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Finding food in the dark: how trajectories of a gymnotiform fish
change with spatial learning
Camille Mirmiran1, Maia Fraser1,3 and Leonard Maler2,3,*

ABSTRACT
Weanalyzed the trajectories of freely foragingGymnotus sp., a pulse-
type gymnotiform weakly electric fish, swimming in a dark arena. For
each fish, we compared the its initial behavior as it learned the relative
location of landmarks and food with its behavior after learning was
complete, i.e. after time/distance to locate food had reached a
minimal asymptotic level. During initial exploration when the fish did
not know the arena layout, trajectories included many sharp angle
head turns that occurred at nearly completely random intervals. After
spatial learning was complete, head turns became far smoother.
Interestingly, the fish still did not take a stereotyped direct route to the
food but instead took smooth but variable curved trajectories.We also
measured the fish’s heading angle error (heading angle – heading
angle towards food). After spatial learning, the fish’s initial heading
angle errors were strongly biased to zero, i.e. the fish mostly turned
towards the food. As the fish approached closer to the food, they
switched to a random search strategy with a more uniform distribution
of heading angle errors.

KEY WORDS: Weakly electric fish, Electrolocation, Path integration,
Foraging, Navigation

INTRODUCTION
Learning the spatial relationships of important environmental
features is essential for behaviors such as foraging, and such
learning has been studied in vertebrates ranging from fish
(Braithwaite et al., 1996; Jun et al., 2015) to mammals including
rodents (Alvernhe et al., 2012) and primates (Lührs et al., 2009).
Vision is typically the dominant sense for spatial learning; although
blind rats can also learn to navigate, the sense(s) utilized have not
been clearly identified (Save et al., 1998). Weakly electric fish can
learn spatial relationships in the dark using their electrosense (Jun
et al., 2015; Engelmann et al., 2021). After learning, these fish use
active sensing to identify landmarks (allothetic) and subsequently
use path integration (idiothetic) to guide them from home or
landmarks to food (Jun et al., 2015; Wallach et al., 2018;
Engelmann et al., 2021). The time course for such learning has
been established previously for pulse gymnotiform fish (Jun et al.,
2015). The focus of that study was on the time course of learning
and on the engagement of active sensing at landmarks. As in most
spatial learning studies, Jun et al. (2015) made no attempt to
examine the evolution of the fish’s trajectories as it learned to

efficiently find food. Notably, even after learning was complete, the
learned trajectories were not simply direct routes from home to food
but variable even after they had achieved minimal durations and
distances (Fig. 1). Here, we close this gap by analyzing the
trajectories of the fish in Jun et al.’s (2015) study to determine how
flexible egocentric cue-based trajectories change during spatial
learning.

MATERIALS AND METHODS
Experimental setup
The experimental setup is further detailed in our laboratory’s
previous paper (Jun et al., 2014). Video introductions are also
available (Jun et al., 2013). The experiment made use of a
1.8×1.8×0.3 m tank resting on multiple layers of vibration-
absorbing material (to minimize external vibratory stimuli). Water
temperature was closely regulated to 25±1°C to prevent
temperature-dependent electric organ discharge (EOD) rate
fluctuations (Ardanaz et al., 2001). The power-line noise
generated by the water heater underneath the tank was blocked by
a Faraday cage. The tank was surrounded by a sensory-isolation
chamber (to block external light, sound and radio-frequency noise).
Air filtration was installed to expel excess humidity build-up caused
by heating. The water was shallow (∼10 cm) to facilitate video
recording. Within that tank was a circular tank (radius 80 cm) that
constituted the experimental area.

The landmarks were built from thin (1.6 mm) acrylic sheets with
suction cups attached to the bottom to fix them to the glass floor.
Four types of landmarks were built: two squares (5.6 and 9.0 cm per
side) and two circles (7.6 and 10.2 cm diameter). They were placed
at rotationally symmetric positions for all fish. White grid paper of
5 cm spacing was attached underneath the glass floor to aid in
landmark and food placement, and to enhance contrast with the
brown fish.

Experimental protocol
Live mealworms were used as the food source and were kept in
place by elastics on a suction cup. Water filtration was performed
between every daily experiment, and water from each compartment
(where the fish were housed prior to experiments) was mixed
together during filtration to homogenize odorants.

In all experiments (including prior to the probe trials, where there
was no food), thorough vacuuming of the tank bottom floor was
performed as to be sure no remnants of the mealworm remained.
Trials were repeated up to (but not always) four times per animal
each day, and a single mealworm was used as the food source for
each trial. When the trial lasted over 15 min, it was aborted.

Probe trials were conducted after the learning performance
reached a stable plateau and followed the same protocol except that
the food source was not present. For each fish, the probe trial was
performed as one of the four trials run that day, with a random order
(first, second, third or fourth trial).Received 26 May 2022; Accepted 8 November 2022
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The data
Previous research done in our lab (Jun et al., 2015) provided the data
for the x and y coordinates for three fish (Gymnotus sp. Linnaeus
1758, ranging from 13.9 to 17.9 cm and labelled A, B and C)
foraging in a circular tank (radius 80 cm; water depth ∼10 cm). The
food source was always placed in a rotationally equivalent position
at the near-center of the aquarium [coordinates (x,y)=(0 m,−0.1 m),
(−0.1 m,0 m), (0 m,0.1 m) for fish A, B and C, respectively] based
on the entry point (top right, bottom right and bottom left, for fish A,
B and C, respectively). Jun et al. (2015) used four fish in their
study, but a hard disk crash damaged the data for one fish so
that it could not be used. Jun et al. (2015) showed that spatial
learning in this fish was entirely comparable to the other fish, and so
our smaller sample is still characteristic of electrosensory spatial
learning in this species.
The data had a granularity of 100 frames s−1 but required

smoothing as they were piecewise linear. We used a moving average
of size 15 frames (seven on the right, center frame, seven on the left)
to smooth out the trajectories. The data included the head
orientation. Head orientation did not require smoothing, only the
replacement of some spurious points when the fish would go from
an angle of 0 to 360 deg or vice versa that were generated by our
treatment of arithmetic modulo 360 deg.
In Jun et al. (2015), a definition was made for early learning (two

sessions comprising of at most eight trials per fish) versus late
learning (four sessions comprising of at most 12 trials and four
probe trials per fish). The ‘late learning’ fish had reached
asymptotically minimal trajectory distance and duration. We used
these definitions for our analysis.

Change of heading angle
In this analysis, we used the ‘change in heading angle’ defined as
the change in angle from time t to time t+1. We determined the
distribution of change of heading angles for early and late learning;

outliers of this distribution were taken as being 1.5 times the
interquartile range (IQR) away from the first or third quartile (Balan
and Lamothe, 2011). These outliers were defined as ‘sharp turns’
and we calculated the time intervals between the sharp turns. Note
that sharp turns are thus defined uniquely for each fish and learning
status. Because the distributions are so different between early and
late learning, the outlier criteria of 1.5 times the IQR are at different
absolute locations.

Error in heading angle
Because the location of the food source is recorded (and constant),
we could calculate the optimal heading angle for the fish to get to the
food source. We compared that with the current head angle. For our
purposes, we call this the error in heading angle. The error in
heading angle was designed to range from −180 to 180 deg, with
0 deg indicating that the fish is facing the food.

Distribution of error in heading angle
The fish, especially during early learning, spent a great deal of
time along the walls; similar exploratory behavior has been
described for mice upon entering a new arena (Fonio et al., 2009).
This heavily distorted the distribution of heading angles. To
remedy this distortion, we removed all instances of wall-
swimming by eliminating the data where the fish was less than
15 cm from the wall. Another modification done was to give each
trajectory the same weight instead of the inherently weighted
average obtained by amalgamating short and long trajectories.
That is, for each trajectory, we computed its own distribution of
heading angle error, and the resulting empirical densities of
heading angle error (one density function per trajectory) was then
averaged to obtain a final empirical density for the collection (a
collection being the trajectories that fall under one fish and one
learning status). This way, the bias towards longer trajectories was
eliminated.

20 cm

A B

20 cm

+

Early Late

+

Fig. 1. Early versus late learning fish
example trajectories. (A,B) The fish
arena is illustrated including the four
landmarks and the entrance (brown)
from this fish’s home. In black, the
original trajectories. In cyan, the
smoothed trajectories using a moving
average of 15. Note the complete
overlap between the original (black) and
smoothed (cyan) trajectories. In red, a
second example of early and late
trajectories from the same fish. As
previously demonstrated (Jun et al.,
2015), the late trajectories are shorter in
both time and distance travelled than the
early trajectories. (A) Individual early
trajectories are extremely variable (black/
cyan and red) and highly convoluted with
many sharp turns. Trajectories are not
stereotyped but vary extensively across
trials (black/cyan versus red). (B) Late
trajectories are smoother with few sharp
turns (see below for quantification). Note
also that the late trajectories are still
variable and are not straight paths
towards the food; instead, they can
contain loops where the fish temporarily
moves away from the food. Further, the
late trajectories are still not stereotyped
but vary immensely across trials.
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Rayleigh test of uniformity
For a sample, θ1,…,θn, of angles, we define the sample mean
resultant length as follows:

�R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
j¼1

cosðujÞ
 !2

þ 1

n

Xn
j¼1

sinðujÞ
 !2

vuut ; ð1Þ

where j are the successive calculated heading angle errors. Then we
have the following large-sample asymptotic distribution under
uniformity, with an error of order O(n–1) (Mardia and Jupp, 2000).
The test statistic for the Rayleigh test of uniformity can be calculated
as follows:

2n�R2
~x22: ð2Þ

This allows us to determine statistical significance on whether
a sample of angles originates from a uniform distribution. Low
P-values indicate that the underlying distribution is less likely to be
uniform. Variants of this test also allow us to determine whether
there is a significant bias towards 0 (Jammalamadaka and Sengupta,
2001).

l2 distance from uniform distribution
Given a discrete distribution with finite support, we can define
the l2 distance (Euclidean norm) between that distribution and the
uniform distribution with that same support. This is done by taking
the square root of the sum of squared differences between the
distribution’s values and that of the uniform distribution. Doing this
allows us to measure how different from the uniform distribution our
given distribution is.

EOD rate
In previous research in our lab (Jun et al., 2014), we investigated
the EOD rate of the weakly electric fish Gymnotus sp. at rest and
while locomoting; in particular, we found a strong increase in
EOD rate associated with initiation of movement, i.e. strong
acceleration. Here, we examined the EOD rate to determine

whether it also increased during sharp turns, i.e. times of strong
acceleration.

Jun et al. (2014) reported that an EOD rate increase typically
preceded a spontaneous movement by approximately 1.5 s. We thus
expanded the sharp turn periods to include the EOD rates 1.5 s
before and after a sharp turn in our analysis. The EOD rates during
the smooth swimming segments between the expanded sharp turn
periods were then used for comparison.

RESULTS
As in Jun et al. (2015), we present measures that differentiate
between early learning fish and late learning fish, effectively
presenting trajectory measures that vary with learning.

Effect of spatial learning on heading angle
As a first step in our analysis, we provide the box plots of the change
in head angle (Fig. 2). This effectively covers the statistics of IQR,
number of outliers (1.5 times the IQR away from the first or third
quartile), median and outlier threshold. The outliers are identified as
sharp turns.

The median remains relatively unchanged at zero, while the IQR
range is consistently greater for late versus early learning fish. The
number of outliers (sharp turns) is much greater for early learning
fish. We note that the size of the datasets between fish and between
learning status is very variable, and so a more appropriate statistic is
percentage outliers instead of number of outliers (Table 1). Note that
the differences between early and late learning in Table 1 are not
found when the outlier threshold for early learning fish is used for
late learning fish.

Intervals between sharp turns
For the early fish, we have found that the interval between sharp
turns follows an exponential distribution (Fig. 3), indicating that the
process may be random. Themean time interval between sharp turns
was 1.64, 1.30 and 1.36 s for fish A, B and C, respectively. Sharp
turns could occur within sensing distance from a landmark (<4 cm;
Jun et al., 2015) and therefore might be a response to sensory input
from the landmark. Alternatively, the sharp turns might occur in
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Fig. 2. Change in heading angle. For each fish (A, B and C), change in heading angle in early learning versus late learning. Change in heading angle was
computed as the difference between where the fish was facing 0.01 s ago and where it is facing now. Note that the interquartile range is consistently larger
for late learning fish than for early learning fish. Furthermore, the number of outliers in early learning fish is much higher than the number of outliers for late
learning fish. The outlier thresholds are indicated by bars.
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open water (>4 cm from a landmark) and therefore might be
generated by internal neural dynamics. For early learning and across
all three fish, we found 160 instances of sharp turns near landmarks
and 1612 instances of sharp turns in open water. We emphasize that,
in the latter case, there is no exogenous sensory input that might
have evoked the turn. Furthermore, at a level of 95% confidence,
fish A and C had no serial correlation at lag 1, and fish B had a weak
positive serial correlation (0.19). When replacing time by distance
travelled in between sharp turns, we obtained an exponential
distribution again and the serial correlation at lag 1 of fish A was
statistically not significant, whereas fish B and C had a very weak
positive serial correlation (0.14 for both). Average speed over these
intervals had a correlation at lag 1 of 0.65, 0.79 and 0.76 for fish A,
B and C, respectively. This indicates that the fish swam at a fairly
constant speed and explains the similarity of the distance and time
results. Overall, we conclude that the fish initiated sharp turns nearly
randomly and the exponential distribution of inter-turn intervals
suggest that they might be modelled as a Poisson process. We also
tried power law fits but found they were poor in comparison (Fig. 3).

EOD rate
We found no relationship between EOD rate and change in
direction. The mean EOD rate for intervals temporally close to and
including sharp turns (±1.5 s; see Materials and Methods) was 74.4,
73.9 and 72.5 pulses s−1 for fish A, B and C, respectively. The
intervals that were not identified as sharp turns and were not 1.5 s
away from a sharp turn (intervals of straight head motion) had
median EOD rates of 74.3, 72.7 and 72.6 pulses s−1 for fish A, B
and C, respectively. As the fish are known to increase their EOD rate
when near landmarks, we considered looking at open water only
(>4 cm away from the landmarks). When only looking at open water
swimming, EOD rates during sharp turns had means of 74.2, 72.8
and 72.3 pulses s−1 for fish A, B and C, respectively. During smooth
motion, the average EOD rate was 74.0, 72.9 and 72.8 pulses s−1 for
fish A, B and C, respectively. For the late fish, using the same
threshold to define outliers as early fish, sharp turns had EOD rate
with medians of 82.65, 77.34 and 76.4 pulses s−1 for fish A, B and
C, respectively. During smooth motion, the median EOD rates were
114.07, 76.77 and 76.8 pulses s−1 for fish A, B and C, respectively.
Jun et al. (2014) reported large increases in EOD rate (∼8 Hz) before
and during the spontaneous initiation of movement. In contrast,
there was clearly no significant difference in EOD rate between
smooth swimming and sharp turns.

Effects of spatial learning on heading angle error
The heading angle error is the difference between the current
direction the fish is heading and the direct direction towards the
food (see Materials and Methods). Our initial comparison of the

Table 1. Percentage outliers of change in heading angle

Fish Early Late

A 6.58% 0.57%
B 5.61% 1.69%
C 5.29% 1.56%

Note that early learning fish have consistently higher percentages than late
learning fish.

Ai

Inter-turn interval (s)

D
en

si
ty

1�10�1

1�10�2

1�10�3

D
en

si
ty

1�10�3

1�10�2

1�10�1

D
en

si
ty

1�10�3

1�10�2

1�10�1

D
en

si
ty

1�10�3

1�10�2

1�10�1

D
en

si
ty

1�10�3

1�10�2

1�10�1

D
en

si
ty

1�10�3

1�10�2

1�10�1

0 5 10 15
Inter-turn interval (s)

0 5 10 15

Bi Ci

Inter-turn interval (s)
0 5 10 15 20 25 30

Early
Late
Power law fit
Exponential fit

Aii

Inter-turn interval (s)
0 5 10 15

Bii

Inter-turn interval (s)
0 2 4 6 8 10 12

Cii

Inter-turn interval (s)
0 5 10 15 20 25

Fig. 3. Distribution of the interval between sharp turns in trajectories. Each distribution [(Ai–Ci) early and (Aii–Cii) late] is fitted with an exponential
distribution (blue) and a power law (Pareto with minimum value 0.01) distribution (brown) with parameters obtained via maximum likelihood estimation. The
exponential parameter was 0.60, 0.77 and 0.74 and the power law parameter was 1.25, 1.25 and 1.27 for fish A, B and C, respectively. Note that the fit of the
exponential is good (l2 distance 0.04, 0.05 and 0.05, for fish A, B and C, respectively). The fit of the power law distribution is acceptable (l2 distance 0.29,
0.33 and 0.32, for fish A, B and C, respectively). (A) Fish A, (B) fish B and (C) fish C.
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entire error distribution did not reveal any significant difference
between early versus late learning fish (not shown). Given that
the fish efficiently find food during late learning and heading
angle error from a landmark to food is reduced after learning (Jun
et al., 2015), we initially wondered whether the late fish that
knew where the food was initially employed an ‘exploration’
strategy until they decided on an ‘exploitation’ strategy (Sutton
and Barto, 2014), and, once they had estimated that they were
close to the food, turned to swim directly towards it. To test this
hypothesis, we divided each late trajectory into the first 50% and
the last 50%. We then computed their distributions (one for the
first 50%, and one for the last 50%). If the hypothesis was true, we
would see a strong bias centered around 0 for the second half
(when the fish goes straight to the food), and no bias in the first
half.

Our hypothesis was wrong. The first half of the late learning
trajectories had strong bias near 0, i.e. the fish were mostly headed
towards the food (Fig. 4Ai–Ci, blue). In contrast, early learning
trajectories were not biased to zero (Fig. 4Ai–Ci, green). The second
half was not biased towards the food in either late (blue) or early
(green) trials, i.e. the fish were headed more randomly with respect
to the food (Fig. 4Aii–Cii). When the entire trajectory was
examined, this difference was washed out.

We assessed these results statistically through the circular mean,
�R statistic and Rayleigh test of uniformity (Mardia and Jupp, 2000)
(Table S1) and found evidence consistent with the conclusions
drawn from Fig. 4. These results indicate a difference between the
first and second half of the trajectories. Particularly, we found some
differences in the Rayleigh test P-values that make the first half of
the late learning fish trajectories stand out from the second half and
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Fig. 4. Distribution of error in heading angle for the first (top) and last (bottom) 50% of each trajectory. Each trajectory has its distribution computed,
the density of which is average for all trajectories in a single fish and learning status (early or late) for (A) fish A, (B) fish B and (C) fish C. This shows both the
early learning trajectory distributions (in green) and the late learning trajectory distributions (in blue). On the radial axis, the (average) density of the
distribution. The black circular line indicates the expected uniform distribution. A linear plot of the same data is presented below the radial plot and the black
line indicates the uniform distribution. (Ai–Ci) The first 50% of each trajectory. Note the difference in distribution shape between early and late learning fish,
centered around 0 for late learning and uniform or peaked far from 0 for early learning. (Aii–Cii) The last 50% of each trajectory. Note the lack of difference in
distribution shape (both uniform) between early and late learning fish – both have random peaks not centered at 0.
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from the early learning trajectories. To a lesser extent, the �R for the
first half of the late learning fish differs from the second half and
from the early learning fish. These differences are not enough to be
statistically significant. However, only splitting the trajectories into
two results in large intervals of time. As a result, differences that are
more finely time-dependent could be washed out and go undetected
statistically. Thus, a finer-grained analysis is important for the
purposes of meaningful statistical tests.
We therefore extended this analysis to an analysis of the change in

heading error over time. We extracted ‘slices’ of trajectories. A slice
is a sub-trajectory for a particular interval of time. As we do not have
infinite data, we cannot take arbitrarily small slices. Nevertheless,
we want it fine enough that we see progress over time (over the slice
number). A balance between the two yields slices of 0.3 s
(approximately 1/20th of most trajectories). We can look at the
first 10 slices taken from late learning fish A as an example to see
how the distribution of heading direction error changes over time
(Fig. 5).
For the first five slices, the fish mostly heads towards the food,

with randomly occurring trajectories with a lesser number of large
heading angle errors that correspond to the loop structures seen in
Fig. 1B. The last five trajectories paint a very different picture. There
is no longer a clear high peak at 0; the heading angle error can have
multiple peaks far from 0 (slices 6, 7 and 10) or appear nearly
uniform (slices 8 and 9). In order to better understand this non-
intuitive finding, we plotted the fish locations for all of these trials
(Fig. 6A).
Here, we see that fish A on average appears to be moving towards

the food and that its closest location to the food diminishes in the
later slices. Combining the data illustrated in Figs 5 and 6 suggests
that the fish is initially oriented towards the food but, as it becomes
closer to food, its trajectories become more random and lose their

precise orientation. Finally, we analyzed the overall change in
trajectories for all three fish (Fig. 7).

Notice that the late learning distribution gradually converges to a
uniform distribution (Fig. 7B) as the fish approach the food (average
slope −0.021, one-sided t-test). This is not the case for early
learning (Fig. 7A), where there is no downward slope, indicating no
change in distribution (average slope −0.005, one sided t-test). This
is a strong finding, showing a clear difference between early and late
learning fish and reveals the unexpected finding that, after learning,
the fish are initially more oriented towards the food but search more
randomly when they near the food.

We considered the possibility that the fish were initially orienting
to olfactory or passive electrosensory signals emanating from the
food (Von der Emde and Bleckmann, 1998). Jun et al. (2015), using
a strong increase in EOD rate, determined that the passive electric
signal was detected at 4 cm from prey; the EOD rate increase did not
occur during probe trials. The initial distance to prey location was
far greater than 4 cm (87.3 cm) and was therefore unlikely to depend
on passive electrosensory signals (Jun et al., 2015). We checked the
probe trials when no food was present in order to determine whether
olfactory cues might play a role in the initial orientation towards
prey. We used two tests for this purpose. First, we found similar
results of initial orientation to prey as in Fig. 5 for fish A (N=4) and
fish C (N=3) but not fish B (N=4) (Fig. S1 illustrates this point for
fish A). Second, we analyzed the distance the fish traversed before it
reached the 4 cm passive electrosense detection distance. Because
of the low sample size (early max. N=6, late max. N=12, probe max.
N=4, per fish), we pooled all fish together to effectively triple the
sample size (early N=17, late N=36, probe N=11). Using these
pooled samples and for both median (Wilcoxon test) and mean (t-
test), we found that the early trials took longer to get to 4 cm to the
food than both the late and the probe trials. Meanwhile, the late and
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Fig. 5. Distributions of error in heading angle of slices 1 to 10 (0.3 s each slice) visibly going from a unimodal distribution with a peak at 0 to a
more uniform distribution lacking a single clear peak at 0. Late fish A trajectories were amalgamated (all trials were joined) to produce the slices of
distributions. Within the first 3 s of the trajectory, there is a change in the distribution of error in heading angle.
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probe trials were not statistically different. The results are shown in
Table 2. Because the tank was thoroughly cleaned before every
probe trial, we can conclude that the fish do not orient themselves
through a tuned olfactory sense, and instead use spatial information.

DISCUSSION
Jun et al. (2015) first analyzed spatial learning of gymnotiform fish
in the dark, i.e. when they only had their electrosense for identifying
landmarks and food, and presumably learned to go from landmarks
to food utilizing path integration via idiothetic cues (Jun et al., 2015;
Wallach et al., 2018). Here, we updated this analysis by focusing on
and comparing the trajectories taken during early versus late
learning. In early learning, the trajectories are very complex, with
stretches of relatively straight (low curvature) swimming interrupted
by many sharp turns (outliers) that result in a very different swim
direction (Fig. 2). The trajectories are also very different across
trials. This is not surprising given that the fish has no idea as to the

food location and is exploring its environment (Fig. 1A). In contrast,
shorter trajectories of the late learning trials are mostly smooth with
far fewer sharp turns (outliers in Fig. 2). The late trajectories are
surprising in two ways. First, they are typically not a minimum
energy straight route between home or a landmark and the food;
instead, they may take complicated routes often consisting of loops
that temporarily point away from the food (Fig. 1B). Second, the
routes are not at all stereotyped but greatly vary from trial to trial
(Fig. 1B). Given the great differences between early and late
learning trajectories, we discuss them separately.

Early learning trajectories
Foraging has been extensively studied under two different
conditions: (1) where cues (e.g. odorants) as to the food location
are sparsely and erratically distributed in the animal’s environment
and (2) where there are no local cues that might serve to guide the
animal’s search and food is sparsely distributed over a large area.
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Fig. 6. Fish locations per slice during trajectories in late learning. (A) For late fish A (as per Fig. 5), the gray cross indicates the food location, the blue
triangle indicates the average position of the fish for that slice of time and the red dot indicates the nearest point to the food among the sub-trajectories’
locations. The nearest point to the food from the slices in the figure occurs at slice 10, with a distance of 8 cm. Shortly after, in slice 12 (not shown), the
nearest distance goes under the threshold for food detection (<4 cm). (B) The average distance from food and the closest the fish came (nearest distance) to
the food for the trajectories in A (late learning fish A). As in A, blue triangles indicate the average and red circles indicate the nearest point. The fish
trajectories reach closer to the food in correspondence with the heading angle error becoming more uniform. (C) Fish B. (D) Fish C.
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Two prominent strategies for the first case are ‘infotaxis’
(Vergassola et al., 2007) and ‘energy constrained proportional
betting’ (Chen et al., 2020); both require continuous monitoring of
the relevant sensory cue. Clearly, these strategies would not be
applicable in our case, where there are no sensory cues available
when the fish is far from home or a landmark (Jun et al., 2015). In
the second case, a prominent theory suggests that foraging is a ‘Levy
flight’ – random walks with distances between successive locations
following a long-tailed power law distribution (Campeau et al.,
2022; Viswanathan et al., 1996). Searching in these cases is
typically over very long distances (Viswanathan et al., 1996). We
found that the intervals (time or distance) between sharp turns were
well described by an exponential distribution with only a poor fit by
a power law distribution. However, it should be noted that the tank
diameter used for the experiments was only 1.5 m (Jun et al.,
2013) and so longer intervals were effectively not possible. In the
wild, gymnotiform fish appear to forage over much larger areas
(Steinbach, 1970; Henninger et al., 2020). It will therefore be
important to study foraging of gymnotiform fish in the wild to
determine whether the distance intervals between successive

search sites also follow a putatively optimal power law
distribution.

Jun et al. (2014) have noted that the fish utilized in our study
made random swim starts. The underlying mechanisms for random
swim starts and sharp turns are likely different. The intervals
between random starts were lognormal with means ranging from 3.8
to 5.3 s, and thus longer than the mean of the exponential
distribution of sharp turn intervals (1.4 to 1.6 s). Furthermore,
there was no increase in EOD rate associated with sharp turns in
contrast with the strong increase associated with swim starts (Jun
et al., 2014). Melanson et al. (2017) proposed that the non-stationary
dynamics driving random swim starts were driven over long time
scales by the peptidergic hypothalamic neurons already known to be
important for vertebrate motor activity.

In contrast, a recent theoretical analysis (Recanatesi et al., 2021)
suggested that fast variable timing of behavior sequences could be
generated by reciprocally coupling a thalamic feedforward nucleus
with a cortical recurrent network to generate metastable attractors.
The gymnotiform thalamus and pallium includes circuitry (Giassi
et al., 2012a,b; Trinh et al., 2016; Elliot et al., 2016) and physiology
(Trinh et al., 2019; Elliot and Maler, 2015), consistent with the
Recanatesi et al. (2021) model. These pallial regions are already
believed to be responsible for spatial learning and navigation
(Fotowat et al., 2019; Wallach et al., 2018; Mazzitelli-Fuentes et al.,
2022). Pulse gymnotiform fish may therefore be a simple model for
investigating the neural bases of apparently random behavior over a
wide range of time scales.

Late learning trajectories
Trajectories after learning initially head towards the food location,
but, once near the site, the fish swims erratically (Figs 4–7).
Although the number of sharp turns is reduced (Fig. 2), the fish’s
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Fig. 7. Distance from the distribution of error in heading angle to uniform for slices of time (each slice is 0.3 s). (A) Early learning. The fish heading
direction errors are consistently high and roughly the same distance from uniform through all slices (range: 0.28–0.55, average slope: −0.005, not
significantly different from 0 with α=0.05, n=3). Light green, forest green and dark green correspond to fish A, B and C, respectively. (B) Late learning. The
heading direction error distribution starts off far from uniform, corresponding to the peaks seen in Fig. 4Ai–Ci and Fig. 5 slices 1 to 5. The distribution
gradually becomes closer to uniform, corresponding to the distributions of Fig. 4Aii–Cii and Fig. 5 slides 6 to 10. Light blue, blue-grey and dark blue
correspond to fish A, B and C, respectively (range: 0.14–0.42, average slope: −0.021, significantly different from 0 with α=0.05, n=3). It is important to note
that the early learning fish have fewer data points in their distributions because there were fewer early trajectories by definition. Thus, the distribution is
naturally further from the underlying distribution (presumably a uniform distribution) and the l2 distance from the uniform distribution increases as a result. The
late learning fish (12 trajectories for all fish) have twice the amount of data in each point, making it closer to the underlying distribution. Thus, the y-axis
values of early and late learning in this figure are not comparable. The important conclusion is that one is a decreasing function (late) whereas the other is
not (early).

Table 2. Time to 4 cm of the food and P-value of Wilcoxon test (for
median) and t-test (for average)

Average (s) Median (s)

P-value

Early Late Probe

123.88 47.68 Early 0.01395 0.02125
15.78 9.31 Late 0.000164 0.3018
24.53 19.41 Probe 0.03675 0.1051

The P-values for the Wilcoxon test are below the diagonal of the table and the
P-values for the t-test are above the diagonal. Early N=17, Late N=36, Probe
N=11.
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trajectories are rarely directly towards the food, but are still variable
and often looped (Fig. 1). This is surprising because the energy
expended to find food increases with trajectory length. We consider
two, not necessarily exclusive, views as to why the initial straight
heading for food is not maintained: (1) accumulation of path
integration error and (2) a mechanism to reduce predictability and
therefore predation.
The path integrator is dependent on noisy signals from multiple

sources including vestibular and proprioceptive afferents, and these
result in accumulation of error within the neural path integrator of a
wide range of taxa including mammals (McNaughton et al., 1996),
insects (Muller and Wehner, 2010) and shrimp (Patel and Cronin,
2020). Interestingly, in the shrimp, path integration error results in
loops in the trajectory similar to those illustrated in Fig. 1. Our data
are therefore consistent with Muller and Wehner (2010): in the
absence of error correction by landmarks, the fish become
increasingly uncertain as to the food location and switch to a
random search strategy (Wallach et al., 2018).
A second hypothesis is that the trajectory variability serves to

reduce predictability. Jun et al. (2014) hypothesized that the reason
for the fish’s random swim starts was to reduce predictability and
therefore predation risk. By the same reasoning, we hypothesized
that predictable direct routes to a food source would also increase
predation risk and that this is mitigated by the unpredictable sharp
turns within even late trajectories.
In either case, the vestibular system provides input heading

direction via its responses to rotations in the horizontal plane and is
therefore essential for path integration (Wiener et al., 1995).
Vestibular afferents code best for frequencies <20 Hz (Sadeghi
et al., 2007), and we assume that smooth turning motions are well
encoded while the sharp turns may produce higher frequency
signals that are not faithfully encoded. We hypothesize that the
mostly smooth but variable trajectories are a search mechanism
compensating for path integration error while the sharp turns may
act to reduce predictability and predation risks.

Conclusions
Weakly electric fish learn to find food in the dark primarily by the
use of path integration (Engelmann et al., 2021). The smooth
learning curves reported by Jun et al. (2015) suggested that this
was a simple process. Our more detailed analyses of the changes in
trajectories during learning demonstrates that, even in a fish,
spatial learning is far from simple and that factors other than
minimizing trajectory length and duration play a role in the
learning process.
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