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ABSTRACT
In this Commentary, we shed light on the use of invertebrates as model
organisms for understanding the causal and conserved mechanisms of
learning and memory. We provide a condensed chronicle of the
contribution offered by mollusks to the studies on how and where the
nervous system encodes and stores memory and describe the rich
cognitive capabilities of some insect species, including attention and
concept learning.We also discuss the use of planarians for investigating
the dynamics ofmemory during brain regeneration and highlight the role
of stressful stimuli in forming memories. Furthermore, we focus on the
increasing evidence that invertebrates display some forms of emotions,
which provides new opportunities for unveiling the neural andmolecular
mechanisms underlying the complex interaction between stress,
emotions and cognition. In doing so, we highlight experimental
challenges and suggest future directions that we expect the field to
take in the coming years, particularly regarding what we, as humans,
need to know for preventing and/or delaying memory loss.

This article has an associated ECR Spotlight interview with Veronica
Rivi.
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The contributions of invertebrates to comparative
neuroscience
What do the experiments that revealed the cellular components of the
brain (Ramón y Cajal, 1894; Garcia-Lopez et al., 2010), described the
mechanisms of nerve impulse transmission (Castellucci and Kandel,
1974; Hodgkin and Huxley, 1952; Katz, 1949, 2016), led to the
identification of the neurotransmitter gamma-aminobutyric acid
(Florey, 1991), and led to the characterization of the molecular basis
of learning and memory have in common?
They have all marked the history of neuroscience, have earned

numerous Nobel Prizes, and, not least, were all conducted in
invertebrate organisms.
Although invertebrates possess small nervous systems, consisting

of a limited number of neurons or ganglia, they are not limited in
their ability to produce sophisticated and complex behaviors or even
high-order forms of learning (see Glossary) (Preuss, 1995). Indeed,
many invertebrates possess large neurons which facilitated
microelectrode recordings and allowed the characterization of the

neural and molecular basis of learning and memory in a comparative
context (Kandel and Kupfermann, 1970).

The evolutionary process that prompted the diversity among
species also promoted the conservation of numerous key
physiological processes that are well preserved across taxa
(Pembroke et al., 2021). By virtue of this, although invertebrates
possess small brains and are phylogenetically distant frommammals,
they have been and still are of fundamental importance in
understanding basic neuroscience and in accelerating the pace at
which mammalian studies can be translated to humans (Fig. 1) (Rivi
et al., 2020). While maintaining the simple organization of the
invertebrate nervous system, the behavioral repertoires and cognitive
abilities of mollusks and arthropods have been shown to be highly
comparable to those of mammals (Benjamin et al., 1985; Carew
et al., 1981; Crow and Alkon, 1978, 1980; Lederhendler and Alkon,
1987; Strausfeld, 2012). This unique combination of simple nervous
systems and complex behaviors provided a major contribution to the
characterization of the conserved mechanisms by which memory is
formed and stored. Thus, the results obtained in invertebrates have
been translated first to mammalian models and then to humans.

Note that this Commentary is not intended to be an exhaustive
review of the invertebrate model systems that have been used to
study the behavioral, cellular and molecular mechanisms of learning
and memory. Owing to space limitations, we have restricted our
discussion to selected mollusks and insects (especially flies and
bees) as well as crayfish and planaria, but other extremely
innovative work on learning and memory mechanisms using
models such as Caenorhabditis elegans and cephalopod mollusks
is worth mentioning and has been recently reviewed by Rahmani
and Chew (2021) and Schnell et al. (2021).

Groundbreaking theories on memory formation and storage
The ability to form memories has profound effects on an organism’s
life and survival (Nairne and Pandeirada, 2016). The knowledge of
past experiences allows animals to plastically respond to present
challenges and thus promote adaptation to ever-changing
environments (Bisaz et al., 2014). Given the importance of
memory, many attempts have been made to characterize the
cellular and molecular processes involved in cognitive functions
and to localize the physical trace of a memory, which is known as an
engram (Dudai and Eisenberg, 2004).

The idea that memory is stored as lasting changes in the brain dates
back at least to Plato and Aristotle’s time (∼2400 years ago), but its
scientific articulation emerged in 1894 when Cajal first proposed that
memory is stored as an anatomical change in the strength of neuronal
connections (Bailey et al., 2000). For the following 50 years, little
evidence was gathered to support this idea, until Hebb in 1949
proposed a model that memory is established through changes in the
number and strength of synaptic connections between neurons (Hebb,
1949). This theory paved the way for studies performed in the 1960s
and early 1970s aimed at investigating how changes in behavior
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resulting from training procedures reflect changes in the activity of
specific neurons.

Discovering memory with the help of Aplysia californica
Whereas the majority of the scientific community was focused on
characterizing the memory-related processes in rodent models,
brilliant and revolutionary researchers such as Tauc and Kandel
made the radical decision to focus their research on an invertebrate
model, the sea slug Aplysia californica. They believed – correctly –
that this model would make the study of the fundamental and
conserved neuronal and molecular events associated with memory
and learning easier. In the chapter ‘Searching for an ideal system
to study memory’ of his 2007 book, Kandel (2007) defines
his approach as ‘reductionist’, aspiring to replicate Pavlov’s
conditioning procedures in A. californica. Faria (2020) explains
how, by taking advantage of the direct link between synaptic
plasticity and behavior, Kandel characterized the neuronal networks
and molecular cascades of learning and memory. These aspirations
were later translated into results that earned Kandel, Carlsson and
Greengard the Nobel Prize in Physiology or Medicine for their
discoveries on the conserved mechanisms of synaptic plasticity
(Carew et al., 1971; Kandel et al., 2014).

Over the past decades, this model contributed to newevidence about
learning and memory processes and their alterations in pathological
conditions (Abrams, 2012; Hawkins, 2013). For example, the
molecular mechanisms that mediate the attention-like process in
Aplysia have proved to be highly conserved, thus helping in
characterization of attentional processes in mammals (Hawkins,
2013). Aplysia also provides a unique model to examine the effects
of age on learning, memory and arousal. In fact, it has been
demonstrated in Aplysia that aging: (1) impairs the long-term retention
of habituation (see Glossary), (2) prevents the acquisition of
sensitization in the siphon withdrawal reflex (see Glossary) and (3)
reduces arousal, reflecting the age-dependent alterations of behavioral
plasticity reported in vertebrates, including Homo sapiens (Bailey
et al., 1983). Furthermore, as the molecular mechanisms underlying
the effects of age on behavior share common features across phyla, the
short lifespan of Aplysia and the simplicity of its central nervous
system (CNS), represent important advantages for neuro-aging studies
(Kron et al., 2020).

Inspired and encouraged by the early results obtained using A.
californica, multitudes of neuroscientists all around the world
exploited the ‘simpler’ nervous systems of invertebrates to define the
synaptic and integrative properties of neural circuits that control
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invertebrates

to comparative
neuroscience
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Discovering memory

Characterization of the conserved neuronal
networks and molecular cascades of learning
and memory in sea slugs 

Investigating higher forms of learning and memory
•  Concept learning in honeybees 
•  Attentional modulation in bumblebees and fruit flies
•  Behavioral and microbiome studies in fruit flies
•  Olfactory learning in crickets
•  Effects of toxins on cognition in mosquitos
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Procambarus clarkii
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Investigating the effects of drugs
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Use of the pond snails’ unipolar neurons to
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Study of the effects of cannabinoids, fluoxetine, 
methamphetamine, cocaine, propranolol, 
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Fig. 1. Conceptual summary figure of the key contributions of invertebrates to the field of memory and learning.
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behaviors and they are conditioned (Nader, 2015). Subsequently, an
increasing number of invertebrate models entered the learning and
memory field.

Searching for theengramat (pond) snail’space: the powerful
model system Lymnaea stagnalis
In 1950, Lashley published ‘In Search of the Engram’, a famous
document in which he summarized his theories on memory and the
brain (Bruce, 2001; Dudai and Eisenberg, 2004). Since that time,

many questions remain unsolved and neuroscientists are still
searching for the engram, the site of memory storage.

Despite the unquestionable importance of synaptic plasticity for
brain function, the exact role of cellular and connectivity
modifications in learning processes remains obscure (Humeau and
Choquet, 2019). Moreover, despite recent progress in developing
techniques for identifying and manipulating engrams at the
neuronal level, the neurobiological underpinnings of memory
retrieval remain almost unexplored (Frankland et al., 2019).

Given these unresolved questions, molluscan unipolar neurons
represent a unique platform to investigate where memory is stored. In
fact, their primary neurites, which are the site where most of the
synaptic interactions occur, can survive for long periods without their
soma and still remain competent to synthesize new proteins (Lukowiak
et al., 2003; Scheibenstock et al., 2002). This finding allowed
researchers to distinguish between the sites (neurites or soma) in which
memories are processed (Kandel, 1979; Lukowiak et al., 2003).
Whereas intermediate term memory (ITM) is only dependent on new
protein synthesis, long-term memory (LTM) depends on both altered
gene activity and new protein synthesis (Sakakibara, 2008). Thus, by
ablating the soma, it has been possible to demonstrate that memories
are consolidated and stored in the neurons’ soma (Lukowiak et al.,
2000; Sangha et al., 2003; Scheibenstock et al., 2002). Experiments
like these have been conducted extensively in another molluscan
organism: the great pond snail Lymnaea stagnalis.The results obtained
were extraordinary, making it a better model than its ‘cousin’ Aplysia
for the search for the engram. The reasons for this are threefold. First,
the neural circuits that mediate interesting and tractable behavior, such
as feeding and aerial respiration, have been characterized (Benjamin,
1983, 2012; Lukowiak et al., 2006; McComb et al., 2003; Spencer
et al., 1999; Straub et al., 2004; Syed et al., 1992a,b). Second, these
behaviors can be classically and operantly conditioned (see Glossary)
and, depending on the training procedure used, both ITMs and LTMs
can be formed (Batabyal et al., 2021; Benatti et al., 2020, 2022; Kawai
et al., 2004; Kemenes and Benjamin, 1994; Lukowiak et al., 1996;
Rivi et al., 2020, 2021a,b, 2022b,c,d,e). Third, for aerial respiration, a
single neuron, RPeD1 (right pedal dorsal 1), has proven to be a
sufficient and necessary site for memory formation, consolidation,
reconsolidation and extinction (Sangha et al., 2003; Scheibenstock
et al., 2002). This is, so far, the only instance in both invertebrates and
vertebrates where a single neuron meets both the sufficiency and
necessity criteria for mediating different hierarchical aspects of
memory. In fact, if the soma of RPeD1 is ablated and the primary
neurite is left behind (allowing the organism to perform aerial
respiration), learning occurs and ITMs are formed, but LTMs can no
longer be demonstrated (Scheibenstock et al., 2002). However, if the
soma of RPeD1 is ablated after LTM consolidation, memory is still
present, suggesting that the soma of RPeD1 is not needed for the
retention of LTMs (Scheibenstock et al., 2002). These results have laid
the foundation for future genomic and proteomic studies aimed at
elucidating the molecular events occurring in this neuron, giving a
significant contribution to defining the engram. Experiments such as
these cannot be carried out in mammal preparations, as the disruption
of the neuronal soma usually causes the death of the entire cell.

A connectome and analysis of the adult Drosophila
central brain
Another important challenge for neuroscience is the characterization
of the neural circuits responsible for animal learning and behavior.
The electron microscopy techniques available today, by enabling
high-quality and multi-scale neuronal imaging, significantly
advanced the understanding of brain-wide connectivity (Li et al.,

Glossary
Classical conditioning
Also known as ‘Pavlovian conditioning’, this form of learning consists of the
temporal-contingent association between two stimuli: an initially neutral
stimulus (the conditional stimulus, CS) and a biologically relevant stimulus
(the unconditional stimulus, US). By the temporal and forward pairing of the
CS with the US, the CS evokes a response that is similar to the response
(i.e. behavior) that the US evoked (Bitterman, 2006; Pavlov, 1997).
Cognitive/behavioral flexibility
An organism’s ability to appropriately and efficiently adjust its behavior
according to a changing environment; most commonly measured with
task switching and set-shifting tasks (Armbruster et al., 2012).
Conditioned taste aversion (CTA)
Learned association between the taste of a particular food and a
negative stimulus such that the food is considered to be the cause of the
aversive systemic effect. As a result of the learned association, there is a
hedonic shift from positive to negative in the preference of that specific
taste (Schier et al., 2019).
Founder effects
The reduction in genomic variability that occurs when a small group of
individuals becomes separated from a larger population. Over time, the
resulting new subpopulation will have genotypes and physical traits
resembling the initial small, separated group and these may be very
different from the original larger population (National Human Genome
Research Institute).
Genetic drift
Mechanism of evolution characterized by random fluctuations in the
frequency of a particular version of a gene (allele) in a population.
Although it primarily affects small, isolated populations, the effects of
genetic drift can be strong, sometimes causing traits to become
overwhelmingly frequent or to disappear from a population (National
Human Genome Research Institute).
Habituation
Learned decreased responsiveness to a stimulus with repeated
presentation and is often adaptive in that it makes it less likely that
individuals will respond to harmless stimuli. The counterpart to
habituation is sensitization (see below) (Blumstein, 2016).
Higher forms of learning
Cognitive abilities that extend beyond ‘simple’ associative learning.
Operant conditioning
Form of learning that takes place through rewards (i.e. positive
reinforcement) and/or punishments (i.e. negative reinforcement) for
different behavioral patterns. The main basic principle of this form of
learning is the association between an individual’s behavior and the
response or consequence to that particular behavior.
Sensitization
The increased responsiveness to a stimulus with repeated presentation
(Blumstein, 2016).
Siphon withdrawal reflex
A behavioral paradigm developed by Kandel and colleagues, using a
light tactile stimulus to the siphon as a conditioned stimulus (CS), which
produces weak siphon and gill withdrawal, and a strong electric shock to
the tail as the unconditioned stimulus (US), which produces a massive
withdrawal reflex. The specific temporal pairing of the CS and US
endows the CS with the ability to trigger enhanced withdrawal of both the
siphon and the gill (Carew et al., 1981, 1983; Hawkins et al., 1989).
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2020) and showed that the learned changes in behavior following
conditioning are the result of changes in connection strength between
neurons across multiple circuits (Abraham et al., 2019). Such studies
aim to generate a complete ‘map’ of the chemical synapses between
all neurons in order to study the effects of the perturbation of single
cells on behavior and physiology (Josselyn and Frankland, 2018;
Sehgal et al., 2018). However, the development of a comprehensive
understanding of these circuits at a single neuronal level cannot be
easily performed in mammals because of the complexity of their
brains and behaviors (Eichler et al., 2017; Li et al., 2020).
On the other hand, the fruit fly Drosophila melanogaster has

proved to be a leading candidate to study the comprehensive
structure and function of the brain, and the mechanistic basis of
learning, memory formation and complex behaviors (Scheffer and
Meinertzhagen, 2021). This is, in part, due to the simplicity of its
CNS (Raji and Potter, 2021). Furthermore, a century of work on fly
genetics makes manipulation of its ‘small’ brain easier than in any
other animal species (Sokolowski, 2001).
To date, scientists are on their way to compiling a connectome (i.e.

a map of all neurons and their chemical synapses) of the mushroom
body ofD. melanogaster (Eichler et al., 2017). The mushroom body
is a higher-order parallel fiber system that is essential for flies to form
and retain associations between stimuli and reinforcement (Eichler
et al., 2017). Its conserved neuronal architecture and important role
in learning and memory (Devineni and Scaplen, 2022; Shinomiya
et al., 2022; Simpson, 2009) allowed the reconstruction of a circuit
map of the mushroom body. This map will guide future comparative
studies aiming to provide a functional understanding of how flies
learn, remember and forget. When, in 1850, Dujardin first described
mushroom bodies of insects and compared them with the vertebrate
cerebral cortex, he could hardly have imagined that nearly 150 years
later it would be shown that these structures are indeed involved in
mediating conserved cognitive functions or that 170 years later the
study of connectomes would be established.

Investigating the memory-altering effects of drugs and
compounds
The contribution made by invertebrates extends beyond the mere
characterization of the ‘where’, ‘how’ and ‘when’ of memory
formation, consolidation and loss. The applications of these models,
in fact, extend on several fronts. For example, aquatic mollusks with
their open circulatory systems allow the use of membrane-permeant
drugs and compounds that can be easily absorbed. This has helped to
unravel the complexity of various signaling pathways and provide new
insights into how drugs andmolecules canmodulate different neuronal
functions and behaviors (Fodor et al., 2020a,b; Rivi et al., 2020). In the
past decades, many studies have demonstrated the memory-enhancing
or -impairing effects induced by the exposure of organisms to drugs
and compounds (Gho and Ganetzky, 1992; Monleón et al., 2008;
Nakai et al., 2022; Søvik et al., 2018). In this context, L. stagnalis has
been recognized as a useful organism to examine the effects of drugs
such as cannabinoids, fluoxetine, methamphetamine, cocaine and
propranolol as well as bioactive compounds, such as flavonoids, on
learning and memory (Batabyal and Lukowiak, 2021; Benatti et al.,
2017; Carter et al., 2006; Fernell et al., 2016; Il-Han et al., 2010; Ito
et al., 2014; Kagan et al., 2022; Kennedy et al., 2010; Rivi et al., 2021a,
2022a; Swinton et al., 2018, 2020, 2021).
Furthermore, L. stagnalis has been used to study the effects of

amyloid-β (Aβ) peptides on the snails’ ability to form LTMs (Ford
et al., 2015, 2017). Aβ peptides, in fact, are implicated in memory
loss, neuronal impairment and neurodegeneration in Alzheimer’s
disease (Harrington, 2012) and Aβ1–42 oligomers have been

identified as toxic fragments that likely affect LTM through synaptic
plasticity pathways (Ford et al., 2015, 2017). These findings added
an important piece to the puzzle for the global understanding of
neurophysiological processes underlying aging and memory
decline (Fodor et al., 2021).

The cognitive richness of insect behaviors and their higher
forms of learning and memory
Another very important taxon for the study of memory and learning
is insects. Over the past few years, several studies have described the
numerous ways in which insects have contributed to answering
outstanding questions related to complex behaviors. For example,
the honeybee (Apis mellifera) has been critically important for
characterization of circadian rhythms (Rubin et al., 2006); the worm
Caenorhabditis elegans, the planarian Dugesia japonica and the
tussock moth (Eloria noyesi) have been adopted for addiction
research (Søvik and Barron, 2013); lobsters (Homarus americanus)
and crickets (Gryllus bimaculatus) can be used for studying
aggressive behaviors (Briones-Fourzán et al., 2015); and many
insect species provide unique systems to investigate how early-life
experience alters the brain and behavior (Westwick and Rittschof,
2021). Research on insects has revealed the existence of a variety of
cognitive phenomena and higher forms of learning and memory
(see Glossary) that were previously thought to be restricted to
vertebrates and, sometimes, only to humans. We provide examples
of these here.

Concept learning
Honeybees can rapidly master two abstract concepts simultaneously
using spatial relationships (above/below and right/left) and then
transfer their choices to unknown stimuli that offer the best match in
terms of dual-concept availability (Avargues̀-Weber et al., 2012).

Attentional modulation
Studies on bumblebee (Bombus terrestris) and honeybee color
learning provided the first evidence of attentional processes in
insects and demonstrated how these complex mechanisms can be
modulated by experience (Dyer and Garcia, 2014; Gumbert, 2000).
These animals, in fact, can be trained to distinguish between a
rewarded and a non-rewarded color as well as between target and
distractor stimuli (Menzel and Giurfa, 2001). A recent study in
D. melanogaster demonstrated that, in the presence of competing
percepts, attention can be switched from one attentional state to
another one. This phenomenon – known as ‘attentional rivalry’ –
seems to be evolutionarily conserved. As the slowing of rivalry rate
is associated with heritable psychiatric disorders, such as bipolar
disorder, perceptual rivalry in flies represents a powerful model for
investigating the genetic and molecular influences on rivalry rate
and may even shed light on human cognitive and behavioral
dysfunction (Miller et al., 2012).

Furthermore, taking advantage of the tractability of
D. melanogaster in both behavioral and microbiome studies
(Wong et al., 2014), Silva et al. (2021) recently tested how the
elimination of microorganisms affects the organism’s behavior. The
study demonstrated that microbiologically sterile (axenic) flies had a
moderate reduction in memory performance. Moreover, axenic flies
showed a tendency to sleep longer and had reduced sleep rebound
after sleep deprivation (Silva et al., 2021).

As growing evidence suggests, neural circuits conserved
between the D. melanogaster and mammalian brain control
not only wakefulness and activity but also many aspects of
interactions between organisms and their gut microbiome (Cryan
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et al., 2019; Ezenwa et al., 2012). Thus, this model organism
offers a great opportunity to elucidate the mechanisms underlying
microbiome-dependent traits, opening a new avenue for
translational studies.

Olfactory learning
Shifting from flies to crickets (Gryllus bimaculatus), Matsumoto
and Mizunami (2005) demonstrated that these organisms possess
highly developed olfactory learning capabilities, which are
characterized by fast acquisition, long retention and easy memory
recall. Additional studies showed that this form of learning was
established early during the evolution of hemimetabolous insects,
representing a valid tool for new insights into the evolution of
neuronal systems subserving olfactory learning in both vertebrates
and invertebrates (Taylor et al., 2020).

Effect of toxins on cognition
Not least, insects can be used as models for investigating the effects
of herbicides on cognitive functions (Aloizou et al., 2020). One of
the most widespread herbicides in the world is glyphosate N-
(phosphonomethyl)-glycine (Ait-Bali et al., 2020). A decline in
learning and navigation abilities has been observed in honeybees
fed with concentrations of glyphosate similar to those found in the
environment (Bara et al., 2014). Moreover, in the mosquitoes Aedes
aegypti and Aedes albopictus, exposure to this herbicide altered
larval development time and sex ratio, as well as the expression of
genes conferring resistance to insecticides (Bara et al., 2014). In
2018, Balgan, Lazzari and Guerreri showed that the exposure of
A. aegypti larvae to a field-realistic dose of glyphosate had
deleterious effects on habituation learning (Baglan et al., 2018).
This study opened the way for future ecotoxicological studies using
mosquito larvae as a bio-indicator to evaluate the impact of
herbicides, pollutants and chemical compounds on cognition.
Further examples of cognitive phenomena seen in insects include

numerical cognition (Pahl et al., 2013), categorization of stimuli
(Benard et al., 2006), cognitive/behavioral flexibility (Loukola
et al., 2017; see Glossary), social learning and cultural transmission
(Alem et al., 2016).

Flatworms: masters of neuro-regeneration and much more
Planarians have recently become important model organisms in
developmental and regenerative biology (Brown and Pearson, 2017).
Their remarkable regenerative capacities – driven by an adult stem
cell population – make them valid tools for investigating the
molecular mechanisms behind neural repair and patterning.
Furthermore, because of their rich behavioral repertoires and
learning abilities, planarians are a potential tool for elucidating the
dynamics of memory during brain regeneration. In 2013, Shomrat
and Levin developed a system for investigating the dynamics of
memory in a regenerating planarian’s nervous system. For this
purpose, they developed a computerized behavioral protocol to train
flatworms in an environmental familiarization paradigm. Asmemory
persisted for at least 14 days – a sufficiently long time for the nervous
system to regenerate – they also demonstrated that trained,
decapitated planarians exhibit memory retrieval after regenerating a
new head (Shomrat and Levin, 2013). This study not only revealed
LTM in planarians but also its persistence through head regeneration.
The high tractability of this model system may shed light on the
interface between body patterning and stored memories.
Furthermore, future studies on these organisms may provide a great
contribution to improving stem cell-derived treatments of
degenerative brain disorders in human adults.

What can invertebrates teach us about a stressful and
emotional world?
The studies on learning and memory in invertebrates find
applications in our everyday life. We all live in a stressful world.
Research over the last 40 years defined stress and the hormones and
neurotransmitters released during and after a stressful event as major
modulators of human learning and memory (Joëls et al., 2006;
Vogel and Schwabe, 2016). Here, we define stress as a state that
requires physiological and/or behavioral readjustment or
modification to maintain the well-being of the organism
(Lukowiak et al., 2014). The importance of invertebrate studies on
stress relies on the fact that consistently with vertebrates, stress can
alter adaptive behaviors, thereby either enhancing or diminishing
learning and memory formation and/or recall.

As exemplified by the Yerkes–Dodson Law, too much or too little
stress impedes LTM formation, while ‘just the right amount’ of stress
enhances LTM (Teigen, 1994). Because LTM formation requires
‘neuronal cost’ (in terms of altered gene activity and new protein
synthesis), organisms invest energy only for ‘relevant’ events. This
relevancy is in part determined by the level of stress perceived.
However, the same stimulus may be perceived as a stressor for one
organism but not for another, or only at certain times and not at others
in the same organism. Furthermore, populations or strains within a
species may differ in their perception of, or response to, environmental
stressors, showing – in turn – different adaptive behaviors and
memory-forming potential (Lukowiak et al., 2014; Rivi et al., 2022f).
Because stress has a broad definition, different stressors may have
different biological consequences and, sometimes, opposite effects:
some stressors block LTM formation, whereas others enhance it. This
complex scenario is further complicated when multiple stressors are
encountered. Although the exposure to different stressors may result in
the same behavioral memory phenotype (i.e. memory enhancement or
impairment), it is difficult to predict what the outcome will be
regarding memory formation when a combination of stressors interact
(Dalesman et al., 2013; Lukowiak et al., 2014). Thus, how
combinations of stressors act is an emergent (i.e. basically
unpredictable) property of how organisms perceive the stressors
(Dalesman et al., 2013).

Given the complexity of vertebrate brains and behaviors, it is not
too surprising that studies conducted in these models have led to
sometimes contradictory results. Thus, studies using invertebrates
may help researchers to decipher how stress affects memory at the
behavioral, neuronal and molecular levels (Aonuma et al., 2018;
Batabyal et al., 2022; Dalesman et al., 2013; Ito et al., 2015, 2017;
Neckameyer and Nieto-Romero, 2015; Ottaviani and Franceschi,
1996; Rivi et al., 2022b; Soravia et al., 2021). For example, it has
been demonstrated that different stress states resulting from different
durations of food deprivation alter the ability of L. stagnalis to
exhibit LTM (Ito et al., 2015). In particular, snails deprived of food
for 1 day (a modest level of stress) before aversive classical
conditioning (see Glossary) show optimal conditioned taste
aversion (CTA; see Glossary) and LTM, whereas those starved for
5 days (high level of stress) before training do not show the memory
phenotype. This is because severe food deprivation blocks the
snails’ ability to express memory, which is formed but overpowered
by severe hunger (Ito et al., 2015). This study demonstrated that
CTA-LTM is both dependent on the level of stress and the context in
which memory is formed. In fact, CTA-LTM memory expression
occurs only if severely food-deprived snails are given ad libitum
access to food for 7 days after training and are tested for memory
recall after 1 day of starvation, which recreates the context in which
they were trained (Ito et al., 2017).
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Stress not only affects learning and memory but is also strongly
associated with emotions. The link between cognitive function,
stress and emotional states in humans has been largely demonstrated
(Tyng et al., 2017). However, invertebrate studies in this field are
only in their very early stages. Strange as it may seem, invertebrates
exhibit various cognitive, behavioral and physiological traits that
indicate internal states evocative of what we consider emotions.
Emotions are defined as transient central states triggered by
environmental stimuli resulting from an integration of subjective
experiences, cognitive evaluation, behavior, neurophysiology and
motivation (Anderson and Adolphs, 2014). For example, fear is a
motivational state aroused by specific stimuli that give rise to
defensive behavior or escape, whereas anxiety is a fear-related
negative emotion, induced by a threat/aversive stressor to wellbeing
or survival, either actual or potential (Steimer, 2002). In 2014, by
using a sub-aquatic dark-light plus maze (a modified version of the
famous plus-maze apparatus used for studying anxiety in rodents,
consisting of light and dark arms), Fossat and coworkers studied
stress-induced anxiety-related behaviors in crayfish (Procambarus
clarkii). The exposure of animals to electric shocks before the maze
test severely decreased exploratory behavior and increased light
avoidance, a reaction strikingly similar to that observed in
vertebrates (Fossat et al., 2014). These results not only emphasize
the ability of an invertebrate model to exhibit a state that is like a
mammalian emotion but may also have implications for learning
and memory research. In fact, fear, anxiety and stress are inter-
related in memory loss and cognitive decline in mammals (Sinoff
and Werner, 2003).
Another important aspect that makes invertebrates valid models

to study the intricate relationship between emotions, stress and
cognition is that some physiological traits of stress and emotions
described in vertebrates, such as increased heart and ventilation rate,
also occur in invertebrates (Even et al., 2012; Ložek et al., 2019; Orr
et al., 2007; Renwrantz and Spielvogel, 2011). For example, one of
the CTA training procedures characterized in L. stagnalis used a
conditional stimulus that elicits the feeding behavior (Benjamin and
Kemenes, 2010) paired with an aversive unconditional stimulus that
induces the whole-body withdrawal response and inhibits feeding
(Ito et al., 1999; Sadamoto et al., 2010). Kita and colleagues (2011)
demonstrated that after training and memory formation, the
appetitive stimulus no longer elicited feeding, but increased the
heart rate, inducing a response that was similar to fear in mammals
(Kita et al., 2011; Steimer, 2002).
Furthermore, the high level of conservation of neurochemicals

across taxa may be useful to the study of stress, emotions, learning
and memory, and their interactions in invertebrates. The role
of biogenic amines in the regulation of all these processes has
been largely demonstrated in mammals (Purves et al., 2001).
However, invertebrate nervous systems contain corresponding
biogenic amines that are structurally and functionally similar
to mammalian neurotransmitters, neuromodulators and hormones
(D’Aniello et al., 2020). For example, training pond snails in
the presence of their predator effluent enhances LTM formation
and allows the memory to be recalled under a broader range
of challenges (Dalesman et al., 2006; Forest et al., 2016). This
stressor-mediated memory enhancement is prevented by exposure to
the serotonin blockers mianserin and methysergide, suggesting
a serotonergic modulation activated by risk perception, which results
in enhanced memory formation (Forest et al., 2016). These data are
consistent with previous studies in humans correlating increased
serotonin levels with enhanced responses to anxiety-related stimuli
and memory consolidation (Meneses, 2015; Wong et al., 2005).

These results may pave the way for future investigations aimed at
unveiling the conserved core mechanisms of the intricate
relationship between stress, emotion and cognitive function
among a diversity of species and model animal systems.

What’s next? Future perspectives
As reported in this brief commentary, the use of invertebrates has
significantly contributed to the characterization of the behavioral,
neuronal and molecular mechanisms of memory formation,
consolidation, reconsolidation and extinction. In addition,
invertebrates can also be used to study the mechanisms through
which some bioactive compounds (i.e. flavonoids), drugs (i.e.
antidepressants, drugs of abuse, anti-inflammatory drugs, etc.),
contexts and stressors affect (i.e. impair or enhance) memory.

We strongly believe that the use of invertebrates in applied
neuroscience is only just beginning and that these organisms will
provide a major contribution to answering the unsolved questions in
neuroscience, revealing highly conserved characteristics between
invertebrates and vertebrates, including humans.

Comparative studies for investigating the evolution of the
neuronal connectomes
The study of the connectome in insects and mollusks will provide
important comparative information on how some neuronal
connections have been maintained during the evolution despite
the immense diversity in brain size and complexity across taxa. For
the advancement of research in the field of neuroscience in the near
future, more emphasis should be given to studies conducted using
wild animals (Gibbs et al., 1997; Greif and Yovel, 2019; Kagan and
Lukowiak, 2019; Masek et al., 2014; Swinton et al., 2021). In fact,
as laboratory-inbred colonies tend to be subject to founder effects
and genetic drift (see Glossary), they may not reflect the full range
of behavioral responses and cognitive functions of natural
populations (Brekke et al., 2018). We strongly believe – in
accordance with numerous studies from rodents – that the human
physiological and pathological processes related to memory and
learning conditions are far closer to that of wild animals than to
those of inbred ones (Festing, 1976; Rivi et al., 2022b; Tuttle et al.,
2018).

Invertebrates as valid tools for linking the ‘why’ and ‘how’ of
aging and memory loss
Despite the extensive efforts in biomedical research, many aspects
of neuro-aging are still not fully understood. Invertebrates such as
mollusks (e.g. pond snails) and insects (e.g. flies) offer great
advantages, including the accessibility and simplicity of their
nervous system, which may contribute to the global understanding
of neurophysiological processes underlying aging and memory
decline at the genomic, neuronal and behavioral level (Fodor et al.,
2021). For example, several relevant gero-protectors (i.e. molecules
involved in protecting against aging) have been identified in
Lymnaea, including gelsolin, presenilin, huntingtin, Parkinson’s
disease protein 7/protein deglycase DJ-1 and amyloid precursor
protein (Fodor et al., 2021). These results strongly encourage
future studies aimed at investigating the molecular, cellular and
circuit mechanisms underlying the neurophysiological and
neuropathological bases of aging and its effect on learning and
memory abilities.

Gut microbiome and memory differences across taxa
There has been a growing interest in determining the mechanisms
underlying the individual cognitive abilities across organisms
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(Orr et al., 2009; Rivi et al., 2022b,c; Sunada et al., 2017). To date,
only a few studies investigate the role (potentially) played by the gut
microbiome as a driver of individual cognitive differences in natural
populations of animals (Davidson et al., 2018). However, we
believe that investigating the inter- and intra-specific variations in
the gut microbiome will provide new insight into evolutionary and
environmental mechanisms involved in cognitive functions across
taxa. In fact, numerous studies demonstrated a major role of the
microbiome composition in regulating neurotransmitter levels, the
expression of neural receptors, synaptic plasticity and neurogenesis
(Chen et al., 2021).

Molecular approaches for understanding the physical basis
of memory
As previously reported, invertebrates such as Lymnaea can be
extremely useful to decipher complex engram networks and provide
a comprehensive map of engram circuits. The use of advanced tools
for genome engineering is necessary for investigating the molecular
mechanisms underpinnings of engram cells and their connections
during memory formation and consolidation. Emerging in 2013,
gene editing based on CRISPR-Cas9 technology represents a
powerful strategy for efficiently manipulating key genes in multiple
organisms, including invertebrates (Abe and Kuroda, 2019; Gratz
et al., 2015; Jinek et al., 2012; Kohno et al., 2016; Martin et al.,
2016; Sieber et al., 2021). Will the engram be found? Will it be
discovered how to stop memory loss or keep certain memories
unchanged over time? Will it be possible to erase negative
experiences and their effects on memory? These questions will
probably be found in the near future and invertebrates may be
extremely useful to open new avenues of research and be part of the
discoveries that will make us rethink many of our currently accepted
beliefs.
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