested that this
should occur and it has also been specifically measured by Griffiths (1987) in
isometric contractions in cat MG muscle. If hopping consisted of a series of leaps
of the bipedal take-off type, the speed of travel would be greatly reduced owing to
the much greater time necessary to stretch the SEC and to produce the required
forces. In constant-speed hopping a rapid external stretch is applied to the muscle
that reduces the effective SEC (Hill, 1951).

The bipedal take-off hops not only took more time to achieve, but were also
energetically more expensive. Constant-speed hops use about half the work of a
bipedal take-off hop in MG during the E3 phase, because less muscle shortening
occurs (Fig. 6). During landing, the momentum of the wallaby results in tendon
stretch. This is in strong contrast to the bipedal take-off, where tendon stretch is a
result of active muscle fibre shortening.

Sites of energy storage

With the knowledge gained about the mechanics of the muscle, the energy
storage in MG can be calculated. Energy can be stored in the SEC of muscle which
is divided between the muscle fibres and the tendons in proportions that vary
enormously among skeletal muscles, and depend on tendon length and compliance
and the number of sarcomeres in series in the muscle fibres. Tendons show elastic
and viscous properties (Viidik, 1973) as well as creep behaviour (Goldstein et al.
1987; Hooley & Cohen, 1979). The most significant factor is the non-linear elastic
property (Viidik, 1972), which allows the tendon to store energy. In addition,
energy can be stored in the muscle fibres, but only over a very short length range.
An elastic recoil is possible in the crossbridges if the stretch and release occur
before crossbridge recycling. For cat muscle, Rack & Westbury (1974) suggested
that the range of movement of the crossbridges was 25-35 nm. If this were the
same in the thylogale wallaby muscle, it would suggest a maximum range of
0-77 mm over which the muscle fibres could be elastic. [For 10952 sarcomeres in
MG (Table 1; wallaby no.6) with 35nm movement for each half sarcomere =
35nmx10952x2 = 0-77 mm. ]

In Fig. 8 the movements of each component of muscle are shown for the yield
phase of a single constant-speed hop at 17 km h™! in wallaby no.6. The tendon will
be essentially elastic with about 10 % loss due to hysteresis and, therefore, will
store most of the work done in stretching it. This work will be returned during the
propulsive E3 phase. For this hop, 0-72Jof work (the area under the length—
tension curve) was done on the whole muscle, with 0-26J being stored in the
tendon. When the muscle fibres are also stretched, the crossbridges break and re-
form, with the average crossbridge being only half extended by the end of the
stretch. The energy that could be stored by stretching these crossbridges would
thus be 0-5x0-77mmXx115Nx0-5=0-02J. This gives 0-28J stored in elastic
structures from 0-72 J of work done on the MG muscle during stretch. This equ
41 % for the MG muscle of wallaby no.6 hopping at 17kmh ™" and compares wi
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Alexander & Vernon’s (1975) figure of 39 % for the combined elastic recoil from
all the leg muscles in a 10-5 kg Bennett’s wallaby hopping at 8-6kmh™".

At higher hopping speeds the tendon stretches further (Fig. 8) and will store
more energy. However, since the tendon stiffness is more than double that of the
whole muscle, 25N mm ™! compared with 10-7Nmm™!, the muscle fibres are
stretched by a greater amount than the tendons. Stretch of muscle fibres beyond
the elastic limit of the crossbridges (0-77 mm for wallaby no.6) results in work
absorption rather than energy storage (Rack & Westbury, 1974) and very little of
the muscle fibre stretch is returned as elastic recoil. The important consequence of
this result is that, although more energy is stored in the tendons at higher hopping
speeds, the percentage of the energy put in during stretch and subsequently
recovered by elastic recoil does not increase. This contrasts with the results
derived by Alexander & Vernon (1975) for the red kangaroo hindlimbs. Using
very different techniques they considered that the percentage of energy stored
would increase with speed of travel.

For energy storage in the tendons to explain reduced oxygen consumption at
higher speeds of hopping (Dawson & Taylor, 1973), a greater percentage of the
work done on the muscles during stretch would have to be returned by elastic
recoil at higher speeds. This does not appear to be the case in the thylogale MG
muscle.

Energy storage and oxygen consumption

Thompson et al. (1980) demonstrated that small (<3 kg) hopping animals need
specific training to be able to hop on a treadmill and show oxygen consumption
rates that depend on this level of training. Untrained animals showed a sigmoidal
relationship between oxygen consumption and speed of travel, while fully trained
animals showed a linear relationship, like the quadrupedal mammals. The red
kangaroos of Dawson & Taylor (1973) were considered well enough trained not to
show this methodological artefact. The oxygen consumption of the red kangaroos
was not independent of speed over the full range of speeds, since Dawson (1977)
suggests that the curve for the red kangaroo data was sigmoidal when higher
hopping speeds than those that could be obtained on the treadmill were
considered. This highlights a major difference between the trained, small hopping
animals showing a linear increase in oxygen consumption as hopping speed
increases, and the data from the larger red kangaroo showing a sigmoidal increase
in oxygen consumption at higher hopping speeds.

Kangaroo rats are a major example of the small (<3kg) hopping animals
described by Thompson et al. (1980). Biewener et al. (1981) recorded length—
tension curves for the MG muscle in the kangaroo rat (Dipodomys spectabilis),
hopping at constant speed, that clearly resemble the less efficient bipedal take-off
hops in the thylogale wallabies (Fig. 6D). This is a significant difference in the gait
of the small hopping animals compared with the thylogale and the red kangaroos.

The thylogales in the present study were between the size of the small hopping

imals used by Thompson et al. (1980) and the red kangaroo used by Dawson &
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Taylor (1973). Oxygen consumption curves for this species hopping on a treadmull
(Warren, 1979) are limited but suggest a lower level of consumption at higher
speeds than would be expected for running quadrupeds, although not as low as the
result for red kangaroos (Dawson & Taylor, 1973).

To investigate the energy storage capacity of the ankle extensor muscles that
contribute to the Achilles tendon, force and length changes have to be measured
during normal locomotion and over a range of speeds. Alexander & Vernon (1975)
attempted to do this in red kangaroos and Bennett’s wallaby Protemnodon
rufogrisea, estimating individual muscle forces from force platform measurements
and length from high-speed cinematography. Owing to vibration of the force
platform, however, force records could not be taken during the early stance phase,
making it very difficult to calculate the work done on the muscle during stretch.

The use of a treadmill may also have influenced the results obtained by
Alexander & Vernon. In particular, it may have influenced the step cycle timing,
as has been seen previously in the cat (Miller & Van der Burg, 1973; Stuart et al.
1973; Wetzel et al. 1975), human (Nelson et al. 1972) and small (<3 kg) hopping
animals (Thompson et al. 1980). The Bennett’s wallaby used by Alexander &
Vernon did not extend its knee in the second half of the stance phase, whereas the
thylogales in the present study did show knee extension. This could be a species
difference or a property of the Bennett’s wallaby accommodating its step cycle
pattern to the treadmill.

It has been popular to consider kangaroo locomotion as a major example of
elastic storage of energy. However, Ker et al. (1986) consider that the kangaroos
are much less specialized for elastic storage in running than are the donkey and the
deer. Morgan et al. (1978) compared thylogale MG muscle with cat soleus in
anaesthetized preparations and suggested that in the wallaby MG muscle 5-8
times more elastic movement could occur in the tendon than in the muscle fibres at
maximal isometric tensions. When the comparison is made in the same muscle,
however, between the thylogale MG and the cat MG, the cat MG tendon has
nearly 12 times the maximal elastic range of the muscle fibres, possibly giving it a
greater specialization for elastic storage and recoil than the wallaby.

The thylogale MG muscle is inefficient in the bipedal take-off hops because it
has actively to stretch the long compliant tendon. The slow progression gait
(equivalent to the pentapedal gait in the red kangaroos) also requires the ankle
extensor muscles actively to stretch the tendon during force generation and is
similarly inefficient. When moving to the hopping gait, there is a marked increase
in efficiency because the tendons are stretched externally, thus saving muscular
effort. In addition, the energy provided to stretch the tendon is returned during
elastic recoil.

The compliant tendon can therefore help to explain the higher than predicted
oxygen consumptions in the slow progression (or pentapedal) gait. At hopping
speeds of 18-22kmh ™! Dawson & Taylor (1973) recorded oxygen consumption
levels slightly lower than those predicted for most quadrupeds. Above the
speeds Dawson (1977) considered that oxygen consumption would increase. R
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kangaroos are reported to hop at speeds as high as 65kmh™" and there is no
evidence to support the generally held idea that, at high speeds, hopping is an
inexpensive way to travel.

The significance of muscle stretch in constant-speed hops is in allowing a rapid
rise in muscle force with which the muscle can resist the downward momentum and
get on with the propulsion for the next step cycle. This allows for a faster step
frequency than would be possible if the hops were all of the bipedal take-off type.
Stretch is also significant in providing energy savings due to the stretch and recoil
of the elastic tendons. A proportion of the work done in stretching the muscle
during the E2 phase is stored in elastic structures. While the absolute energy
saving increases with the speed of hopping, the proportion of the work done on the
muscle, which is then saved in these elastic structures, does not increase.

I wish to thank Dr Adrian M. Walker and Dr Philip J. Berger for their valuable
comments on the manuscript.

References

ABBOTT, B. C. & AUBERT, X. M. (1952). The force exerted by active striated muscle during and
after change of length. J. Physiol., Lond. 117, 77-86.

ALEXANDER, R. McN. & VErnoN, A. (1975). The mechanics of hopping by kangaroos
(Macropodidae). J. Zool., Lond. 177, 265-303.

BIEWENER, A., ALEXANDER, R. McN. & HeGLunD, N. C. (1981). Elastic energy storage in the
hopping of kangaroo rats (Dipodomys spectabilis). J. Zool., Lond. 195, 369-383.

CavaGNa, C. A. & CrtTERIO, G. (1974). Effect of stretching on the elastic characteristics and the
contractile component of frog striated muscle. J. Physiol., Lond. 239, 1-14.

CHassIN, P. S., TayLor, C. R., HEGLUND, N. C. & SEEHERMAN, H. J. (1976). Locomotion in
lions: energetic cost and maximum aerobic capacity. Physiol. Zool. 49, 1-10.

Dawson, T. J. (1977). Kangaroos. Scient. Am. 237, 78-89.

Dawson, T. J. & TavLor, C. R. (1973). Energetic cost of locomotion in kangaroos. Nature,
Lond. 246, 313-314.

GOLDSTEIN, S. A., ARMSTRONG, T. J., CHAFFIN, D. B. & MATTHEWS, L. S. (1987). Analysis of
cumulative strain in tendons and tendon sheaths. J. Biomechanics 20, 1-6.

GrIFFITHS, R. 1. (1984). Mechanical properties of an ankle extensor muscle in a freely hopping
wallaby. PhD thesis, Monash University, Clayton, Victoria, Australia.

GrifrITHS, R. 1. (1987). Ultrasound transit time gives direct measurement of muscle fibre length
in vivo. J. Neurosci. Meth. 21, 159-165.

GrifrFITHS, R. I. & HOFFER, J. A. (1987). Muscle fibres shorten when the whole muscle is being
stretched in the ‘yield’ phase of the freely walking cat. Neurosci. Abstr. 13, 1214.

HiLL, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proc. R. Soc.
B 126, 136-195.

HiLr, A. V. (1951). The effect of series compliance on the tension developed in a muscle twitch.
Proc. R. Soc. B 138, 325-329.

HooLEy, C. J. & CoHEN, R. E. (1979). A model for the creep behaviour of tendon. Int. J. Biol.
Macromolecules 1, 123-132.

Houk, J. C. (1979). Regulation of stiffness by skeletomotor reflexes. A. Rev. Physiol. 41,
99-114.

Houk, J. C. & RyMER, V. Z. (1981). Neural control of muscle length and tension. In Motor
Control (ed. V.B. Brooks), pp. 257-323. Bethesda: American Physiological Society.

Iwazumi, T. & Porrack, G. H. (1979). On-line measurement of sarcomere length from

Eiffraction patterns in muscle. . E.E.E. Trans. biomed. Eng. 26, 86-93.

CE, G. C., Rack, P. M. H. & WesTtBURY, D. R. (1969). The mechanical properties of cat



456 R. I. GRIFFITHS

soleus muscle during controlled lengthening and shortening movements. J. Physiol., Lond.
204, 461-474.

KER, R. F., DiMERY, N. J. & ALEXANDER, R. McN. (1986). The role of tendon elasticity in
hopping in a wallaby (Macropus rufogriseus). J. Zool., Lond. A 208, 417-428.

MILLER, S. & VAN DER BURG, J. (1973). The function of long propriospinal pathways in the co-
ordination of quadrupedal stepping in the cat. Adv. behav. Biol. 7, 561.

MorGaN, D. L., Proskg, U. & WARREN, D. (1978). Measurements of muscle stiffness and the
mechanism of elastic storage of energy in hopping kangaroos. J. Physiol., Lond. 282,
253-261.

MorToN, S. R. & Burton, T. C. (1973). Observations on the behaviour of the macropodid
marsupial Thylogale billardierii (Desmarest) in captivity. Aust. Zool. 18, 1-14.

NeLson, R. C., DiLiMmaN, C. J., LaGassE, P. & BIckerT, P. (1972). Biomechanics of overground
versus treadmill running. Med. Sci. Sports 4, 233-240.

PHiLipPsON, M. (1905). L’autonomie et la centralisation dans le syst¢me nerveux des animaux.
Trav. Lab. Physiol. Inst. Solvay (Bruxelles) 7, 1-208. Cited by Goslow, G.E. Jr, Reinking,
R.M. & Stuart, D.G. (1973). J. Morph. 141, 1-42.

ProskEg, U. (1980). Energy conservation by elastic storage in kangaroos. Endeavour 4, 148-153.

Rack, P. M. H. (1966). The behaviour of a mammalian muscle during sinusoidal stretching.
J. Physiol., Lond. 183, 1-14.

Rack, P. M. H. & WESTBURY, D. R. (1974). The short range stiffness of active mammalian
muscle and its effect on mechanical properties. J. Physiol., Lond. 240, 331-350.

Rack, P. M. H. & WEsTBURY, D. R. (1984). Elastic properties of the cat soleus tendon and their
functional importance. J. Physiol., Lond. 347, 479-495.

Stuart, D. G., WrTHEY, T. P., WETZEL, M. C., & GosLow, G. E., Jr (1973). Time constraints
for inter-limb co-ordination in the cat during unrestrained locomotion. In Control of Posture
and Locomotion (ed. R.B. Stein, K.G. Pearson, R.S. Smith & J.B. Redford), pp. 537-560.
New York: Plenum Press.

TayLor, C. R., HEGLUND, N. C. & MaLoty, G. M. O. (1982). Energetics and mechanics of
terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size
in birds and mammals. J. exp. Biol. 97, 1-21.

TAvLOR, C. R., ScHMIDT-NIELSEN, K. & RaaB, J. L. (1970). Scaling of energetic cost of running
to body size in mammals. Am. J. Physiol. 219, 1104-1107.

THOMPSON, S. D., MacMILLEN, R. E., BURkE, E. M. & TayLor, C. R. (1980). The energetic
cost of bipedal hopping in small mammals. Nature, Lond. 287, 223-224.

Vipik, A. (1972). Simultaneous mechanical and light microscopic studies of collagen fibers.
Z. Anat. Entwickl.-Gesch. 136, 204-212.

Vipik, A. (1973). Functional properties of collagenous tissues. Int. Rev. connect. Tissue Res. 6,
127-215.

WaLMsLEY, B., Hopgson, J. A. & Burkg, R. E. (1978). Forces produced by medial
gastrocnemius and soleus muscles during locomotion in freely moving cats. J. Neurophysiol.
41, 1203-1216.

WARREN, D. (1979). Energy conservation in kangaroos. Masters thesis, Flinders University,
Adelaide, South Australia, Australia.

WETZEL, M. C., ATWATER, A. E., Warr, J. V. & StuarT, D. G. (1975). Neural implications of
different profiles between treadmill and overground locomotion timings in cats.
J. Neurophysiol. 38, 492-501.



