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Summary

The interplay between the work done to move the body centre of mass with
respect to the environment (external work) and the work done to move the limbs
with respect to the body (internal work) has been shown experimentally partially
to determine the freely chosen stride frequency during walking. A mathematical
model that estimates the two components of the mechanical work is proposed.
The model, according to the criterion of work rate minimization (both positive
and positive plus negative), is able to predict the natural stride frequency as a
function of the average progression speed. The adequacy of the model and the
validity of the assumptions have been checked against measurements of natural
stride frequency in 11 subjects walking on a treadmill at several speeds (range
1-3 ms~'). Comparison with theoretical predictions shows good agreement with
the minimization of positive work rate at low speeds, while at high speeds the
stride frequency is better explained by the model for minimum positive plus
negative work rate.

Introduction

Optimization principles seem to control many biological functions, particularly
repetitive processes. The hypothesized 'controller' has to choose from an
appropriate number of extensive variables to satisfy some optimization criteria:
e.g. performance maximization, energy saving, comfort or safety maintenance
(Hamalainen, 1978). In this respect, simple mathematical models can be used in
parallel with experimental work to design or verify hypotheses about the
optimization mechanisms.

In the past such modelling has been applied in studies of the respiratory (Otis
et al. 1950; Mead, 1960; Hamalainen and Viljanen, 1978) and cardiovascular
systems (Yamashiro et al. 1979; Hamalainen and Hamalainen, 1985), whereas
investigators of human locomotion (Margaria, 1938; Cavagna et al. 1977; Cavagna
and Franzetti, 1986; Alexander, 1989) have shown experimentally that optimiza-
tion phenomena also occur in gait. There is a striking similarity between breathing
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and walking, as pointed out by Cavagna and Franzetti (1986). In order to cope
with particular performance requirements (alveolar ventilation and progression
speed) the system has to select the appropriate combination of extensive
parameters (tidal volume/breathing frequency, step length/step frequency) fol-
lowing an optimization criterion, for instance the minimization of mechanical
work rate or average force. In both systems, for a fixed ventilation rate or speed,
the total work curves attain high values at the extremities of the frequency range,
whereas somewhere in the middle they have a point which corresponds to the
minimum work rate. In breathing, such behaviour is produced by a balance
between the viscous and elastic components of the total work done, each of which
increases or decreases monotonically with an increase in breathing frequency.
During walking, mutatis mutandis, the total work components displaying the same
trend are the internal work rate (Wmt), due to the movements of the limbs with
respect to the body centre of mass, and the external work rate (Wexl), due to the
displacement of body centre of mass with respect to the environment. The
rationale underlying the choice of a certain stride frequency might be the
following: when walking at a constant speed using low-frequency longer steps,
most of the energy expended is used to raise and lower the body centre of mass,
resulting in a greater external component, while at the highest stepping fre-
quencies the body centre of mass moves along a relatively straight line and most of
the energy is devoted to accelerating and decelerating limbs with respect to it,
resulting in a greater internal component. Cavagna and Franzetti (1986) showed
experimentally that the total mechanical work rate (Wtot), obtained by adding Wml

and Wext, at each constant progression speed displays a minimum for a step
frequency roughly corresponding (—25%) to the one freely chosen by the
subjects. Their predictions have been further improved (-12%) by using more
recent (Dempster et al. 1959) average anthropometric data (Minetti et al. 1990a).

Despite the multiplicity of methods available for calculating the mechanical
work of locomotion (which yield results varying over three orders of magnitude;
Williams and Cavanagh, 1983), the technique adopted by Cavagna and Franzetti
(1986) seems to be the only one to face the optimization phenomena related to the
chosen stride frequency. There is thus a need to incorporate such a method into a
comprehensive and simple mathematical model capable of verifying the assump-
tions about minimization of the mechanical work rate during walking.

The aim of the present study is to provide simple equations for Winl and Wcxt

and to compare the model predictions of natural stride frequency with experimen-
tal data.

Materials and methods
Fig. 1 shows the stick diagram adopted in the formalization of the Wint model.

The body is composed of five stiff segments, four of which (two lower and two
upper limbs) are involved in the model computation. The values of segment
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Fig. 1. Stiff limb diagram adopted in the model formalization, where r is lower limb
length, a is the proximal distance of the lower limb centre of mass (as a fraction of r), b
is upper limb length (as a fraction of r), and p^ and pu are the radii of gyration of upper
and lower limbs. The circles represent the approximate position of the limb centre of
mass. All the equations have been modelled assuming a sinusoidal function over time
for the angle between the limbs and the vertical line (total excursion=±<pmM).

length, mass, position of the centre of mass (circles in Fig. 1) and radius of
gyration have been taken from the literature (Dempster etal. 1959).

Assuming that the limb extremities follow a sinusoidal displacement with
respect to the head-trunk segment during walking, Wint has been evaluated from
the oscillations in kinetic energy (both translational and rotational) according to
the KCnig theorem, as suggested by Cavagna and Kaneko (1977). In fact, the
energy transfer among segments is not relevant because of the in-phase shapes of
the kinetic energy curves. The derived equation (see Appendix) is:

VVint = fP - [(a2 + go
2)(mL + b2mv)], (1)

where / is stride frequency, I is average progression speed, a is the proximal
distance of the lower limb centre of mass, go is mean radius of gyration, mL and mu

are the masses of the lower and upper limbs and b is the upper limb length. For a
'standard' subject, this reduces to:

Wint = 21.638/J2. (2)

Unlike this VVint calculation, the WCM estimate cannot be modelled using the
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Walking
direction

Fig. 2. Geometry of the trajectories of the body centre of mass in the transition
between successive steps. The energy at the end of one step is degraded proportionally
to the sine of the angle between the speed trajectory and the orientation of the forward
lower limb. <pmax is the maximum angle between the vertical and the limbs.

technique given by Cavagna and Kaneko (1977). Modelling the movement of the
body centre of mass as an inverted pendulum (Alexander, 1976), precludes
calculation of Wcxt based on the oscillations of its potential and kinetic energies,
for they sum to a value invariant with respect to time (no energy range is
displayed). Nor can we consider simply the changes in kinetic energy due to
forward speed changes of the inverted pendulum because, if its movement were
modelled so as to mimic that of the lower extremity, it would result in a speed
range from zero to a certain value, a behaviour not encountered in normal
walking. Such approximation would lead to substantial overestimations of Wcxt.

In this paper the calculation of Wcxl is based on the following rationale: the only
fluctuations in the energy curve of the body centre of mass (concentrated in the hip
joint) to be taken into account are those produced by the loss of energy occurring
between the end of a step and the beginning of the next one due to the angle
formed by the trajectory vectors in that transition. When the maximum angle
between the front and the hind limbs (2<pmax in Fig. 2, where cpmax is the maximum
angle between the vertical and the limbs) is zero the body centre of mass energy
could ideally be completely recovered, but when it is JI/2 the trajectory vector will
be in line with the front limb, precluding any energy transfer to the subsequent
step. On the basis of an elastic collision, the energy loss in the forward direction is
proportional to cos2(2cpmax), but we opted, for a number of reasons (see Results
and Discussion), to approximate the function with a simple cosine.

When the external work is modelled taking the above considerations into
account (see Appendix), we reach the following estimate:

ms (3)
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where m is body mass and r is lower limb length. For a 'standard' man, this reduces
to:

We* = 10.171 y . (4)

Summing the internal and external components, we obtain an expression for the
total mechanical work rate:

Wu,t = Wint + Wext = P { ^ [(a2 + go
2)(mL + b2mv)] + ^ } , (5)

which, properly manipulated (see Appendix), allows calculation for different
values of I the stride frequencies (fopt) at which the work rate is minimized:

f - - • m

/opt - -2nr V (a2 + go
2)(mL + b2mv)

Measurements of the natural stride frequency were carried out on 11 healthy
subjects (mass 48-92 kg, height 1.63-1.81 m, age 19-62 years) walking on a
treadmill at different speeds (range 1-3 ms"1).

Results and discussion
The adequacy of the model has been tested by comparing our graphs of Wint,

VVext and Wtot versus stride frequency at constant progression speed (Fig. 3) with
the ones provided by Cavagna and Franzetti (1986; Fig. 2B) at the same speeds
(1.278, 1.5 and 1.8ms"1). The most crucial difference in the work rate curves
occurs for Wint, which is smaller and linear in the present study, while the
experimental data show a curved relationship with stride frequency. This
discrepancy is due to the different methodology adopted in the estimation of the
internal work rate. Cavagna and Franzetti (1986) took the displacement curves of
four subjects investigated in a previous experiment (Cavagna and Kaneko, 1977),
who walked at speeds ranging from about 1 to 5.5ms"1 at their natural stride
frequency, and forced those curves, by re-scaling the time axis, to correspond to
three given speeds [4.6, 5.5 and6.5kmh~1 using their units (1.3,1.5 and 1.8 ms"1 ,
respectively)], maintaining the original step length range at each new speed. In so
doing, they clustered estimates of Wint calculated from very different motion
patterns of the limbs at every constant speed.

In our model only the stride frequency was allowed to change, while the motion
pattern was invariant (a sinusoidal oscillation). This treatment implies, for a given
progression speed, a constant maximum speed of the limbs with respect to the
body centre of mass, regardless of the stride frequency adopted, causing Wint to be
a linear function of/(within the limits indicated by equation A18). Another reason
for the observed discrepancy in Winl is the fact that Cavagna and Franzetti (1986)
adopted in their computations the anthropometric data of Braune and Fischer
(1892), which report the mass of four limbs equal to 50.22% of the entire body
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Fig. 3. Positive internal (WiM), external (Wcxl) and total (VV,ot) work rates at three
selected speeds plotted against stride frequency calculated using the present model.
The speed values have been chosen to allow comparison with the experimental data
provided by Cavagna and Franzetti (1986).

mass, while more recent measurements (Dempster et al. 1959) set this at 42.20 %.
This difference has been shown to be responsible for a 20 % overestimation of the
internal work rate (Minetti et al. 1990a). Recently, Minetti and Saibene (1992)
found good agreement between the preliminary predictions of the Wint model and
experimental data for freely chosen and forced stride frequencies at different
walking speeds (range 0.69 to 2.08ms"1).

Conversely, modelling the external work according to cos2(2cpmax) (the energy
loss due to the impact during the step transition) leads to unrealistic high work
values when compared with the experimental results of Cavagna and Franzetti
(1986). We adopted a simple cos(2<pmax) function, which behaves similarly but
attenuates the energy losses, because it is supported by three circumstances
occurring during walking. First, at low step frequencies (and longer step lengths)
the horizontal trunk rotation separates the hips, corresponding to an increase in
the lower limb length. This increase in r results in a decrease in the external work
rate while having no effect on the internal one, whose equation is unaffected by
changes in the lower limb length. Second, the spread of the four limbs moves the
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body centre of mass vertically with respect to the hip, reducing the angle between
the lines of impact. When modelling this aspect with the walking geometry
assumed in this study and standard anthropometric data, it turns out that the
vertical range of the movement of the body centre of mass is about 60 % of the hip
movement range. Finally, foot extension acts to smooth the step transition, by
increasing the radius before the collision. All three occurrences imply a decrease
in 2cpmux and, concurrently, in the energy losses related to the step transition,
resulting in a lower external work rate.

The Wex, values obtained using this approach, whose rationale is based on
observations about the energy loss of walking made by others (Cavagna et al.
1977), nevertheless resemble both quantitatively and qualitatively those obtained
by Cavagna and Franzetti (1986), who used a force platform. Only at high speed is
there a tendency to overestimate the experimental data because of the fourth
power in equation A24.

The mathematical model proposed in the present paper predicts the relationship
between average walking speed and the natural stride frequency according to the
criterion of minimum work rate (Fig. 4) (curve Wmin, 'standard' subject). These
predictions seem to be in agreement with our experimental data at low speeds, but
deviate considerably when the speed increases. Although Strathy et al. (1983)
found that treadmill walking overestimates the stride frequency by about 7 %, the
accuracy of our measurements is confirmed by values reported by others (Cavagna
and Franzetti, 1986). It is important to keep in mind that the Wmm curve reports
the stride frequencies at which the rate of positive internal work is minimal during
the stride (only the positive differences in kinetic energy are included in the Wint

computation) and does not take into account the work necessary for decelerating
the limbs. From another viewpoint, the same curve can be regarded as the one that
minimizes the positive and negative internal work rates pertaining only to one
stride phase, for example the stance, while the other phase (the swing) is
considered as a ballistic (i.e. passive) movement, a hypothesis also suggested by
others (Mochon and McMahon, 1980). In Fig. 4 a horizontal line marks the
frequency at which a frictionless pendulum (with length equal to the mean of the
lower and upper limb proximal distance of the centre of mass) oscillates naturally.
Above this frequency the limbs have to be continuously accelerated and
decelerated, with increasing positive and negative work (see below).

The calculation of Wtot partly follows the algorithm proposed by Cavagna and
Kaneko (1977) but, as anticipated in the Introduction, there does not seem to be
agreement about the computational technique to adopt when estimating the
mechanical work of locomotion (Williams and Cavanagh, 1983; Minetti etal.
19906). The major uncertainties reside in the energy transfer among segments, the
incorporation of negative work and the recovery of the stored elastic energy. For
this reason we incorporate in Fig. 4 a shaded area whose right-hand boundary,
with equation /opt=0.485s~, represents the minimization of the total work rate
whose internal component has been doubled, thus also taking into account the
negative work rate of both stride phases. Such high weighting for the negative
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Fig. 4. Experimental data from 11 subjects (one symbol type per subject) together
with model predictions. Lines labelled JVmin and W^m represent the frequencies
minimizing the mechanical work rate when r is equal to the leg and the leg plus foot
length, respectively. The stippled area shows the effect of different negative work
efficiency in moving the predicted line to the right (see the text for further
explanations).

work (100 % of positive Winl) has been used in another study on the estimation of
the mechanical work of locomotion (Winter, 1979), although other investigators
(Williams and Cavanagh, 1983) adopted a value of about 33 % (that is to say, they
considered the efficiency of negative work as being three times greater than the
efficiency of positive work, provided that, during level walking, positive work
equalled negative work). The shaded area within the two lines includes the curves
which minimize total mechanical work with different negative work efficiencies.
Within this area, a departure from Wmin towards the right-hand limit could be
interpreted as the work minimization (positive plus negative) when one stride
phase (the swing) becomes progressively less passive. The last assumption about
two active phases (no ballistic return) is mirrored by the behaviour of the
respiratory system during increased alveolar ventilation, when expiration can no
longer be considered to be a passive return to the initial operating condition (Otis
etal. 1950).
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All frequency predictions made by the present model are linear functions of the
progression speed, resulting in a constancy of stride length (step length 0.73 and
1.03 m for Wmin and the right-hand limit, respectively). These findings are not
reflected by the experimental points which, although almost linear, seem to
intersect several iso-length lines when the speed increases. As stated above, those
lines pertain to different weightings of negative internal work (or different
proportions in the activity of the swing phase). However, when a subject is asked
to walk at speeds normally achieved by running (>2.1ms~1), a tendency to
maintain a constant step length is found.

Another phenomenon only partially taken into account by the model is the foot
extension between successive steps that occurs at high walking speeds. This results
both in a reduction of energy loss due to the angle between the trajectory vectors
(see Fig. 2), as suggested by Cavagna etal. (1977) (Fig. 3), and in an increase in
the system energy. To simulate the first effect we included a greater segment
length (lower limb plus foot) in the Wcxt computation and obtained the prediction
labelled W'min in Fig. 4 (fopt=0.533s~), which corresponds to a lower optimal stride
frequency.

A stability analysis of our model predictions reveals a marked insensitivity to
changes in body mass (only a different mass distribution within the body plays a
role in the Wint/VVext balance). However, an increase in subject height results in
lower optimal stride frequencies. Fig. 5 shows the Wmin and W'm\n curves given in

Fig. 5. Limits for the shortest and the tallest subjects of our group (left-hand and right-
hand thin lines, respectively) related to the predicted natural stride frequency based on
the criterion of the minimum work rate. Solid line, segment length=lower limb;
dashed line, segment length=lower limb plus foot.
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Fig. 4 (thick solid and dashed lines) together with the limits, ceteris paribus, for the
tallest and the shortest subjects of our group (right-hand and left-hand thin lines,
respectively). The narrow bands between the corresponding thin lines reflect the
variability of the experimental data in Fig. 4, which do not show height-
dependence in the scatterplot.

The reasons for the discrepancies lie partly in the assumptions within the model
(stiff limbs, no double support, body centre of mass located in the hip joint) and
partly in the possibility that the minimum work rate criterion is not the only one
involved in performance optimization.

A recent paper about the energy expenditure of locomotion in mammals argues
that a force minimization criterion is probably operating (Kram and Taylor, 1990)
in species of very different sizes. Such a hypothesis, supported by measurements of
foot-substratum contact time during running, could not apply to walking because
of the different gait mechanism (Cavagna etal. 1977). As pointed out by
Alexander (1991), who reviewed several optimization criteria that could operate
during locomotion, future models will have to consider both energetic aspects: the
energy spent to generate work and the energy necessary to generate (isometric)
force. In addition, our model of Wexl is very similar to the one proposed by
Alexander (1991), which applies the principle of conservation of angular momen-
tum, as also suggested by McGeer (1990). We tried to incorporate Alexander's
equation in our model and found that it overestimates the experimental data of
Cavagna and Franzetti (1986). However, because of the additive procedure for
total work rate computation, the incorporation of that model results in compar-
able predictions about the optimal stride frequency.

The present model could be further improved by taking into account a frictional
component and allowing for a penalty factor related to the departure of the stride
frequency from the one for the ideal pendulum at increasing speeds. In addition,
accurate measurements could quantify the energy-saving effects of trunk rotation,
foot extension and segmental mass displacements as contributors to the elevation
of the centre of rotation, with a consequent decrease in 2cpmas (see Fig. 2). By
increasing the values and curvature of W,nt and decreasing Wexl, these consider-
ations are expected to improve the model predictions about the optimal stride
frequency.

Appendix

Equation for W,n,

Following the stick diagram reported in Fig. 1, the average progression speed,
I, can be formalized as:

I = /4rsin<pmax , (Al)

where / i s the stride frequency, r is the leg length, and <pmax is half the maximum
inner angle between the lower limbs. Assuming that the limb extremities follow a
sinusoidal displacement with respect to the body centre of mass, which is placed in
the head-trunk segment and does not move horizontally because of the symmetri-
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cal position of the limbs, the function describing the angle between the vertical and
a limb during the stride is:

<jwsin(<yO , (A2)

where a> = 2jrf, (A3)

and t is time. Calculation of Winl needs both the translational and the rotational
components of the total kinetic energy function. The lower limb extremity moves
according to:

sL(t) = rsin(<pmax<u0 . (A4)

The linear approximation of equation A2 is justified by the fact that we are
interested in the maximum speed reached, which occurs at an angle close to 0°
(with the leg in the vertical position).

Multiplying equation A4 by a, the proximal distance of the lower limb centre of
mass (expressed as fraction of limb length), and differentiating with respect to
time, yields:

SLc°m= arcpaKOsiv^wi), (A5)
dt

where s'Lcom is the movement of the centre of mass of the lower limb.
The equation for the translational kinetic energy for the two lower limbs (we can

multiply by 2 because, although the speeds of the two segments are opposite in
sign, the square values are in phase), is then:

TKEU o m(0 = 2imL5Lcom
2 = mL(ar<pmaxft))

2cos2(<pmaxCL<), (A6)

where mL is mass of the lower limb. Equation A6 shows a minimum equal to zero
when the limbs reverse their movement, i.e. when (p=±(pmax, while the maximum
is reached when cpma*.(t)t ' s zero, i.e. when the limbs are vertically aligned. In that
position, because of the assumptions about the displacement of the extremities,
only the horizontal kinetic energy has to be considered, since the vertical speed of
the centre of mass of the limbs is zero.

Hence, the range in the translational kinetic energy is

A T K E L C O ™ = mL(arq>maxco)2 . (A7)

Following this argument for the upper limb yields:

SucomW = -abrsin((pmaxo)t), (A8)

where b is the upper limb length as a fraction of the lower limb length. The
translational kinetic energy range is:

ATKEU c o m = mv(abrq)max(o)2 , (A9)

while that related to four limbs, obtained by summation (by virtue of the in-phase
shapes of equations A7 and A9) is:

ATKE, = ATKELcom + ATKEUcom

b2mu) . (A10)
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Calculation of the rotational kinetic energy associated with the movement of the
limbs requires a function describing the changes in angular speed within the stride
duration. By differentiating equation A2 with respect to time:

<p(t) = &M = (pmax(ocos(cot). (All)
at

Calculating the moments of inertia for the lower and upper limbs (7L and Iv) as

where p^ = ghr,

and /u = muPu2 ,

where Pu = gvbr, (A12)

where PL and pu are the lower and upper limb radii of gyration around the centre
of mass and gL and gu are the lower and upper limb radii of gyration expressed as
fractions of segment length, we obtain the rotational kinetic energies:

RKEL = 2|/L<p(02 = mL(gLr)2[<jw<ucos(fitf)]2 (A13)

and RKEu = 2blv<p(t)2 = mu(gu*>'')2[<Pniax<wcos(<u0]2 • (A14)

As for the computation of translational kinetic energy, we are interested in the
range of rotational kinetic energy during the stride, which, from equations A13
and A14 sums to:

ARKEt = ^<pmax
2^(mLgL

2 + mub
2

gu
2). (A15)

Thus, the equation for the rate of mechanical internal work, made up of the
components of equations A10 and A15, is:

Wint = 2/(ATKEt + ARKEt)

- 2frzcpmJ(1?[a2{mu + b2mv) + ( m ^ L
2 + mvb

2gu
2)]. (A16)

The ranges are multiplied by 2 because during the stride there are two minima
and two maxima. Thus, only the positive work is taken into account (see
Discussion).

By assuming the approximation:

• (I\<Pmax = arcsin —
\Afr)

~£r, (A17)
Afr

allowed because:

Afr A 2/ r ° 2

(a fairly unrestrictive condition), W,m can be expressed in terms of/and I as:

Wmt = fP — [a2(mL + b2mv) + (m^gL
2 + mub

2gu
2)]. (A19)
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A further simplification, allowed when lower and upper limbs show similar radii
of gyration (as in the human body), is to average gL and gv into a single value, g0,
yielding:

Wint = fP y [(a2 + go
2)(mL + b2mv)]. (A20)

Expressing / in Hz and s in ms"1 and allowing for standard anthropometric
values, equation A20 gives the following estimate of Win( in watts:

P . (A21)

Equation for W^,

The total energy associated with the body centre of mass (TEmax) is considered
to be constant during the oscillation of the lower limb (a single step). Thus, as for
an inverted pendulum, TEmax is the maximum energy level reached by the body
centre of mass (assumed to be concentrated in the hip joint). The difference
between the minimum energy level (TEmin) and TEmax generates the external
work; in this study it is assumed to be determined by the transition between
successive steps (see Fig. 2), regarded as a type of elastic collision. Complete
energy recovery, in the forward direction, can theoretically be feasible whenever
the angle between the trajectory vector at the end of a step and at the beginning of
the next one is near to 0° (i.e. when the body centre of mass moves along a
relatively straight path). Conversely, the energy recovery is zero when the
trajectory of the previous step is in line with the front limb segment which, owing
to the fixed constraint with the ground, will need extra energy to move in the
forward direction. Between these two extremes, the speed vector in the forward
direction at the beginning of the next step is a fraction of the previous one
according to a sine function of (jz/2—2q>max), i.e. of the angle between the
trajectory vector and the orientation of the front limb at the step transition (see the
vector projection onto the path of the next step in Fig. 2). While on the basis of an
elastic collision the kinetic energy loss in the forward direction is proportional to
cos2(2<pmax), we opted, for a number of reasons (see Results and discussion), to
approximate the energy loss with a simple cosine function. Thus, the two energy
levels can be formalized as:

TEmax = imp

and TEmin = TEmaxcos(2(pmax). (A22)

Only the kinetic component is represented in the equation for total energy
because, despite the transformations between potential and kinetic energies
during the inverted pendulum oscillation, it constitutes the maximum energy of
the system in the forward direction.

The rate of external mechanical work is:

VVext =2/ATE

= 2ifmP[l - cos(2cpmax)] (A23)
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(as for Wint the multiplying factor 2 accounts for the two energy rises during one
stride).

By substituting equation A17 into equation A23 and simplifying, the equation
for Wext becomes:

*--$• (A24)

Expressing / in Hz and I in ms"1, and allowing for standard anthropometric
values, equation A24 estimates the external work rate in watts as:

Wext = 10.171 y . (A25)

Stride frequency for minimum W,of

Adding equations A20 and A24 (or equations A21 and A25) gives the total
mechanical work rate of walking:

The technique for obtaining the stride frequency at which the work rate is
minimal can be summarized as follows:

3/ °"/ o p t

i.e. take the partial derivative of equation A26 with respect to / , equate it to zero,
and express the result as a function of I. The optimal stride frequency (fopt) for the
standard man, when parameter units are expressed as indicated previously, is:

/Opt = 0.6857. (A28)

List of abbreviations
The values in parentheses have been used in this paper to predict the natural

stride frequency of walking of a 'standard man' (height=1.75 m).

a proximal distance of lower limb centre of mass as a
fraction of r (44.7%)

b upper limb length as a fraction of r (83.2 %)
/ stride frequency (Hz)
/opt stride frequency for minimum rate of total work (Hz)
gL,gu lower and upper limb radii of gyration (limb length

fraction) (32.6,36.8%)
go mean radius of gyration (lower limb length fraction)
/ L , /u lower and upper limb moment of inertia



Stride frequency model in walking 33

TE
x '-"max

TF
A '-'mm
Win

m body mass (70 kg)
mL,my mass of lower and upper limbs (11.27 and 3.50 kg)
r lower limb length (0.928 m)

rotational kinetic energy of lower and upper limbs
average progression speed (ms~])
movement of lower and upper extremities
movement of lower and upper limb centre of mass

) speed of lower and upper limb centre of mass
total energy of the body centre of mass: maximum level
total energy of the body centre of mass: minimum level

, TKEUcom(0 translational kinetic energy of lower and upper limbs
rate of internal mechanical work (Wkg"1)

Wcxl rate of external mechanical work (\Vkg~1)
l¥tot rate of total mechanical work (\Vkg~1)
ARKEt total range of rotational kinetic energy
ATE total energy range of the body centre of mass
ATKELCOH, , ATKEUcom TKE range of lower and upper limbs
ATKEt total range of translational kinetic energy
PL,PIJ lower and upper limb radii of gyration (about the

centre of mass)
cp angle between the vertical line and limbs (rad)
cp(i) q> at t i m e t ( r a d )
<pmax maximum cp during the stride (rad)
cp(t) angular speed
co swing frequency

T h e au thor s wish to thank Giovanni Cavagna , Ins t i tu te of Physiology, Univer -
sity of Milan , and Giancesa re Bell i , Ins t i tu te of Ma thema t i c s , Pol i tecnico of
Mi lan , for their helpful suggestions and criticisms. Par t of this work was p resen ted
at the Xlllth International Congress on Biomechanics, Perth (Australia), 9-13
December 1991.

References
ALEXANDER, R. M C N . (1976). Mechanics of bipedal locomotion. In Perspectives in Experimental

Biology, vol. 1 (ed. P. Spencer-Davies), pp. 493-504. Oxford: Pergamon Press.
ALEXANDER, R. M C N . (1989). Optimization and gaits in the locomotion of vertebrates. Physiol.

Rev. 69, 1199-1227.
ALEXANDER, R. MCN. (1991). Energy-saving mechanisms in walking and running. / . exp. Biol.

160, 55-69.
BRAUNE, W. AND FISCHER, O. (1892). Bestimung der Tragheitsmomente des Menschlichen

Korpers und seiner Glieder. Abh. d. Math. Phys. Kl. d. Sachs. Akad. d. Wiss. xviii, 409-492.
CAVAGNA, G. A. AND FRANZETTI, P. (1986). The determinants of the step frequency in walking in

humans. J. Physiol., Lond. 373, 235-242.
CAVAGNA, G. A., HEGLUND, N. C. AND TAYLOR, C. R. (1977). Mechanical work in terrestrial

locomotion: two basic mechanisms for minimizing energy expenditure. Am. J. Physiol. 233,
R242-R261.



34 A . E . MlNETTI AND F . SAIBENE

CAVAGNA, G. A. AND KANEKO, M. (1977). Mechanical work and efficiency in level walking and
running. J. Physiol., Lond. 268, 467-481.

DEMPSTER, W. T., GABEL, W. C. AND FELTS, W. J. L. (1959). The anthropometry of manual
work space for the seated subject. Am. J. phys. Anthrop. 17, 289-317.

HAMALAINEN, R. P. (1978). Optimization concepts in models of physiological systems. In
Progress in Cybernetics and Systems Research, vol. Ill (ed. R. Trappl, G. J. Klir and
L. Ricciardi), pp. 539-553. Washington: Hemisphere Publishing Corporation.

HAMALAINEN, R. P. AND HAMALAINEN, J. J. (1985). On the minimum work criterion in optimal
control models of left-ventricular ejection. IEEE Trans, biomed. Eng. BME-32, 951-956.

HAMALAINEN, R. P. AND VILJANEN, A. A. (1978). Modelling the respiratory airflow pattern by
optimization criteria. Biol. Cybernetics 29, 143-149.

KRAM, R. AND TAYLOR, C. R. (1990). Energetics of running: a new perspective. Nature 346,
265-267.

MARGARIA, R. (1938). Sulla fisiologia e specialmente sul consumo energetico della marcia e della
corsa a varia velocita ed inclinazione del terreno. Att. Ace. Naz. Lincei 7, 299-368.

MCGEER, T. (1990). Passive dynamic walking. Int. J. Robotics Res. 9, 62-82.
MEAD, J. (1960). Control of respiratory frequency. J. appl. Physiol. 15, 325-336.
MINETTI, A. E., CONSANI, I. R., CORTILI, G. AND SAIBENE, F. (1990a). Internal and external

mechanical work in the prediction of the natural step frequency during walking. Proc. LVII
Congress of the Italian Physiological Society, Perugia.

MINETTI, A. E., CONSANI, I. R., CORTILI, G. AND SAIBENE, F. (19906). Estimation of mechanical
work of walking and running by means of three models: a variability approach. Proc. 1st
World Congress of Biomechanics, University of San Diego, La Jolla (California).

MINETTI, A. E. AND SAIBENE, F. (1992). Effects of speed and frequency changes on mechanical
internal work rate in walking: experimental data and model predictions. Proc. Xlllth
International Congress on Biomechanics, Perth, December 1991. J. Biomech. (in press).

MOCHON, S. AND MCMAHON, T. A. (1980). Ballistic walking. J. Biomech. 13, 49-57.
Ons , A. B., FENN, W. O. AND RAHN, H. (1950). Mechanics of breathing in man. J. appl.

Physiol. 2, 592-607.
STRATHY, G. M., CHAO, E. Y. AND LAUGHMAN, R. K. (1983). Changes in knee function

associated with treadmill ambulation. J. Biomech. 16, 517-522.
WILLIAMS, K. R. AND CAVANAGH, P. R. (1983). A model for the calculation of mechanical power

during distance running. J. Biomech. 16, 115-128.
WINTER, D. A. (1979). A new definition of mechanical work done in human movement. J. appl.

Physiol. 46, 79-83.
YAMASHIRO, S. M., DAUBENSPECK, J. A. AND BENNET, F. M. (1979). Optimal regulation of left

ventricular ejection pattern. Appl. Math. Comput. 5, 41-54.


