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ABSTRACT
In a recent editorial, the Editors-in-Chief of Journal of Experimental
Biology argued that consensus building, data sharing, and better
integration across disciplines are needed to address the urgent
scientific challenges posed by climate change. We agree and expand
on the importance of cross-disciplinary integration and transparency
to improve consensus building and advance climate change research
in experimental biology. We investigated reproducible research
practices in experimental biology through a review of open data and
analysis code associated with empirical studies on three debated
paradigms and for unrelated studies published in leading journals
in comparative physiology and behavioural ecology over the last
10 years. Nineteen per cent of studies on the three paradigms had
open data, and 3.2%had open code. Similarly, 12.1%of studies in the
journals we examined had open data, and 3.1% had open code.
Previous research indicates that only 50% of shared datasets are
complete and re-usable, suggesting that fewer than 10% of studies in
experimental biology have usable open data. Encouragingly, our
results indicate that reproducible research practices are increasing
over time, with data sharing rates in some journals reaching 75% in
recent years. Rigorous empirical research in experimental biology is
key to understanding the mechanisms by which climate change
affects organisms, and ultimately promotes evidence-based
conservation policy and practice. We argue that a greater adoption
of open science practices, with a particular focus on FAIR (Findable,
Accessible, Interoperable, Re-usable) data and code, represents a
much-needed paradigm shift towards improved transparency, cross-
disciplinary integration, and consensus building to maximize the
contributions of experimental biologists in addressing the impacts of
environmental change on living organisms.
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Introduction
Tackling the myriad of problems facing global biodiversity resulting
from a changing climate increasingly requires an integrative, cross-
disciplinary, and forward-thinking approach (Franklin and Hoppeler,
2021; Hof, 2021). Studying the impacts of climate change on
organisms was once firmly in the realm of ecologists, but researchers
from all disciplines are now called upon to bring their expertise
forward to address this urgent, global concern. The last two decades
have seen an increasing number of comparative physiologists and
behavioural ecologists (hereafter ‘experimental biologists’) design
studies that propose and test mechanisms underlying the impacts of
global change, such as warming temperatures and ocean acidification
(OA), on a range of organisms (Schulte, 2015; Tresguerres and
Hamilton, 2017). These contributions have advanced our proximate
understanding of the challenges posed by climate change to wild
organisms, especially aquatic ectotherms, and are now being used by
conservation scientists and practitioners to predict the impacts of
future change on areas and species most at risk (Cooke et al., 2017;
Stillman, 2019). Despite experimental biologists embracing this
new role, it remains unclear how ongoing debates and conflicts in
our understanding and interpretation of important climate-related
phenomena should be resolved.

In a recent editorial in the Journal of Experimental Biology,
Franklin and Hoppeler (2021) argued that three practices –
consensus building, data sharing, and cross-disciplinary
integration – are essential to elucidate mechanisms that will help
scientists forecast the effects of global change. Here, we expand on
the challenges and benefits of consensus building to resolve
uncertainty with a focus on three environmental change paradigms
currently being debated by experimental biologists: the oxygen- and
capacity-limited thermal tolerance (OCLTT) hypothesis, gill-
oxygen limitation (GOL) hypothesis, and OA-driven behavioural
changes (see Box 1). We discuss practical strategies for improving
cross-disciplinary integration and transparency in research that
could help consensus building among experimental biologists
conducting global change research.

Building consensus in experimental biology
Understanding how environmental change affects organisms (e.g.
Franklin and Hoppeler, 2021) and using these insights to inform
conservation strategies (e.g. Cooke et al., 2014) is a process that
requires consensus building among scientists. Scientific consensus
can be understood as agreement on a topic by most scientists in a
particular field of study at a given point in time (Pinch and Bijker,
1984). Ideally, agreement is achieved through the contributions
of many different research groups followed by open debate within
the relevant scientific community (Shwed and Bearman, 2010).
Debate necessarily stems from disagreement, which is a common
phenomenon in science (Lamers et al., 2021; Oreskes, 2004) and an
essential step in generating knowledge that is both unbiased and
reliable (cf. falsification; Popper, 1959).
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Researchers studying a phenomenon may disagree for many
reasons, including diverging opinions over the suitability of
methodologies, the quality of datasets, or the interpretation of
results (Dieckmann and Johnson, 2019; Hof, 2021). Provided they
are respectful and done in good faith, disagreement and debate over
scientific observations and their underlying mechanisms are healthy
parts of the scientific process. Indeed, consensus can be built
through attempting to understand and improve on weaknesses,
biases and misinterpretations in the published literature; for
example, by spurring inter- and/or multi-laboratory collaborations
(see ‘Cross-disciplinary integration’, below) and improving how
studies are designed and reported (see ‘Transparency and
reproducibility’, below).

One key challenge to consensus building has been the bias of
scientific journals towards the publication of ‘positive’ results
(findings that support a hypothesis) (Loehle, 1987). Such
publication bias hampers debate by preventing the dissemination
of contradictory evidence that does not support a hypothesis (the
‘file drawer effect’) (Mehta, 2019; Nissen et al., 2016). As a result,
publishing trends that often follow the discovery of an exciting, new
result can give the impression that there is consensus on a topic
when, in reality, negative results are simply less likely to be
published (Browman, 2016; Fanelli, 2012) or attract reader attention
due to publication in lower-profile journals. Decline effects – the
tendency of strong initial scientific findings to lose strength over
time – are an acute symptom of this problem (Clements et al., 2022;
Schooler, 2011), but often go unnoticed to those not intimately
familiar with the field of research in question.

Another challenge to consensus building is the process
of validating results through replication studies (preferably
transparently conducted and reported – see ‘Transparency and
reproducibility’, below). Until recently, replications have been
ostensibly devalued by the scientific community because funding
agencies and journals have a long-standing record of prioritizing
novelty over validation of published results (Brembs, 2019).
Consequently, independent replication studies are difficult to
fund and publish, with few incentives for researchers to undertake
them (Fraser et al., 2019). In ecology and evolution, for instance,
only 0.02% of published papers are described by their authors
as replications (28,000 papers examined across 160 journals;
Kelly, 2019). In reality, the percentage of papers that implicitly
contain some form of conceptual replication is much higher than
0.02%, but researchers typically emphasize novelty rather than
present their work as a replication. The importance of validating
both novel and established findings is clear, considering the
many instances of foundational studies failing to replicate in fields
such as psychology, medicine, economics and biology (Ritchie,
2020). Fortunately, recent work has contributed to identifying
experimental factors that increase replicability, namely large sample
sizes, and method and experimenter heterogeneity (Milcu et al.,
2018; Usui et al., 2021; Voelkl et al., 2018; Voelkl et al., 2021). As
such, the replication potential and generality of highly controlled
experimental studies is likely to be limited, and their results should
be interpreted accordingly.

Faced with these realizations, the scientific community is
increasingly acknowledging the need for journals and funders
to foster healthy scientific debate by valuing negative results
(i.e. avoiding publication bias) and by supporting efforts to
validate published findings (i.e. supporting replication studies).
For example, in a 2017 editorial, the journal Nature explicitly
acknowledged the importance of independent replications and
flagged missing information in papers as a major impediment to the

Box 1. Three hotly debated environmental change
paradigms in experimental biology
(A) Oxygen- and capacity-limited thermal tolerance (OCLTT)
The concept of OCLTT proposes a causal link between whole-animal
performance (fitness) and the capacity of the cardiorespiratory system to
supply tissues with oxygen for physiological functions (Pörtner, 2010).
OCLTT is based on the Fry paradigm (Fry, 1947), which describes how
temperature affects aerobic scope, using rates of oxygen consumption
as a proxy for aerobic metabolism. Aerobic scope is the difference
between the maximum oxygen consumption rate and the standard
oxygen consumption rate, and it quantifies the oxygen available for
physiological functions beyond standard maintenance functions. OCLTT
was first proposed as a ‘unifying concept’ in 2001 (Pörtner, 2001).
Since then, the proposed causal link between oxygen supply capacity
and animal performance has been extended to also include population
performance at the ecosystem level (Pörtner, 2010; Pörtner, 2021;
Pörtner and Farrell, 2008; Pörtner and Knust, 2007; Pörtner et al., 2017).
As a result, OCLTT has been incorporated into ecological species
distribution models and reports by the Intergovernmental Panel on
Climate Change (Pörtner and Peck, 2010; Pörtner et al., 2014).
However, the causal links proposed in OCLTT and the general
applicability of the concept across aquatic ectotherms are debated
(Clark et al., 2013; Ern et al., 2016; Jutfelt et al., 2018; Norin et al., 2014).

(B) Gill-oxygen limitation (GOL)
The GOL hypothesis (or ‘theory’, GOLT) was first proposed decades ago
(Pauly, 1981), but interest in the concept has increased in recent years
as a potentially universal explanation for the observed decline in body
size of fishes and other aquatic ectotherms with warming (termed the
temperature–size rule, TSR; Angilletta and Dunham, 2003; Audzijonyte
et al., 2016; Pauly, 2021; Pauly and Cheung, 2018a). The GOL
hypothesis proposes that as aquatic ectotherms, like fishes, get larger
(within and across species), their gill surface area is unable to increase
sufficiently with their body size and metabolic rate; this inhibits oxygen
uptake capacity relative to metabolic requirements, which in turns slows
the animal’s growth as they get larger (Pauly and Cheung, 2018b; Pauly,
2021). TheGOL hypothesis is closely related to theOCLTT hypothesis in
that they both posit that the amount of oxygen supply to tissues is an
important mechanism that determines fitness, with a specific focus on
growth in the case of GOL. However, comparative physiologists have
argued that there is sufficient evidence in the physiological literature to
reject the GOL hypothesis (Lefevre et al., 2017). Subsequent papers
have continued the discussion about the merits of the GOL hypothesis
(Audzijonyte et al., 2019; Lefevre et al., 2018; Marshall and White, 2019;
Pauly, 2021; Pauly and Cheung, 2018a,b), and researchers have since
begun directly and indirectly testing the hypothesis using new
experiments and previously collected data (Bigman et al., 2021;
Christensen et al., 2020; Meyer and Schill, 2021; Scheuffele et al.,
2021; Shapiro Goldberg et al., 2019).

(C) Ocean acidification (OA)-driven behavioural change
After decades of research showing that fish were resilient to very elevated
PCO2 levels (e.g. 10 times end-of-century forecasts) (Ishimatsu et al.,
2005;Melzner et al., 2009), renewed interest in this field grew froma series
of publications reporting profoundly maladaptive effects of short-term
exposures to end-of-century PCO2 (∼1000 μatm) on the behaviour of coral
reef fishes, particularly homing and predator avoidance (Dixson et al.,
2010; Munday et al., 2009a; Munday et al., 2010). In subsequent years,
mechanistic drivers of these maladaptive behavioural effects were
proposed, including alterations to GABAA neurotransmission and/or
olfactory organ physiology (Leduc et al., 2013; Nilsson et al., 2012),
along with molecular changes to chemical cues in the environment
(Roggatz et al., 2016). More recent studies have cast doubt on the severity
and universality of acidification effects on fish behaviour (Clark et al.,
2020a), and a decade ofwork in the field exhibits signs of a ‘decline effect’,
whereby the strong initial effect sizes reported in early studies have all but
disappeared over the past 5 years (Clements et al., 2022). The extent and
degree to which aquatic acidification affects the behaviour of ectotherms
remains a debate in the field (Clark et al., 2020b; Munday et al., 2020;
Williamson et al., 2021).
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self-correcting nature of science (Nature Editorial, 2017). In the
Netherlands, funders are leading in this regard and are taking a
strong stance towards promoting research transparency and
replication: in 2018, the country’s main funding body published
an advisory report arguing that more funds must be allotted to
replication studies, and that researchers who undertake replication
efforts must be given greater credit by their institutions (Royal
Netherlands Academy of Arts and Sciences, 2018).
Replications are beginning to be valued more highly than in the

past and are an important part of resolving scientific debates.
However, debates themselves have benefits and drawbacks,
depending on how they unfold. For example, debates about the
OCLTT, GOL and OA-driven behavioural change, among others,
have led to stalemates rather than efforts by interested parties to seek
consensus (e.g. Clark et al., 2020a; Munday et al., 2014b; Pörtner
et al., 2018;Williamson et al., 2021). Various reasons might explain
this outcome, and the failure of debates to achieve a constructive and
open-minded tone is not unique to these examples, this generation
of scientists, or to the natural sciences specifically (e.g. the Bone
wars in paleontology in the late 19th century, or Monetarist–
Keynesian debates in economics). For example, researchers setting
out to independently validate or replicate others’ results may be
perceived negatively by the original study researchers and other
scientists (Vazire, 2019). In these situations, researchers with valid
scientific intentions risk being portrayed as contrarians (Jamieson
et al., 2019). Ultimately, however, generating, (re)testing, and
challenging hypotheses are all essential and legitimate scientific
endeavours (Merton, 1973; Oreskes, 2004). Scientists of all career
stages should welcome transparent, independent replication of their
work. Each of these steps must be done in good faith and in a spirit
of openness and transparency to ensure that the information
produced is robust and credible (Browman, 2016; Song et al., 2021).
Scientists must remind themselves that the fundamental objective

of research is to advance knowledge (O’Dea et al., 2021). A
productive debate is one that produces testable hypotheses and
trusted results through rigorous and transparent empirical evidence
(Jamieson et al., 2019). As a general rule, consensus building is
possible when proponents and detractors of scientific ideas abide by
this principle.

Cross-disciplinary integration
Recognition that climates are changing, species are disappearing,
and organismal ranges are shifting has led to the emergence of
new fields such as global change biology, conservation physiology,
and conservation behaviour. These fields explicitly recognize
the importance of mechanistic approaches to understand how
organisms are affected by human activities and to inform policy and
practice for conserving them (Buchholz, 2007; Cooke et al., 2014).
Methods in experimental biology are increasingly being applied
to address complex questions across disciplines and levels of
biological organization (Hof, 2021). This integration allows
researchers to link broad biological patterns with underlying
physiological mechanisms to better understand and predict how
organisms will respond to environmental change (Pörtner et al.,
2006; Stillman, 2019).
Despite these benefits, cross-disciplinary integration also has

risks. One risk is researchers venturing into new fields without the
necessary expertise, which can lead to poorly designed experiments,
inappropriate methods, and misinterpreted results. The growing
number of papers, special issues and journals dedicated to method
descriptions and validations speaks to the frustration felt by many
experimental biologists at the poor execution and reporting of many

experiments in global change biology (e.g. Chabot et al., 2016;
Clark et al., 2013; Cornwall and Hurd, 2016; Jutfelt et al., 2017;
Killen et al., 2021; Moran, 2014; Roche et al., 2020). In the context
of the three paradigms discussed in Box 1, debates between their
proponents and detractors have highlighted the need for more
rigorous and collaborative interdisciplinary work to inform research
questions.

Firstly, cross-disciplinary integration can be problematic when
mechanistic explanations developed to test ideas in a specific field
of study are then generalized broadly across disciplines. For
example, the OCLTT hypothesis was originally formulated to make
predictions about the metabolic performance of ectotherms as a
function of temperature; however, it has since considerably
expanded in scope, with proponents suggesting that a wide range
of taxa, including endotherms, humans and their societies, may
follow the same general rules (Pörtner, 2021). Despite the appeal of
OCLTT as a simple, over-arching mechanism, critics have argued
that the concepts and terminology at its core are becoming
increasingly vague and untestable (Jutfelt et al., 2018). Resolving
this debate will benefit from greater cross-disciplinary integration
and ‘building bridges between disciplines such as physiology and
ecology, to develop more precise conclusions and to avoid
conceptual ambiguities’ (Pörtner, 2021).

A second risk of cross-disciplinary integration is when potentially
erroneous mechanistic explanations are put forth by non-specialists
as a ‘silver bullet’ to explain complex global phenomena. For
instance, the GOL hypothesis was developed in the field of fisheries
research to explain observed trends in fish size from principles
of fish morphology and physiology. Although the idea has received
considerable attention in high-impact, generalist journals and
from fisheries biologists, the underlying principles have been
questioned by fish physiologists, highlighting a lack of effective
cross-disciplinary integration (Box 1). Detractors of the GOL
hypothesis argue that adopting a rigorous interdisciplinary
approach – in this case contributing a fundamental understanding
of physiological principles to fisheries research – can inform
whether climate-related hypotheses such as GOL are scientifically
sound and worth pursuing (Lefevre et al., 2021).

Third, cross-disciplinary integration can be problematic when
researchers apply methods and techniques frommany different fields
to test hypotheses without involving experts from each field or using
methodological best practices. For example, research examining the
effects of OA on fish behaviour (particularly in coral reef fishes)
spans multiple disciplines including behavioural ecology (Munday
et al., 2014a; Welch et al., 2014), ecophysiology (Laubenstein et al.,
2019; Munday et al., 2009a), sensory biology (Chung et al., 2014;
Ferrari et al., 2012; Munday et al., 2009b), neurobiology (Chivers
et al., 2014; Heuer et al., 2016; Schunter et al., 2019), chemical
ecology (Dixson et al., 2010; Ferrari et al., 2011) and molecular
biology (Schunter et al., 2018; Tsang et al., 2020). Thus, the potential
for cross-disciplinary integration in this field is considerable, with
researchers having worked to gain a broad understanding of OA-
related patterns and mechanisms. Yet, despite the benefits of this
integrative approach, concerns have been raised over the rigour and
reliability of experimental studies in the field (e.g. Browman, 2016;
Clark et al., 2020a). These issues include flawed experimental
designs (Cornwall and Hurd, 2016), inaccurate water chemistry
measurements (Moran, 2014), lack of video recording and automated
tracking (to remove experimenter bias and increase reproducibility;
Clark, 2017), flawed methodologies (e.g. closed respirometry and
unreliable choice tests; Clark et al., 2013; Jutfelt et al., 2017), and
inadequate statistical analyses (Roche et al., 2020). These problems
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can (and should) be avoided by collaborating with researchers with
relevant expertise and/or investing time and effort to adequately learn
methods used in other fields.
Arguably, the most effective way to engage in cross-disciplinary

integration is to mindfully seek out collaborations with researchers
possessing complementary skill sets (Hof, 2021). This sounds easy in
theory; however, in practice, forging new collaborations with experts
can be difficult, in part because opportunities to interact with
researchers across disciplines and geographical regions are limited.
Scientific conferences are often specialized, and thus not attended by
researchers across disciplines. Large conferences may attract more
participants, but talk sessions still often revolve around a narrow
theme of interest. As a result, researchers from different disciplines
often attend different conferences or conference sessions, read and
publish in different journals, and use their own field-specific jargon
when referring to similar phenomena. In addition, attending
international conferences comes with a large price tag, which often
limits participation from researchers from under-funded institutions
and countries (Sarabipour et al., 2021). Fortunately, the recent
and rapid rise in communications technologies, particularly during
the COVID-19 pandemic, has normalized virtual meetings and
unconferences (e.g. hackathons), allowing researchers to more easily
reach out to colleagues, exchange ideas, and develop diverse
networks of mentors and collaborators from across a range of
geographical regions (Huppenkothen et al., 2018; Korbel and Stegle,
2020; Sarabipour et al., 2021).
Several other avenues are available for experimental biologists to

engage in cross-disciplinary research when collaboration is not
possible. The emergence of open platforms dedicated to sharing
methodological information (e.g. protocols.io, Protocol Exchange,
STAR protocols), the release of open software to acquire and
process data (e.g. Harianto et al., 2019; Sridhar et al., 2019), and a
growing number of articles outlining methods and reporting
guidelines (e.g. Chabot et al., 2016; Killen et al., 2021; Norin and
Clark, 2016) all provide readily available resources for researchers
to incorporate best practices and new techniques into their skill set
(Baker, 2021). While those resources offer useful starting points, it
can often be useful to consult directly with experts for detailed
technical advice when using a technique or tool for the first time.
Consulting with colleagues is one valid option to obtain

feedback, but more formal avenues are now available for
researchers seeking independent expert comments on planned
experiments before they begin. First, authors can submit a registered
report. Registered reports are a publication format currently offered

by over 300 journals (https://www.cos.io/initiatives/registered-
reports); they focus on the validity of the research question and
methodology rather than the study results. Peer review begins prior
to the data collection and rigorous protocols are provisionally
accepted for publication if the authors follow through with their
registered methodology (Parker et al., 2019). Second, authors can
hire an independent ‘red team’, the concept of which originates from
cyber security, where ethical hackers (the red team) challenge a blue
team of security professionals charged with maintaining network
defences against cyber attacks. In science, researchers (the blue
team) send methods, analyses, or an entire manuscript to a red team
service (e.g. https://redteammarket.com), which designates field-
specific experts to identify potential weaknesses in the work.
Calling on a red team for feedback is more flexible than submitting a
registered report because users pay a fee to receive an independent,
expert evaluation of their work at any point in the study
development. Whereas registered reports are intended to evaluate
a research project from start to finish, the red team approach allows
users to seek advice on any component of their project (e.g.
experimental design, statistical analyses, laboratory manipulations)
based on their specific needs and budget. In both cases, having
research protocols expertly assessed prior to data collection helps
researchers who venture outside their field of expertise to ensure that
their methods are rigorous and appropriate to answer their question
of interest.

Table 1. The percentage of studies in comparative physiology journals,
behavioural ecology journals, and on the OCLTT, GOL and OA-driven
behavioural change paradigms with open data and open code

Journal/topic Years
No. of
studies

% Open
data

% Open
code

J. Comp. Physiol. B 2010–2021 120 4.1 (5) 0.0 (0)
J. Exp. Biol. 2010–2021 120 18.3 (22) 1.7 (2)
J. Exp. Zool. A 2010–2021 120 4.2 (5) 0.8 (1)
Physiol. Biochem. Zool. 2010–2021 120 5.8 (7) 1.7 (2)
Anim. Behav. 2010–2021 120 9.9 (12) 3.3 (4)
Behav. Ecol. 2010–2021 120 35.0 (42) 8.3 (10)
Behav. Ecol. Sociobiol. 2010–2021 120 15.8 (19) 8.3 (10)
Ethology 2010–2021 120 3.3 (4) 1.7 (2)
OCLTT 2001–2021 532 16.4 (87) 3.2 (17)
GOL 2014–2021 10 60.0 (6) 10.0 (1)
OA 2010–2021 186 24.2 (45) 2.7 (5)

The number of studies is indicated in parentheses. OCLTT, oxygen- and
capacity-limited thermal tolerance; GOL, gill-oxygen limitation; OA, ocean
acidification.
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Fig. 1. Change over time in the percentage of studies
with open data on the oxygen- and capacity-limited
thermal tolerance (OCLTT) and OA-driven behavioural
change (OA) paradigms. Only years with 10 or more
articles are shown. Only 10 empirical studies have focused
on the gill-oxygen limitation (GOL) paradigm, so no temporal
trend is displayed for GOL.
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Ultimately, engaging in effective cross-disciplinary integration
requires that researchers be mindful of their own expertise limits
and, when possible, seek out knowledgeable collaborators when
venturing outside their field. Open science initiatives, such as open
protocols and software, registered reports, and red teams, can
facilitate integrative research and consensus building by promoting
rigorous, objective and transparent research. Some of our proposed
solutions may be more available to better-funded research teams. As
a community, it is important that we recognize how differential
access to resources may impact the ability to implement the changes
we suggest, and to mindfully develop ways in which we can more
actively engage and encourage participation with our under-
represented and under-funded colleagues (e.g. Caravaggi et al.,
2021; Sarabipour et al., 2021).

Transparency and reproducibility
Working collaboratively to increase the reliability and impact of
studies in experimental biology requires not only more mindful
cross-disciplinary integration but also greater transparency
throughout the process of data generation, extraction, analysis and
interpretation. Experimental biology is an empirical discipline.
Thus, debates may be more easily resolved with data. When data are
collected and shared transparently, this fosters trust (Jamieson et al.,
2019) and helps science advance more rapidly and reliably by
allowing independent research groups to more easily understand,
validate and build on previous results (Moher et al., 2018; Nosek

et al., 2015; Parker et al., 2016). For these reasons, many scientists
(O’Dea et al., 2021), funding agencies (Schiermeier, 2018)
and journal editors (Bakker and Traniello, 2020; Simmons, 2016)
now strongly advocate measures that encourage and/or require
greater transparency in published research. This includes publicly
sharing data underlying published results (i.e. open data; Caetano
and Aisenberg, 2014; Ihle et al., 2017), preferably at the time of
peer review so analytical errors can be identified and fixed
prior to publication (Fernández-Juricic, 2021). Recent surveys
report that 55% of researchers believe funders should make data
sharing part of their grant requirements (n>4500 international
respondents; Digital Science et al., 2020) and 78% of Canada-based
faculty members in ecology and evolution support mandatory
open data policies by journals (n=140 respondents at Canadian
Universities; Soeharjono and Roche, 2021). This growing support
for wider data sharing mandates is spurred, in large part, by the
continuing reproducibility crisis in science (Ritchie, 2020) and a
sense that, despite the highly competitive nature of academia, a
collaborative and open approach to research ultimately benefits both
society and individual researchers (Hunt, 2019; McKiernan et al.,
2016).

To date, efforts to increase transparency in research have
primarily focused on open data, with less attention devoted to
other, yet equally important reproducibility materials. One such
material is the script or code used for processing and analysing data
(i.e. open code) – for example to produce the tables, figures and
statistics presented in a paper (Culina et al., 2020; Mislan et al.,
2016). Until recently, technological limitations made it challenging
for researchers to share the decisions and steps involved in their data
analysis. For example, many commonly used statistical software
packages rely on a graphical user interface (GUI), making it difficult
for users to share and reproduce analyses (e.g. SPSS, JMP, Minitab,
SigmaPlot). However, the last two decades have witnessed a surge
in the uptake of command-based software to analyse biological data,
readily allowing researchers to openly share annotated analysis code
(Mislan et al., 2016). In ecology, for example, the use of the R
programming language for data analysis increased linearly from
11.4 to 58.0% between 2008 and 2017 (Lai et al., 2019). When
combined with open data, open code is a powerful tool for
validating results and building on previous studies to answer new
and often broader research questions (Barnes, 2010; Stodden et al.,
2018).

To examine the contributions of reproducible research practices
for advancing consensus building in experimental biology, we
investigated the prevalence of open data and code associated with
empirical studies on the OCLTT, GOL and OA-driven behavioural
change paradigms (Box 1) as well as in eight journals publishing
research in comparative physiology (Journal of Experimental
Biology, Journal of Experimental Zoology Part A, Physiological
and Biochemical Zoology and Comparative Biochemistry and
Physiology Part B) and behavioural ecology (Animal Behaviour,
Behavioral Ecology, Behavioral Ecology and Sociobiology and
Ethology). We identified 532 published studies on the OCLTT
hypothesis, 10 on the GOL hypothesis, and 186 on OA-driven
behavioural change between 2001 and 2021 (see ‘Methods’, below;
note that 66% of studies were published after 2014). Approximately
one-fifth (19.0%) of studies we examined on these paradigms had
associated open data, and fewer than one in 30 studies (3.2%) had
open code (see Table 1 for a breakdown by paradigm). These
numbers are slightly higher than the overall availability of open data
(12.1%) and comparable to the availability of open code (3.1%) for
studies published in the eight leading comparative physiology and
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behavioural ecology journals between 2010 and 2021 (Table 1;
Table S1). In contrast, they are markedly lower than the prevalence
of open data (73%) and code (27%) reported for ecological studies
on other topics published within a comparable time frame (n=346
studies published in 14 journals that recommend or require open
data/code between 2015 and 2019; Culina et al., 2020), highlighting
notable differences among disciplines.

Encouragingly, our data show that the percentage of empirical
papers with open data in comparative physiology, behavioural
ecology, and on the OCLTT hypothesis and OA-driven behavioural
change is increasing over time (Figs 1 and 2). Notable differences
exist among journals (Fig. 2), but the overall trend suggests that a
growing number of experimental biologists working on these topics
are complying with editorial open data policies and/or supporting
efforts to improve transparency. One caveat to this finding is that
not all open data are FAIR (i.e. Findable, Accessible, Interoperable,
and Re-usable; Box 2). Indeed, recent studies suggest that
approximately 50% of open datasets shared by researchers in
ecology and evolution are incomplete or uninterpretable (Roche
et al., 2015; Roche et al., 2021 preprint), which considerably limits
transparency and computational reproducibility (i.e. the ability to
reproduce a study’s results with the associated data and code). This
consideration effectively means that fewer than 10% of studies in
experimental biology have open data that would allow an
independent assessment of their conclusions.

Without access to data and code, readers must rely on the authors’
interpretation of a study’s data (Fig. 3). This is problematic for all
studies, but particularly in the context of debated topics because
transparent and trusted evidence is critical for consensus building (see
Jamieson et al., 2019). Although open data is increasingly the norm in
many disciplines in biology, it remains a relatively new practice. As a
result, many more established researchers have not received formal
training in best practices for archiving high quality, FAIR data.
Research on data sharing suggests that journal policies lead to more
open data (Vines et al., 2013), but that education, training and
technical support are important to ensure high quality, FAIR sharing
(Soeharjono and Roche, 2021; Roche et al., 2021 preprint).
Fortunately, an increasing number of courses and workshops aimed
at teaching reproducible research practices are available for
researchers at all career stages (Table S2). It is important to note
that engaging in research practices that promote transparency and
reproducibility can be done in a stepwise fashion. Researchers cannot
be expected to go from zero to hero overnight – rather, a sensible
approach is to adopt practices with the fewest logistic and monetary
hurdles (e.g. open data) and progress from there based on access to
resources, training and comfort level (see resources in Box 3). We
must also be careful as a community not to shame researchers who
engage in open and transparent research practices in good faith if
problems or omissions in shared materials are detected. Recognizing
that adopting transparent and reproducible research practices can be a
steep learning curve is necessary to foster a culture of trust, belonging
and pride as experimental biology moves towards increased
openness.

Conclusion
Experimental biology is now firmly at the forefront in predicting the
ecological impacts of environmental change on organisms.
However, debates among researchers on topics such as OCLTT,
GOL and OA-driven behavioural change linger and are beginning
to show signs of ‘theory tenacity’: the persistent belief in a theory
even in the face of contradictory evidence (Duarte et al., 2015;
Loehle, 1987). Rather than embodying the open mind expected
of scientists, ‘theory tenacity tends to make opposing camps
dig their trenches deeper’ (Loehle, 1987). Resolving debate and
building consensus on these topics requires that scientific
discussions and research be undertaken in a spirit of good faith,
with the objective of resolving disagreement using robust empirical
evidence and best practices in experimental design and analysis
(see Hoekstra and Vazire, 2021). Achieving this requires all

Box 2. The what and how of FAIR sharing
The FAIR sharing principles were established in 2016 as guidelines to
improve the Findability, Accessibility, Interoperability and Re-use of
digital materials such as data and code (Wilkinson et al., 2016). The
principles emphasize machine-actionability, and the capacity of
computational systems to find, access, interoperate and re-use digital
materials with minimal human intervention (see www.go-fair.org). For
some fields and/or researchers, sharing machine-actionable data can be
challenging, particularly if technical support is lacking. In these cases,
researchers should strive to share open data that can readily be found,
accessed and re-used by humans (i.e. human-actionable).

Making data ‘findable’ requires archiving them on an indexed,
searchable public data repository. Preferred repositories comply with
the TRUST Principles for digital repositories (Lin et al., 2020) and can
readily be searched via data aggregators such as DataOne, DataCite or
Google Dataset Search. Zenodo (https://zenodo.org) and Figshare
(https://figshare.com) are examples of trusted repositories that accept
data from any discipline at no cost to users. Archiving data on a public
repository is preferred to sharing data as supplementary material
because the latter are not easily findable and are often behind a
publisher paywall (i.e. not accessible).

Making data ‘accessible’ requires that open datasets be complete (i.e.
all the variables used in a study for the statistical analyses, figures,
tables, etc. are present in the dataset) and easy to download. Archiving
datasets using non-proprietary file formats (e.g. .txt or .csv) promotes
accessibility as proprietary file formats (e.g. .mat, .sav, .arc) require a
software licence to open and edit. When data for a study have been
compiled from third party databases (e.g. meteorological data,
distribution data, morphology data), researchers should archive the
subset of the data used (licences often allow this; if unclear, permission
can be sought) or archive the code used to extract the data from the
database. Large databases are frequently updated with new data and
can be difficult to navigate, making it difficult for users without sufficient
information to access specific subsets of the data used in a study.

Making data ‘interoperable’ requires using file formats that are readily
compatible with different software (e.g. .txt, .csv) and established
standards for sharing data when available. For example, Darwin Core is
a standard for sharing biological diversity data using agreed-upon
identifiers, labels, and definitions (https://dwc.tdwg.org). The Ecological
Metadata Language is a community-maintained specification with a
vocabulary and syntax for sharing research data in environmental science
(https://eml.ecoinformatics.org). Several other communities of practice
have developed ‘minimum information standards’with field and vocabulary
standards to facilitate integrating datasets (e.g. Rund et al., 2019).

Making data ‘re-usable’ requires publishing the data under a licence
that facilitates re-use (https://creativecommons.org/licenses) and
providing comprehensive metadata (typically a text file describing the
data) allowing (re)users to understand the data. Metadata are used to
describe the provenance of the data (e.g. who created them, what other
materials are they associated with) and information such as column
headings, abbreviations, units of measurement, and missing data. Data
re-usability also hinges on the data being in unprocessed form and many
of the factors that promote interoperability, such as the use of non-
proprietary file formats, vocabulary standards and spreadsheet
organization (e.g. Tidy data; https://r4ds.had.co.nz/tidy-data.html). For
example, colour coding and cell formatting in Excel files are problematic
for re-usability because these features are lost or can lead to errors when
Excel files are converted to other formats such as .csv and .txt.
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experimental biologists to engage in mindful cross-disciplinary
integration and adopt collaborative research practices that
foster transparency and reproducibility. In some instances, the
perception that parties involved in a debate are not engaging in
good faith can lead to a breakdown in trust and outright conflict.
In such situations, when collaboration is no longer possible,
transparency and reproducibility become the most important
arbiters of debate.
We hope that a greater adoption of open science practices, with a

particular focus on FAIR data and code, will lead to a much-needed
paradigm shift towards improved transparency, cross-disciplinary
integration, and consensus building in experimental biology to
maximize the contributions of researchers in addressing the impacts
of climate change on organisms.

Methods
We investigated the availability of open data and analysis code
associated with: (1) studies that contribute to advancing our
understanding of three debated paradigms investigating the
impacts of climate change on aquatic ectotherms (Box 1), and (2)
studies published in leading comparative physiology and
behavioural ecology journals between 2000 and 2021 (Table 1).
Regarding the three paradigms of interest, studies were

systematically identified via a forward reference search of journal
articles citing foundational papers for each of the three paradigms:
OCLTT (Deutsch et al., 2015; Frederich and Pörtner, 2000; Pörtner,
2001, 2010, 2012; Pörtner and Farrell, 2008; Pörtner and Knust,
2007; Pörtner and Peck, 2010; Pörtner et al., 2017), GOL (Cheung
et al., 2013; Lefevre et al., 2017; Pauly, 1998; Pauly and Cheung,
2018b), and OA-driven behavioural changes (Dixson et al., 2010;

Munday et al., 2009b, 2010; Nilsson et al., 2012). The forward
searches were conducted in Web of Science on 4 June 2021 and
yielded a total of 3541, 543 and 804 citations for each paradigm,
respectively, after removing duplicates (Table S3). We used the
software Rayyan (https://rayyan.ai; Ouzzani et al., 2016) to narrow
our search and identify relevant papers from within each list
using keywords present in article titles and abstracts. The keywords
used to screen papers are listed in Table S4. When a keyword
was present in a paper’s title and/or abstract, we manually
reviewed the article to determine its suitability for our analysis.
An article was deemed suitable when it reported data and results
considered to advance our understanding of one of the three
paradigms mentioned above. Several articles identified in our
forward reference searches contributed relevant and valuable
evidence for testing the three paradigms without the authors
explicitly stating that they had tested those paradigms. Meta-
analyses and theoretical studies using empirical data were included
in our analysis; we excluded theoretical studies based on
simulations (as these rely on code but not empirical data), and
papers where therewould be no expectation of underlying data, such
as reviews, comments and perspectives.

For studies in comparative physiology and behavioural ecology,
we chose four representative journals in each of the two disciplines
(Table 1) and examined the availability of data and code for the first
10 articles published each year between 2010 and 2021. We
excluded article types such as reviews, perspectives and other types
of contributions where there would be no expectation of underlying
data.

Once the final list of articles was completed in both cases, we
manually screened each article and its associated supplementary

Plan
Devise experimental/
statistical design and

data management
plan (DMP) Create

Collect and
store data,

describe with
metadata

Process
Check, validate,

clean, and
manipulate raw
data using code

Analyse
Analyse data
using code,

produce research
outputs

Preserve
Archive data,

metadata, and
annotated code

on repository

Share
Obtain permanent

identifier (e.g.
doi) and share
data publicly

Re-use
Benefit from open
data for research,

teaching and
learning

Fig. 3. The open data lifecycle. Steps that
contribute to transparency and reproducibility
beyond the traditional research data lifecycle are
shown in white text. When sharing open data and
code, researchers contribute to improving scientific
rigor and benefit from streamlining their workflow
(they can re-use their data more easily) and
receiving credit when their data/code are re-used
(open materials are citeable via permanent
identifiers such as doi numbers). Numerous funding
agencies and academic institutions have signed the
Declaration on Research Assessment (DORA),
recognizing open data and code as important
scientific contributions (https://sfdora.org).
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material for the presence of: (1) a data availability (or accessibility)
statement; (2) open data (i.e. publicly available data that could be
inputed into software to produce tables, figures or statistical results);
and (3) open code (publicly available script or code used to produce
tables, figures or descriptive/inferential statistics). We only recorded
the availability of open data and code, not whether these materials
were complete (i.e. contained all the variables measured and used in
all the analyses presented in a study) and interoperable/easily re-
usable (i.e. had associated metadata and were shared in a non-
proprietary, machine-readable format).
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Pörtner, H.-O. (2012). Integrating climate-related stressor effects on marine
organisms: unifying principles linking molecule to ecosystem-level changes.
Mar. Ecol. Prog. Ser. 470, 273-290. doi:10.3354/meps10123
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