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ABSTRACT
Odors released from mates and resources such as a host and food
are often the first sensory signals that an animal can detect. Changes
in locomotion in response to odors are an important mechanism by
which animals access resources important to their survival. Odor-
modulated changes in locomotion in insects constitute a whole suite
of flexible behaviors that allow insects to close in on these resources
from long distances and perform local searches to locate and
subsequently assess them. Here, we review changes in odor-
mediated locomotion across many insect species. We emphasize
that changes in locomotion induced by odors are diverse. In
particular, the olfactory stimulus is sporadic at long distances and
becomes more continuous at short distances. This distance-
dependent change in temporal profile produces a corresponding
change in an insect’s locomotory strategy.We also discuss the neural
circuits underlying odor modulation of locomotion.

KEY WORDS: Circuit, Insect, Search, Neural mechanisms, Odor
tracking, Olfaction

Introduction
A question that we often get from laypeople and expert scientists
alike is how sharks find their victim a mile away. The myths that
sharks can detect blood and home in on their prey from large
distances remain persistent despite efforts both in popular science
(https://www.youtube.com/watch?v=ugRc5jx80yg) and in peer-
reviewed work to dispel them (Gardiner et al., 2012; Meredith
and Kajiura, 2010). Sharks do possess a nervous system that is
exquisitely sensitive to chemicals in blood and can likely detect the
blood of potential prey from a mile away. However, tracking
resources based on their smell (odor tracking) is more challenging
than just detecting an odor, because odor gradients are not preserved
beyond the immediate vicinity of the odor source. The mechanisms
of odor dispersal allow odors to be detected at long distances
without providing directional cues because animals typically
experience concentrated patches of odor followed by clean air
(Box 1). This difference between detection and tracking is best
quantified in the context of the champion smellers in the insect
world –male moths. Males of many moth species can detect a single
molecule of the female pheromone (Kaissling, 1986). However, this
exquisite sensitivity does not allow them to track down females
from a kilometer away as suggested by earlier studies (Bossert and

Wilson, 1963; Collins and Potts, 1932). Later work has
demonstrated that it is hard for moths to locate females even 80 m
away (Elkinton et al., 1987).

Nevertheless, odor tracking is ubiquitous in the animal kingdom,
albeit not over kilometers, and underpins many behaviors essential
to an animal’s survival. How does an animal go about finding the
source of an odor in the absence of directional cues from odor
concentration? The best source of directional information is wind
direction. When wind direction is constant, flying upwind upon
odor contact is an excellent strategy because the odor source is likely
to be upwind. However, in the real world, wind direction is rarely
constant (David et al., 1982), which means that the present upwind
direction and the direction of the odor source are not always the
same (Brady et al., 1989).

Thus, the problem confronting any animal performing odor
tracking is how the sporadic detection of odor can be efficiently
used to get closer to the source of the odor.

Even under the best of circumstances, odor tracking itself only
leads the animal to the vicinity of the source, and not directly to the
source itself. There are various reasons for this. In the case of the
moth, likely owing to the eddies under the tree, odor tracking
cannot direct the insect to the source, just to the right tree (Charlton
and Cardé, 1990); often not even that (Doane, 1968). Similarly,
odor plumes emanating from a mammal can be as large as the
entire animal, but a mosquito will still feed preferentially from
specific body parts (De Jong and Knols, 1996). Long-range odor
tracking is replaced by a different strategy – local search – near the
source of the odor. For example, once odor tracking leads a male
moth to the right tree, the moth flies vertically in the immediate
vicinity of the tree, lands on the tree trunk and walks the last
few centimeters to the female (Charlton and Cardé, 1990). Over
short distances near the female, visual cues might play a role
(Charlton and Cardé, 1990; De Jong and Knols, 1996; Doane,
1968). In some cases, such as flower feeding by moths, a
conjunction between olfaction and vision is necessary for
successful feeding (Raguso and Willis, 2002).

So far, we have discussed the challenges of finding the location of
an odor. Another equally difficult problem that animals must
contend with is identifying an odor. The olfactory environment is
complex and rich (Herrmann, 2011). Odors from the resource that
an insect is seeking are mixed in with odors – sometimes closely
related ones – from other sources. Insects must discriminate the
odors from the resource from this complex mix (Riffell et al., 2014).
The behavior towards a given odor is also highly dependent on the
state of the animal, such as feeding or mating status.

In summary, odor modulation of locomotion is not a single
behavior optimized to find the source of odor. Rather, it is a suite of
behaviors that together ensure that animals can find and exploit
resources critical to their survival (Fig. 1). Odor-guided locomotion
requires exquisite sensitivity to multiple sensory systems, neural
circuits to process and integrate sensory information, spatial
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memory, behavioral flexibility and the ability to act with incomplete
information. Insects possess all these capabilities.
In this Review, we will consider behavioral algorithms (see

Glossary) underlying odor modulation of locomotion in insects and
the neural circuits underpinning this behavior. We draw on research
performed in various insects, but note that most of the work has
done in moths, cockroaches and flies. This Review is divided into
three sections. We start by reviewing behavioral algorithms that
underpin different aspects of an insect’s odor-tracking behavior,
followed by a review of how the behavioral algorithm is implemented
in the insect’s brain. Finally, we review the neural circuits underlying
odor identification and discuss future research avenues.

Behavioral algorithms underlying odor modulation of
locomotion
Understanding behavioral algorithms underlying odor modulation
of locomotion is a formidable challenge; researchers have met this

challenge with a range of behavioral paradigms (Box 2). We
describe behavioral algorithms at two different spatial scales. We
start with describing medium-range navigation to a source of odor.
In this regime, the animal has detected an odor but does not know
the source location and seeks to find this source. Then, we review
near-range navigation during which the insect has either narrowed
down the source considerably or has already found it and is taking
the last few steps to engage with the source.

Medium-range navigation towards an odor source
The presence of a resource is often first signaled by the detection of
odor, i.e. the resource is smelt before it is seen or touched – and the

Box 1. The role of odor dispersal in odor tracking
Odor dispersal, a topic covered in detail in other reviews (Capelli et al.,
2013; Celani et al., 2014; Elkinton et al., 1984; Murlis et al., 1992; Riffell
et al., 2008), is essential to understanding odor tracking. There are two
mechanisms by which pheromones released by a small odor source (red
dot in the figure) such as a female gypsy moth can disperse: diffusion,
and advection and convection (top panel is a snapshot of odor
distribution; gray patches represent odor concentration). Diffusion is a
process in which the odor molecules move down a concentration
gradient. Diffusion rates are so low that it can be discounted as a
mechanism for odor dispersal beyond a few centimeters from the odor
source (Riffell et al., 2008). Much of the dispersal occurs through
advection and convection, processes by which a mass of air moves
owing to spatial differences in air density, pressure and temperature,
carrying odor molecules with it. This mode of dispersal has two
consequences for odor tracking. First, odors move in packets such that
local odor concentration is above the detection threshold for long
distances from the odor source (bottom panel); this makes odors the first
source of information about a resource. Second, the distribution of odor
packets in space might be informative about the location of the odor
source (Boie et al., 2018), but is not a strong predictor of source location
in a dynamic environment. Therefore, odors provide information about
objects from afar without providing a roadmap to the object that other
senses such as vision might. Near the odor source, the odor pulses that
an animal experiences are no longer transient; they become continuous
(note the consistently gray region adjacent to the odor in the top panel).
In one set of measurements, at 4 m from the source, the stimulus was
present 75% of the time, while being present only 20% of the time at 40m
(Baker et al., 2018); similar observations have been made by others
(Murlis et al., 2000). This change drives the change in behavior observed
as the insects come close to the odor.
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Glossary
Behavioral algorithm
A set of rules for selecting an appropriate action or sequence of actions
from a set of pre-established behaviors to accomplish a given task.
Generative model
A model that can generate new data. Here, it means a behavioral model
that generates new locomotion trajectories that can be compared with
actual data to assess whether model trajectories are consistent with
empirical data.
Glomerulus
A clustering of nerve endings. Here, it refers to the region within the
antennal lobe where olfactory receptor neurons that express the same
olfactory receptor project into.
Laminar plume
Airflow moves smoothly in a regular path, producing a continuous ribbon
of odor filament projecting from the source location.
Multimodal integration
Integration of information from different sensory modalities.
Neuropil
An area within the nervous system where there is a high density of
synapses but relatively few cell bodies.
Odor-gated anemotaxis
Turning upwind when a salient odor is encountered.
Olfactory receptor neurons (ORNs)
Receptors housed in specialized hairs called sensilla within the
antennae that are activated in response to airborne odorants.
Patch border
The point between an odor plume and odorless space where the
concentration of odor is sufficient to pass a detection threshold.
Protocerebral
Pertaining to the protocerebrum, a prominent neural structure within the
insect brain that contains important neuropils such as the mushroom
body and central complex.
Resource patch
Resources are not distributed randomly. They are distributed in clusters
called patches. Sensory stimuli including odor, tastants or visual stimuli
can signal a resource patch.
Sensorimotor reflexes
The modulation or initiation of behaviors in response to a specific
sensory cue.
Turbulent plume
Fluctuating, irregular airflow causes odor filaments to be dispersed
amongst intermittent pockets of odorless space.
Turn bias
The propensity to turn in the same direction, say, clockwise.
Visually guided anemotaxis
Maintaining a fixed trajectory with respect to the wind direction using
visual cues for steering. This behavior is important during flight.
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animal’s initial response is influenced by odor alone. As the animal
approaches the source, its behavior is affected by multi-modal
integration. The distance at which behavior becomes multimodal
depends on the species and the environment. Moreover, the
processes described here are not specific to a single mode of
locomotion, as the effect of odors on behavior is similar during both
flight and walking (see ‘Local search’ section for details).

The reflexive cast-and-surge program
In both walking and flying insects, there are two conserved motor
programs that aid in medium-range navigation to an odor source: the
reflexive cast-and-surge program and the internally driven counter-
turning. The reflexive cast-and-surge program consists of upwind
locomotion or odor-gated anemotaxis (see Glossary); many insects
either show little directional preference or walk/fly downwind in the

absence of odor, but will travel upwind in the presence of odor
(Alvarez-Salvado et al., 2018; Budick and Dickinson, 2006; Willis
and Arbas, 1998; Willis and Avondet, 2005; Wolf and Wehner,
2000). Odor-gated anemotaxis (Kennedy andMarsh, 1974) consists
of a two-component motor program where both components are
sensorimotor reflexes (see Glossary) (Fig. 1). The first component is
surge, in which contact with an odor results in rapid upwind
movement; surge can be phasic or tonic (Budick and Dickinson,
2006) depending on the species (Fig. 1A). The second component,
cast, which occurs upon loss of odor, results in a cessation of
upwind progress and execution of turns. In many, but not all,
insects, these turns gradually widen, and between each turn the
insect travels perpendicular to the wind direction.

The cast-and-surge strategy and its origin as a sensorimotor reflex
was first proposed by Baker and colleagues (Baker, 1990) based on

Host/resource 
assessment

Local search 
strategies 

Long-range 
strategies Cast

Surge
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Visual and
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but not taste
or touch

A cut in the banana
allows taste
and contact

Accepted
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turn
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angle
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A B
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Fig. 1. Insects employ distance-dependent locomotor strategies. (A) An insect can sense odors a long distance away. Insects employ distance-
dependent strategies to find the resource, assess it and accept it. Here, an insect flying to the odor source comes near it and changes its strategy to local
search before assessing the resource. Some of the behavioral strategies are shown. (B) The behavioral strategy changes, in part, because the odor profile
changes from patchy (gray shading) at long distances to continuous near the odor source. In response, the behavioral strategies are different as well. Far
from the odor source, insects use long-range strategies. Two of these strategies are caste-and-surge and internally generated counter-turning. When using
the caste-and-surge strategy, insects surge upwind on encountering an odor, and perform frequent turns perpendicular to wind direction after losing the odor.
Internally generated counter-turning is similar to caste-and-surge; the main difference is that behavior is driven by an internal program and not by odor
encounters. Odor detection activates this behavior. Closer to the odor source, the insect aims to stay close to the odor source through a variety of local
search strategies. These changes in behavior – including correlated turning, increased turn angle, and short runs punctuated by changes in direction – have
the effect of keeping the insect close to the odor source. Finally, insects assess the resource and choose to accept or reject it. This assessment depends on
other modalities including vision, taste and touch.
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a clever deduction; they realized that responses to pheromone
(Baker and Haynes, 1987) and odor encounter rate (Baker and
Haynes, 1989) had similar frequency. Measurement of odor contact
during free flight in twomoth species (Mafra-Neto and Cardé, 1994;
Vickers and Baker, 1994) showed that contact with female
pheromone led to an upwind surge with a ∼200 ms delay that
lasted approximately 500 ms and terminated in a cast. Since these
pioneering studies, the cast-and-surge strategy has been
demonstrated in other flying insects (Dekker and Cardé, 2011;
Thiery and Visser, 1986; van Breugel and Dickinson, 2014), and
also during walking in both cockroaches (Bell and Tobin, 1981) and
in Drosophila (Alvarez-Salvado et al., 2018). An iterative cast-and-
surge strategy will bring the insect closer to the source of odor and
also explains the difference in behavior under different stimulus
conditions. In laminar plumes (see Glossary), the moth turns
frequently and flies crosswind because each surge takes the insect
out of the odor, and contact is only made after the moth turns
around (Mafra-Neto and Cardé, 1994). In turbulent plumes (see
Glossary), where the contact with odors is intermittent, the moth’s
trajectory is straighter owing to the fact that each contact with the
odor results in a surge that is barely extinguished before the next
odor contact is made, resulting in another upwind surge (Mafra-
Neto and Cardé, 1994; Mafra–Neto and Cardé, 1995). Strikingly,
when pheromones are pulsed at a high enough frequency, even the
tracks in a ribbon plume become straight because each surge ends
in another odor stimulation, leading to another surge and
completely extinguishing turns (Mafra-Neto and Cardé, 1994,
1995, 1996).

The internally driven counter-turning
The internally driven counter-turning requires odor for its
expression (‘gating’) but is not a direct response to odor
encounters; odors play a permissive rather than an instructive
role. This motor program also has two components that are
roughly analogous to cast and surge but have different
mechanisms (Baker et al., 1984; Kennedy and Marsh, 1974;
Willis and Arbas, 1991; Wright, 1958) (Fig. 1). Equivalent to
surge but not resulting from a direct contact with odor, the insect
has straight flight segments during which it maintains constant
ground speed and orientation in relation to wind direction (David
and Kennedy, 1987; Haynes and Baker, 1989; Marsh et al., 1978;

Von Keyserlingk, 1984; Willis and Baker, 1994; Willis et al.,
1991), reflecting visually guided anemotaxis (see Glossary).
These straight segments are interrupted by crosswind turns that
occur at remarkably regular intervals (David and Kennedy, 1987;
Haynes and Baker, 1989; Von Keyserlingk, 1984), suggesting
that they are generated internally (Willis and Arbas, 1991) rather
than being a consequence of discrete odor encounters. Odors also
modulate this program: an increase in the number of odor
encounters results in decreased speed (Baker and Haynes, 1987;
Kennedy, 1983; Marsh et al., 1978; Willis and Baker, 1994). In
some moths, the frequency of counter-turning also increases as
the moth approaches the odor source (Kennedy, 1983; Kuenen
and Baker, 1982; Willis and Arbas, 1991). Because speed
decreases and the frequency of counter-turning increases as
the insect approaches the source of odor, the crosswind
excursions become smaller, giving the impression that the
insect is homing in on the odor source (Marsh et al., 1978). In
contrast, decreasing odor encounters leads to wider casts (David
and Kennedy, 1987).

The contribution of motor programs to finding an odor source
The cast-and-surge motor program and the internally generated
counter-turning are similar and might appear to be just a single
motor program. Some authors have made a distinction between
them based on the characteristics of the cross-wind movement,
which they classified as either zigzagging or casting, casting being
movement perpendicular to wind direction without any upwind
progress and zigzagging being movement with upwind progress
(Kennedy et al., 1981; Preiss and Kramer, 1986). These differences
could be real and significant; however, it is difficult to convincingly
distinguish between the different mechanisms without quantifying
the relationship between sensory stimulus and each turn – an
important avenue for future research. Previous studies have
emphasized the reflexive aspects of the tracking behavior over the
internally generated program (Baker and Haynes, 1987; Baker and
Vickers, 1997; Budick and Dickinson, 2006; van Breugel and
Dickinson, 2014) because they have focused on turns immediately
after an odor encounter. However, the most parsimonious
interpretation of these studies is that the reflexive cast-and-
surge strategy is superposed on top of the internally generated
counter-turning, and both are necessary to explain an insect’s
overall behavior; experiments aimed at testing whether this
interpretation is correct constitute a particularly fruitful line for
future research.

Having both reflexive and internally driven counterturning would
make odor tracking more robust. Tracking an odor plume,
particularly in flight, is difficult. A recent study found that flies
can only stay within a predictable, cylindrical plume for 500 ms
(van Breugel and Dickinson, 2014). Similarly, sensory delays of
200ms typically associated with cast-and-surge strategies imply that
an animal is always reacting to the past and not the present. Errors
and delays are not debilitating when the wind direction is constant,
because turning would lead the insect back into the plume, as the
insects exit the plume mostly because of misalignment with the
upwind direction. However, in realistic plumes with variable wind
direction and speed, turning back does not ensure odor encounter,
and the likely existence of long intervals during which there is no
odor contact makes an internally generated strategy necessary. A
long-lasting strategy with frequent changes of direction is more
likely to result in contact with odor because the insect will end up re-
encountering the plume by chance. Slowing down as encounters
become more frequent would increase the chance that insects would

Box 2. Studying odor-guided locomotion in the lab
Odor-guided locomotion is a challenging problem as the complexity and
diversity of the odor landscape experienced by insects in nature is
difficult to replicate in the lab. Furthermore, even in simplified laboratory
experiments, it is difficult to quantify when the animal encountered an
odor, making it difficult to evaluate the animal’s underlying strategy.
Inferring strategy from an animal’s circuitous walking or flight paths is
itself a daunting problem. Despite these challenges, much progress has
been made in understanding the behavioral algorithms at play during
odor-modulated locomotion by performing experiments in simpler
behavioral arenas that, with some exceptions, fall into three types. In
the first type, insects navigate towards an odor source in a laminar
plume. These experiments are performed in a wind tunnel at low wind
speeds such that there is a small cylinder of odorized region within the
tunnel. The second type of experiment uses similar methods, but with
turbulent rather than laminar plumes. These turbulent plumes still do not
capture the complexity of real-world plumes because thewind direction is
also constant, and much of the spatial scales of turbulence observed in
nature are too large to be observed within a wind tunnel. Finally, the third
type of experiments is conducted in still air without any wind.
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stay close to the plume; this slow down close to an odor source has
been observed in flies (Saxena et al., 2018).
The idea that a reflexive strategy works well in predictable

conditions and internally generated counter-turning performs better
in a more unpredictable environment is supported by modeling
studies (e.g. Belanger and Willis, 1996).

Other mechanisms in medium-range odor tracking
Another important conclusion from the Belanger and Willis (1996)
study is that the known mechanisms of odor tracking did not come
close to the performance of the actual moth, demonstrating that there
are additional mechanisms at play. Precise control over odor
stimulation, detailed analysis of an insect’s tracks and generative
models (see Glossary) to assess how well behavior is understood in
walking Drosophila have led to the discovery of these mechanisms.
A recent study, which took advantage of optogenetic stimulation to
create a precise pattern of olfactory stimulation, showed that
activating a fly’s olfactory system did not change the fly’s
propensity to turn while exiting an odorized area (Tao et al.,
2020). Rather, flies slowed down as they exited the odor plume,
giving the impression that there is increased turning at the border;
the turns made at the border of the odorized area were much larger.
That study also found that there are kinematic changes associated
with olfactory stimulation that cause the flies to slow down in the
stimulus and increase its speed outside the stimulus region.
Another recent study that replicated turbulent plumes with more
precise stimulus control than in previous experiments
demonstrated that the fly’s behavior is much better modeled as
stochastic than as a pure sensorimotor reflex (Demir et al., 2020).
Moreover, that study showed that odor encounters modulated the
stop-to-walk transition, an important movement characteristic. In
flies, a recent study also found that odors affect multiple aspects of
locomotion (Jung et al., 2015). Recent advances in machine vision
and statistical techniques will help us to make progress in
discovering mechanisms by which odors affect locomotion, and
how the entire ensemble of mechanisms helps insects to approach
the odor source.

Local search near the odor source and harvesting the resource
The mechanisms described above operate when the insect is far
from the odor source. Often, the insect’s behavior changes close to
the source: a male moth reacting to female scent, after flying upwind
and reaching the right tree, performs vertical flights to find the
correct landing spot, lands on the tree and performs a local search by
walking, and finally makes contact with the female (Charlton and
Cardé, 1990). A similar behavioral transformation is observed – this
time in flight – as the moth approaches a flowering plant (Raguso
and Willis, 2002). This time, the moth hovers over the flower.
Mosquitoes, too, change their behavior as they approach their host.
Far from the odor source (>10 m), it is driven primarily by detection
of CO2, and close to the odor source (<10 m), it is driven by a
combination of vision and odor (Van Breugel et al., 2015) before
landing and searching. Sandflies land non-preferentially on their
host – a mammal – but then move to a region with less hair, such as
the ears or eyelid, to feed (Coleman and Edman, 1988). Even for
insects that just walk, the strategy changes as the animal approaches
the odor source (Wolf and Wehner, 2000). Regardless of whether
the locomotion mode changes, there can be a behavioral switch.
Both the nature of the behavioral change and where it occurs (how
far from the odor source) depends on the species, environmental
conditions, the density of available resources and other factors
(Charlton and Cardé, 1990; Wolf and Wehner, 2005). In this

section, we describe the behavior near the odor source; the insect’s
objective has changed from approaching the odor source to locating,
assessing and utilizing the resource it signals.

One change is that the insect’s locomotion strategy is altered into
a local search strategy, likely in response to the stimulus becoming
more continuous and/or other sensory modalities, such as vision and
taste, that are also present, representing a resource patch (see
Glossary) (Fig. 1). Local search in insects was first discovered in
blowflies, which change their locomotion to a local search after
feeding on sugar, and this was thought to be initiated by resource
utilization (Dethier, 1957; Murdie and Hassell, 1973; Vinson,
1977). A similar local search pattern is also observed on
encountering resource-specific cues such as food odors or sex
pheromones (Jung et al., 2015; Sabelis et al., 1984).

Just like medium-distance navigation to the odor source, local
search is not a single motor program but a constellation of
mechanisms that result in the animal being restricted to a given area.
One mechanism is looping (or spiraling), which involves an
increase in the animal’s turn rate, with the animal maintaining a turn
bias (see Glossary) in a single direction, resulting in looping
trajectories that bring the animal back to the same location,
essentially circling the resource (Beevers et al., 1981; Sabelis et al.,
1984). Another mechanism is a decrease in run length or in the
distance between each subsequent stop. This has been observed in
bumblebees (Heinrich, 1979) and honeybees in a patch of flowers
(Schmid-Hempel and Schmid-Hempel, 1986), and in flies in
response to odor alone (Jung et al., 2015) (Fig. 1).

Amechanism that has received particular attention is turning back
into the resource patch when the patch border (see Glossary) is
encountered. Unlike spiraling or changes in run length, turning back
requires a sense of direction. Decreasing odor concentration can
serve as a directional cue that can be sensed by simultaneously
comparing concentration at two locations. Because olfactory
receptors are present within the insect’s antennae – elongated,
jointed sense organs that are attached to the insect’s head –
comparison of odor concentrations across two locations to turn
towards the side that experiences the higher concentration is
possible (Borst and Heisenberg, 1982; Duistermars et al., 2009;
Martin, 1965). Odor concentration at two locations can also be
measured sequentially by simply walking to different locations
(Bell and Tobin, 1982; Lockey and Willis, 2015); this computation
requires short-term memory. Moreover, insects successfully turn at
the border using a large increase in turn amplitude even when the
patch abruptly ends and there is little scope for them to evaluate
concentration (Sabelis et al., 1984; Waage, 1978). In Drosophila, a
large decrease in speed is coupled with an increase in turn amplitude
(Tao et al., 2020).

The local search mechanisms can be elicited by other sensory
modalities such as gustation (Mayor et al., 1987; Nelson, 1977) or
vision (Bell et al., 1983; Lawrence, 1982) alone, which suggests that
local search mechanisms can utilize the sensory modality that
provides the most salient stimulus. In contrast to changes in
locomotor strategy, acceptance or rejection of a resource such as
food, oviposition site or mate often requires a conjunction of
multiple sensory modalities (Fig. 1). The synergism between vision
and olfaction is important for locating the odor source and landing
(Frye et al., 2003; Saxena et al., 2018; Stewart et al., 2010; Van
Breugel et al., 2015; Vinauger et al., 2019). Similar multimodal
interactions are observed in oviposition (Harris and Miller, 1982;
Spencer et al., 1999), initiation of feeding (Raguso andWillis, 2002;
Wheelwright et al., 2021) and courtship (Krstic et al., 2009; Pan
et al., 2012).
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As summarized in Fig. 1, odor modulation of locomotion
involves distance-dependent locomotor strategies. At each distance,
a whole suite of changes in locomotion characterizes changes in
behavior. As described above, different insects employ these
strategies to different extents, and the details of a given strategy
would also differ from insect to insect. Unraveling all the behavioral
strategies employed, how these strategies are deployed based on
current sensory conditions and how differences in behavior between
insects reflect adaptation to their ecological niche are all important
avenues for future research.

Neural mechanisms underlying odor modulation of
locomotion
The behaviors described above require many computational
abilities: one is to process and integrate information from different
sensory modalities, called multimodal integration (see Glossary).
Odor information is combined with wind direction and full-field
visual signals, such as optic flow, to navigate towards the odor from
large distances (Cardé and Willis, 2008). Near the odor source,
visual recognition of small objects is combined with other sensory
cues to land on the object if the animal navigates to the odor in flight
(Raguso and Willis, 2002). Gustatory, visual and mechanosensory
information is combined with olfactory information to decide
whether to accept or reject the resource. A second ability is
memory – both spatial and episodic. Spatial memory is required to
keep track of one’s position in space to direct the next movement,
whereas episodic memory is necessary to recall past odor
encounters and make decisions based on odor history (Ache
et al., 2016; Baker et al., 2018; Pang et al., 2018). Finally,
behavior depends on other circumstances, such as an animal’s risk
assessment and its own state and motivation. In the following
sections, we will discuss these three abilities in insects, and how
they aid or limit an insect’s ability to locate and utilize resources. It
is important to note that these neural circuits are conserved enough
across insects (Ito et al., 2014; Martin et al., 2011) that, despite
some differences, the basic computation and logic are similar;
therefore, in discussing the role of different circuits, we draw on
research across insects.

Unimodal sensory processing of odors, wind and photons
The basic circuit that senses and processes olfactory information
is described in Box 3. Odors are detected by olfactory receptor
neurons (ORNs; see Glossary); a large number of ORNs converge
onto a single second-order neuron called a projection neuron
(PN).

Convergence increases the sensitivity to odors
The sensitivity of individual ORNs and the convergence from
ORNs to PNs allows insects to detect odors at low concentration
with short latency. Estimates suggest that a single moth
pheromone molecule can produce a change in firing rate in an
ORN that is specific to pheromones (Kaissling, 1986). Even when
ORNs are not specific to a single odor, they can still be sensitive to
odors (Hallem and Carlson, 2006; Olsen et al., 2010). An insect’s
ability to detect odors is further enhanced through convergence
from the ORNs to the PNs, which provides a mechanism for
amplification (Kazama and Wilson, 2009). In Drosophila, 40 to
100 ORNs project to the same glomerulus (see Glossary); each
ORN synapses on each uniglomerular PN (uPN) (Kazama and
Wilson, 2009), which results in an amplification of weak odor
responses (Bhandawat et al., 2007; Olsen et al., 2010).
Convergence also shortens the latency to detect an odor, an

important consideration when tracking odors in an ever-changing
environment (Jeanne and Wilson, 2015).

There is additional circumstantial evidence that convergence is an
important mechanism for increasing odor sensitivity (Hansson and
Stensmyr, 2011). In many insects, the antennae are highly branched
to accommodate thousands of pheromone-sensitive sensilla (Keil,
1989; Nishino et al., 2018), presumably to increase sensitivity.
Moths also have a sexually dimorphic macroglomerular complex
(Koontz and Schneider, 1987), a set of glomeruli that process sex
pheromones, that is enlarged in males (Boeckh and Boeckh, 1979;
Hansson et al., 1992); similar expansion is also observed in
drosophilid flies (Kondoh et al., 2003). The increased glomerular
size is likely related to an increase in ORN numbers, a phenomenon
also observed for ORNs involved in the detection of other non-

Box 3. Circuits for olfactory processing in insects
Odor detection occurs in the olfactory receptor neurons (ORNs) present
in the antennae and palps. Each ORN expresses one or a few odorant
receptors (ORs); the number of receptors range from just 10 in some lice
(Hansson and Stensmyr, 2011; Kirkness et al., 2010) to a few hundred in
bees (Robertson et al., 2003). The ORs expressed in each ORN
determine its odor response profile. In many (Schachtner et al., 2005) but
not all insects, ORNs expressing a given receptor (different ORN classes
in the figure) project to a single glomerulus, where they interact with
second-order neurons called projection neurons (PNs). Approximately
half of the PNs in Drosophila are themselves uniglomerular (uPN), and
the other half are multiglomerular (mPN). A large majority of uPNs use
acetylcholine, the major excitatory neurotransmitter in invertebrates; a
minority use GABA as their neurotransmitter. The division of mPNs into
excitatory versus inhibitory is more equal. The outputs of the antennal
lobe are four different channels of information: excitatory (in magenta in
the figure) and inhibitory uPNs (in green in the figure) as well as
excitatory and inhibitory mPNs (Bates et al., 2020). The presence of
these parallel pathways from the antennal lobe to higher brain centers is
conserved across insect orders, but there are also important differences
(Galizia and Rössler, 2010).

ORN class 1

ORN class 2

ORN class 3

ORN class 4

ORN class 5

ORN class 6

uPN

uPN

uPN

uPN

uPN

mPN

mPN

uPN

uPN

Input
40�100 ORNs of the 
same class/glomerulus

Output
Four output classes:
excitatory uPN, mPN
inhibitory uPN, mPN
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pheromonal volatiles. Two examples include the expansion of
ORNs that detect a specific food source in the specialistD. sechellia
compared with the generalistD. melanogaster (Dekker et al., 2006),
and in mosquitoes (Syed and Leal, 2009).

Comparison of odor concentrations at different body parts
As discussed above, it is unlikely that an instantaneous
concentration comparison between ORNs in different parts of the
body such as the two antennae plays a large role in odor tracking
over long distances. However, instant comparison appears to play a
crucial role in trail tracking across the animal kingdom (Hangartner,
1967; Rajan et al., 2006; Takasaki et al., 2012) and is involved in
determining the borders of a resource patch (Bell, 1985).
Concentration comparison can be crucial under conditions in
which there are sharp odor gradients, but it does not appear to be the
only mechanism (Tao et al., 2020). There are several neural
mechanisms that can extract and accentuate local concentration

differences at the two antennae. In Drosophila, where most ORNs
project bilaterally, the PNs can differentiate between ipsilateral and
contralateral ORNs, likely based on the different axon lengths of the
ipsilateral and contralateral ORN axons, which result in a time
difference between signals from the two antennae reaching PNs
(Gaudry et al., 2013). In both moths and cockroaches, a more
elaborate architecture, whereby pheromone-related ORNs in different
parts of the antennae project to small sub-regions of the glomerulus,
exists to take advantage of different spatial patterns of odors (Nishino
et al., 2018). PN responses, too, were responsive to the location
of the odor stimulus on the antennae. This topographical
arrangement appears to be maintained in higher-order olfactory
circuits and, in principle, can create a map of instantaneous
pheromone concentrations. Whether an instantaneous map of the
local distribution of pheromone concentration (or other odors) is
created and how these instantaneous comparisons are employed in
driving behavior is an important avenue for future investigation.
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Fig. 2. Circuits underlying odor-guided locomotion. (A) Regions of the brain important for olfactory processing (green). Odors are detected by neurons in
the antenna. These neurons project to the antennal lobe (AL). Projection neurons from the antennal lobe project to mushroom body (MB) and lateral horn
(LH). (B) Airflow (in magenta) information is also important for odor-guided behavior. Airflow is detected by the Johnston organ (JO) neurons in the antenna;
through various intermediate centers, such as antennal mechanosensory and motor centers (AMMC) and Wedge (abbreviated as WED), these neurons
connect to central complex (CC) neuropils to allow insects to orient themselves with respect to airflow. (C) Visual (in blue) information is also important for
odor-guided behavior. Two parallel streams of visual information – wide-field information, such as that arising from motion, and feature detectors – are
important for odor-guided behavior. The lobula (Lo) and lobula plate (Lp) are important visual processing centers. (D) Flow of information underlying odor-
guided locomotion. Neuropils in green, blue and magenta are largely unimodal sensory processing centers that process olfactory, visual and
mechanosensory information. Many central brain regions (marked with striped color) such as MB, LH and the superior medial protocerebrum (SMP) play an
important role in multi-modal integration through connections from multiple sensory systems and recurrent connections between each other. Motor
commands originate from the lateral accessory lobe (LAL) and from the superior slope (SS). Motor regions are marked with a red border. Descending
neurons (DNs) carry motor-related information from the brain to thoracic ganglia (Lyu et al., 2022).
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Contribution of mechanosensation and vision to odor-guided behaviour
We will only discuss mechanosensation and vision briefly as these
modalities have been covered in greater detail in other reviews
(Borst et al., 2020, 2010; Krishnan and Sane, 2015; Silies et al.,
2014). We will first discuss mechanosensation (Fig. 2B). Detecting
the direction of airflow is critical for long-range odor tracking as it
provides important directional cues. Neurons in the antennal lobe
can themselves be responsive to airflow through projections of
mechanosensory hairs or the responses of ORNs to
mechanosensory stimuli (Anton and Hansson, 1994; Galizia
et al., 2000; Han et al., 2005). However, the specialized
mechanoreceptors for detecting airflow are found in the
Johnston’s organ in insect antennae (Ai et al., 2007; Kamikouchi
et al., 2009, 2006; Schneider, 1964; Yorozu et al., 2009). These
receptors are highly sensitive to airflow; Drosophila can
behaviorally respond to air speeds as low as 0.5 cm s−1, a flow
rate that is well within speeds described as ‘calm’ by humans
(Yorozu et al., 2009). The information from the two antennae are
combined to decode the direction of wind (Suver et al., 2019). Flies
pick a heading with respect to the direction of airflow and can
respond to changes in direction with changes in heading (Currier
et al., 2020; Okubo et al., 2020). Nevertheless, work is needed to
assess how well insects can disambiguate exogenous airflow from
motion-generated airflow. It is also unknown how well insects can
assess the mean wind direction in a natural environment with
variable wind speed and direction.
Next, we will discuss vision. Two kinds of visual information are

important in odor-guided locomotion (Fig. 2C). The first kind is
wide-field motion created by self-motion; as the animal moves, the
world moves past it. This pattern of movement is critical for
controlling speed and assessing whether one is going straight or
turning and for stabilizing flight paths (Borst, 2014; Egelhaaf et al.,
2012; Srinivasan, 2011, 2014; Taylor and Krapp, 2007). Wide-field
information is carried by lobula plate tangential cells (LPTCs)
(Fig. 2C). LPTCs project to multiple regions in the brain, including
the superior slope, where visual and olfactory information is
integrated to generate motor commands. The activity of the LPTCs
themselves is modulated by odors (Wasserman et al., 2015); LPTC
responses are amplified in the presence of odors, which is likely
important for a correct orientation into the wind during the surge. A
second type of visual information critical to behavior is the
detection of visual features in the environment, such as the long
vertical shapes resembling a tree, or detecting a small object as a
conspecific. Information about visual features is carried by another
set of neurons called the lobula columnar neurons (LCs) (Fig. 2C).
A comprehensive analysis in Drosophila has revealed that there are
22 LCs that encode different visual features and likely play an
important role in olfactory behavior (Wu et al., 2016) that is directed
at an object. LCs directly interact with motor pathways and mediate
visuo-motor behaviors (Bidaye et al., 2020; Cheong et al., 2020;
Namiki et al., 2018a); LC inputs are also integrated with other
inputs in the posterior part of the brain. Through mechanisms that
are not well understood, neurons downstream of the LCs likely play
an important role in integrating visual information about objects
with their smell to drive behavior.
Other regions important for odor-guided behavior such as the

mushroom body and lateral horn also receive visual inputs (see
below). Many different streams of visual information into the
central complex, a region of the brain important for computing an
insect’s spatial orientation, are likely to exist because neurons in the
central complex are responsive to different kinds of visual
information including self-motion (Hulse et al., 2021; Lyu et al.,

2022; Stone et al., 2017). The neural pathways that carry visual
information related to self-motion – wide-field visual information
such as optic flow – into the central complex are currently unclear,
but are under investigation.

Higher-order olfactory processing and multi-modal integration
PNs from the antennal lobe project to two higher-order processing
centers, the mushroom body and the lateral horn (Galizia and
Rössler, 2010; Kirschner et al., 2006; Martin et al., 2011; Masse
et al., 2009), although minor connections to other protocerebral
regions (see Glossary) also exist (Aso et al., 2014b; Tanaka et al.,
2012). Both the mushroom body and lateral horn are centers for
multi-modal integration and participate in an array of computations
through their multimodal input and through connections to other
higher brain centers (Fig. 1B).

Integration at the mushroom body
The major sensory input into the mushroom body in many insects is
from PNs; in flies, only excitatory PNs provide input into the
mushroom body, whereas the situation for other insects has not been
investigated (Bates et al., 2020). The mushroom body also receives
inputs from other sensory modalities, encoding information about
temperature (Frank et al., 2015; Liu et al., 2015), humidity (Marin
et al., 2020), taste (Kirkhart and Scott, 2015; Masek et al., 2015),
visual stimuli (Ehmer and Gronenberg, 2002; Li and Strausfeld,
1999) and mechanical stimuli (Li and Strausfeld, 1999). The
relative importance of these inputs depends on the taxa: cockroaches
receive more mechanosensory input, whereas bees receive more
visual input (Menzel, 2012). These sensory inputs interact with the
main local neurons of the mushroom body called the Kenyon cells
in a region of the mushroom body called the calyx; the axons of the
Kenyon cells project to the lobes, which are segmented into
processing units. Each segment receives input from a subset of
dopaminergic neurons and outputs to a subset of mushroom body
output neurons (Aso et al., 2014a; Strausfeld et al., 2009). The
input–output relationship between Kenyon cells that carry input
sensory information and mushroom body output neurons that carry
output behavioral messages is modified by signals from
dopaminergic neurons to affect learning (Martin et al., 2011;
Menzel and Giurfa, 2001; Modi et al., 2020). This neural
architecture is perfect for associating odors with other events in
the world.

However, associating odors with events is not the only role of the
mushroom body in odor-guided behavior. Both the dopaminergic
neurons and the output neurons interact with premotor circuits
and with output neurons from the lateral horn (Aso et al., 2014a;
Dolan et al., 2019; Schlegel et al., 2021), and are in the correct place
in the circuit to perform sensorimotor transformations including
those involved in odor-guided locomotion. When processing in
mushroom body is blocked, either by chemical ablation or through
genetic methods, it leads to elevated locomotor activity in flies
(Martin et al., 1998), crickets and grasshoppers (Huber, 1974).
Activating individual mushroom body output neurons can produce
attraction or repulsion to odors (Aso et al., 2014b) and also promote
upwind movement when activated (Matheson et al., 2022).
Similarly, manipulating dopaminergic signaling in the mushroom
body of flies can affect movement on a trial-by-trial basis (Handler
et al., 2019; Zolin et al., 2021). It has been hypothesized that in a
complex environment with multiple odor sources, the mushroom
body can tie together inputs from PNs that are activated at the same
time, allowing disambiguation of different olfactory stimuli (Baker
and Hansson, 2016).
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Sensory integration at the lateral horn
The circuit architecture of the lateral horn is strikingly different from
that of mushroom body. The lateral horns in all insects studied thus
far receive inputs from all PNs (Galizia and Rössler, 2010); in flies,
this includes the excitatory PNs that also project to the mushroom
body and the inhibitory PNs (Bates et al., 2020; Schlegel et al.,
2021). The lateral horn also receives input from other sensory
modalities, including gustation, mechanosensation,
thermosensation and vision (Chakraborty and Sachse, 2021), as
well as from the mushroom body (Dolan et al., 2019; Schlegel et al.,
2021). Unlike the mushroom body, which is segmented into clear
and well-defined processing units, the lateral horn is a diffuse
neuropil (Sun et al., 1997; Yasuyama et al., 2003), and the
underlying computational logic is not obvious. The connectivity
pattern between projection neurons, the intrinsic and output neurons
of the lateral horn, is stereotyped enough that the same neurons
(similar anatomy, connections and responses) can be identified
across animals (Bates et al., 2020; Caron et al., 2013; Jeanne et al.,
2018; Jefferis et al., 2007; Schlegel et al., 2021). Based on this
connectivity pattern, the lateral horn consists of ∼500 cell types in
Drosophila compared with only 15 types of Kenyon cells (Schlegel
et al., 2021). There are also more than 37 types of output neurons.
Although there is some disagreement among different studies,
neurons in the same morphological class have similar odor–
response profiles (Frechter et al., 2019; Jeanne et al., 2018), once
again highlighting the stereotyped nature of the circuit.
There is some evidence that the lateral horn can function as a site

for computing odor valence, i.e. whether an odor is attractive or
repulsive (Strutz et al., 2014), or as a site for encoding odors based
on chemical structure (Frechter et al., 2019). However, there is
hardly any consensus regarding the fundamental computations
performed in the lateral horn. The lateral horn output neurons
project to different regions of the protocerebrum, where they interact
with outputs from the mushroom body and with premotor circuits
(Schlegel et al., 2021). Given that the lateral horn receives
multisensory input from the mushroom body and downstream
motor areas, it is unlikely that the lateral horn functions purely as a
center for integration of olfactory input (Chakraborty and Sachse,
2021; Martin et al., 2011; Schlegel et al., 2021). This conclusion is
supported by a recent comprehensive analysis of the anatomy of the
lateral horn in Drosophila, which found that many lateral horn
neurons receive more feedback input from motor areas than
feedforward sensory inputs (Schlegel et al., 2021).
The lateral horn appears to play an important role in many innate

behaviors driven by ecologically important stimuli. For example,
the behavioral responses ofDrosophila to CO2, which is sensed by a
single ORN class, appear to be completely mediated by the lateral
horn (Varela et al., 2019); the behavioral response to geosmin, an
odor that signals harmful microbes, is another example (Huoviala
et al., 2020 preprint). In the context of a moth’s behavioral response
to pheromones, a region adjacent to lateral horn, often referred to as
inferior lateral protocerebrum, is a site where inputs from
monoglomerular PNs, multiglomerular PNs and inhibitory PNs
are integrated (Anton et al., 1997; Kanzaki et al., 2003; Kárpáti
et al., 2008, 2010; Lee et al., 2019). One hypothesis is that this
integration is important to differentiate between individual
pheromone components versus a blend. Alternatively, different
kinetics of the neural response and different axonal lengths of these
PNs might provide important information about the stimulus (Lee
et al., 2019). In most insects, the lateral horn is also a site for
integration of information from the two antennae (Hansson and
Stensmyr, 2011). Finally, some of the integration of odor inputs

with wind and visual input also occurs in the lateral horn (Baker and
Hansson, 2016; Schlegel et al., 2021).

In total, the mushroom body and the lateral horn are not just
centers for olfactory integration; rather, they are highly recurrent
circuits for sensorimotor transformation. How these two regions of
the brain interact with downstreammotor circuits to control behavior
is an important avenue for future research.

Circuits integrating spatial information with sensory input to produce
motor commands
The spatial context for orientation and navigation is computed in the
central complex, which is a collection of central brain neuropils.
Many recent reviews describe the computation performed in the
central complex (Heinze et al., 2018; Hulse et al., 2021; Pfeiffer and
Homberg, 2014; Turner-Evans and Jayaraman, 2016; Webb and
Wystrach, 2016). In brief, two of the central complex neuropils, the
ellipsoid body and the protocerebral bridge, record the current
heading. The central complex also receives direct information
related to wind direction (Currier et al., 2020; Homberg, 1994;
Matheson et al., 2022; Okubo et al., 2020; Ritzmann et al., 2008),
which allows it to reference internal representations to external
directional stimuli such as wind direction; insects use the central
complex to orient to airflow (Fig. 1B). Silencing fan-shaped body
neurons – neurons within a sub-region of central complex – affects
the ability of flies to make corrective turns with respect to the wind
(Currier et al., 2020).

The lateral accessory lobe receives information regarding both
orientation and pheromones (Seki et al., 2005) through medial
protocerebral neurons that, in turn, receive input from the lateral
horn (Namiki et al., 2014). Many descending neurons (DNs) receive
input from the lateral accessory lobe (Fig. 2D). These DNs,
therefore, have much of the information needed to send navigation-
related motor commands, and many are responsive to pheromones
(Kanzaki et al., 1994). An interesting property of these neurons in
the moth is that they are bistable; thus, they are referred to as flip-
flop neurons (Kanzaki et al., 1994). Each state lasts up to 30 s, with
state transitions being mediated by a new stimulus. Thus, these flip-
flop neurons have the correct properties necessary to mediate an
insect’s behavior, including the internally generated counter-turns
that are non-reflexive. Pheromone-sensitive DNs also originate from
a region of the brain called the posterior slope. These DNs receive
pheromone-related information directly from the medial
protocerebrum. At least in the case of moth pheromones, these
DNs have a phasic response to pheromones (Namiki et al., 2018b)
and are likely responsible for mediating stimulus-triggered
responses such as the phasic surge response or the turn response
to odor.

Much remains to be discovered in terms of which DNs respond to
odor stimuli and the relationship between DNs and behavior.
Nevertheless, studies seeking to model plume tracking show that
turns driven by the flip-flopping neurons can serve as a mechanism
for odor tracking (Adden et al., 2022; Ando et al., 2013). In these
two studies, outputs of flip-flopping neurons were used to guide
turns; two mutually inhibiting flip-flop neurons drive turns on each
side of the body. Such a simple system appears to replicate the
moth’s odor-tracking behavior.

Identification of odor and identity-dependent behavior
Thus far, our Review has focused on the neural mechanisms
involved in locating the odor source. Another important problem is
identifying the odor, a task for which the olfactory system is
optimized (Box 3). Odor discrimination is essential for associative
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learning and has been covered in detail elsewhere (Laurent, 2002;
Masse et al., 2009; Su et al., 2009; Wilson, 2013).
Odor discrimination is also important for instantaneous

behavioral decisions. One theme that has emerged in this regard is
that many ORNs are specialists and respond specifically to a single
ecologically relevant odor. These odors are important for a range of
odor-gated behaviors, such as courtship (Dickson, 2008),
aggregation, food avoidance and approach, aggression and choice
of substrate for egg laying (Anderson, 2016; Aranha and
Vasconcelos, 2018). An important idea is that these specialist
ORN classes function as a ‘labeled line’, where they signal to a few
dedicated neurons at each processing stage to connect odors to
specific behaviors. Recent electron microscopic reconstruction of
the Drosophila olfactory circuit shows that, particularly at the level
of the lateral horn and beyond, the signals from the specialist ORN
classes diverge to many downstream neurons (Huoviala et al., 2020
preprint). This divergence makes sense because most ecologically
important behaviors are both multimodal and plastic – properties
that require extensive integration.
Moth sex pheromones are also specialist odors. A major

component of most moth pheromones, bombykal (Baker and
Hansson, 2016), activates a single ORN type with high specificity.
In many moth species, odor-tracking behavior is elicited by a
specific blend of odors in the correct ratio rather than by a single
compound (Baker, 2008; Berg et al., 2014; Mustaparta, 1997;
Vickers et al., 1991; Vickers, 2002), a characteristic that is important
in ensuring that a male is tracking only its conspecific. One question
is whether a moth waits for the exact blend or whether aspects of the
behavior can be triggered by a non-optimal blend. Existing data
suggest that even in moth species in which the full tracking program
relies on the exact blend, this requirement is less stringent for certain
aspects of the behavior, such as initiation of upwind flight (Vickers,
2002). Moreover, addition of pheromone components from a
closely related species affects some aspects of the tracking motor
program (Mustaparta, 1997; Vickers, 2002; Wu et al., 2015) while
leaving others intact. These data suggest that odor tracking is not
organized as a unitary behavior; rather, it is a result of parallel
sensorimotor loops that connect activity in known ORNs to aspects
of the overall behavior.
The question of whether odor modulation of locomotion is

composed of independent sensorimotor loops was addressed in
targeted experiments designed to ask how different combinations
of active ORNs affect a fly’s locomotion (Jung et al., 2015). The
authors created an arena in which a known combination of ORNs
could be activated, and found that each ORN class only affects a
subset of locomotor behaviors. These results are best interpreted
as a sensory-motor transformation between active ORN classes
and the eventual behavior. As an example, they found that
activating just one ORN class – one containing theOr42b receptor
– affects the run duration. However, a combination of multiple
active ORNs is essential to change the propensity to turn sharply.
Thus, each combination of active ORN classes can be thought of
as a sensory-motor feature that affects a particular aspect of
locomotion, a conclusion supported by another recent study
(Matheson et al., 2022). The olfactory circuits – particularly those
in the lateral horn – are tailor-made to make these sensory motor
transformations.

Conclusions and future work
Over the last few decades, much progress has been made in
discovering the behavioral algorithms that underlie insects’
behavioral response and their neural implementation. This

progress provides a strong framework with which gaps in our
knowledge can be approached.

One deficit is the absence of the complete dataset required to
understand olfactory behavior in nature: simultaneous tracking of
the position of the animal along with the odor stimulus, wind
direction and other sensory signals. With modern techniques to
locate an insect’s position (Knight et al., 2019) and wireless
electronics to sense the environment and measure electrical signals
in real-time (Harrison et al., 2011; Pawson et al., 2020; Thomas
et al., 2012), it seems possible to study odor-guided locomotion in a
natural environment, particularly in the context of large insects.
These datasets, when combined with modern statistical methods
(Datta et al., 2019) for analyzing behavior and the relationship
between neural responses and behavior, have the potential to not
only illuminate odor-guided locomotion in detail, but also to
contribute immensely to our understanding of the inner workings of
the brain.

Another rich area for future work is understanding the neural
implementation of odor-guided behaviors in the brain. Here, recent
progress in Drosophila in generating genetic tools to probe specific
neurons (Luan et al., 2020), to activate and inactivate neurons
(Simpson and Looger, 2018), as well as large-scale datasets
(Dorkenwald et al., 2021) that describe connectivity between
neurons in the brain, enable progress in understanding the
sensorimotor transformation at the level of single neurons.
Finally, great strides have been made in introducing genetic tools
in other insects (Mansourian et al., 2019).

In summary, we predict a productive future for a comparative
approach to understanding odor-guided locomotion using large
insects in field studies, through leveraging the power of genetic
tools and neuroanatomy in Drosophila and, finally, through the
introduction of powerful genetic tools across other insect species.
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Kárpáti, Z., Olsson, S., Hansson, B. S. and Dekker, T. (2010). Inheritance of
central neuroanatomy and physiology related to pheromone preference in the
male European corn borer. BMC Evol. Biol. 10, 1-12. doi:10.1186/1471-2148-10-
286

Kazama, H. and Wilson, R. I. (2009). Origins of correlated activity in an olfactory
circuit. Nat. Neurosci. 12, 1136. doi:10.1038/nn.2376

Keil, T. A. (1989). Fine structure of the pheromone-sensitive sensilla on the antenna
of the hawkmoth. Manduca sexta. Tissue and Cell 21, 139-151. doi:10.1016/
0040-8166(89)90028-1

Kennedy, J. (1983). Zigzagging and casting as a programmed response to wind–
borne odour: a review. Physiol. Entomol. 8, 109-120. doi:10.1111/j.1365-3032.
1983.tb00340.x

Kennedy, J. S. and Marsh, D. (1974). Pheromone-regulated anemotaxis in flying
moths. Science 184, 999-1001. doi:10.1126/science.184.4140.999

Kennedy, J. S., Ludlow, A. R. and Sanders, C. J. (1981). Guidance of flying male
moths by wind-borne sex pheromone. Physiol. Entomol. 6, 395-412. doi:10.1111/
j.1365-3032.1981.tb00655.x

Kirkhart, C. and Scott, K. (2015). Gustatory learning and processing in the
Drosophila mushroom bodies. J. Neurosci. 35, 5950-5958. doi:10.1523/
JNEUROSCI.3930-14.2015

Kirkness, E. F., Haas, B. J., Sun, W., Braig, H. R., Perotti, M. A., Clark, J. M.,
Lee, S. H., Robertson, H. M., Kennedy, R. C. and Elhaik, E. (2010). Genome
sequences of the human body louse and its primary endosymbiont provide
insights into the permanent parasitic lifestyle. Proc. Natl. Acad. Sci. USA 107,
12168-12173. doi:10.1073/pnas.1003379107

Kirschner, S., Kleineidam, C. J., Zube, C., Rybak, J., Grünewald, B. and
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