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ABSTRACT
Comparative analyses have a long history of macro-ecological and -
evolutionary approaches to understand structure, function,
mechanism and constraint. As the pace of science accelerates,
there is ever-increasing access to diverse types of data and open
access databases that are enabling and inspiring new research.
Whether conducting a species-level trait-based analysis or a formal
meta-analysis of study effect sizes, comparative approaches share a
common reliance on reliable, carefully curated databases. Unlike
manyscientific endeavors, building a database is a process that many
researchers undertake infrequently and in which we are not formally
trained. This Commentary provides an introduction to building
databases for comparative analyses and highlights challenges and
solutions that the authors of this Commentary have faced in their own
experiences.We focus on four major tips: (1) carefully strategizing the
literature search; (2) structuring databases for multiple use;
(3) establishing version control within (and beyond) your study; and
(4) the importance of making databases accessible. We highlight how
one’s approach to these tasks often depends on the goal of the study
and the nature of the data. Finally, we assert that the curation of
single-question databases has several disadvantages: it limits the
possibility of using databases for multiple purposes and decreases
efficiency due to independent researchers repeatedly sifting through
large volumes of raw information. We argue that curating databases
that are broader than one research question can provide a large return
on investment, and that research fields could increase efficiency if
community curation of databases was established.

KEY WORDS: Biomechanics, Morphology, Open science,
Phylogenetics, Physiology, Systematic review

Introduction
Comparative studies have long been inspired by scientific questions
seeking patterns or insights that cannot be answered with a single
species (Schmidt-Nielsen, 1972; Schmidt-Nielsen, 1975; Somero,
2000; Seebacher et al., 2015; Geange et al., 2021). These
approaches may address common mechanistic processes, reveal

constraints on traits, highlight trade-offs in resource allocation and
functional design, and generate new hypotheses (e.g. Brown et al.,
2004; Vogel, 2008; Pörtner et al., 2017). As such, they can provide
major advances in biology, particularly in the fields of physiology
and biomechanics. Comparative studies typically rely on high-
quality data sourced from many independent empirical studies
(Davidson et al., 2011; Muñoz and Price, 2019). Compiling these
data into a database can be an arduous process with many pitfalls.
However, careful consideration of the challenges and trade-offs can
lead to a useful and effective database with enduring benefits to the
research field (Whitlock, 2011; White et al., 2013).

Many decisions in database curation depend on the form of
comparative research being undertaken (Fig. 1). First, analyses of
comparative trait data (hereafter ‘trait-based analyses’) examine
specific traits collected at a species or population level, typically
aimed at questions of macro-ecological or -evolutionary interest
(e.g. physiological scaling relationships; Francis et al., 2018; White
et al., 2019). Second, meta-analyses estimate the overall strength of
evidence for a particular hypothesized effect by examining
associations within many independent studies that have each
addressed the hypothesis (e.g. effect of the environment on
physiology and phenotype; Noble et al., 2018a; Gunderson and
Stillman, 2015; Iglesias-Carrasco et al., 2020; Wu and Seebacher,
2020). Finally, qualitative comparative reviews of a research
question provide synthesis of a topic and data, but do not present
analyses of data (e.g. Vitousek et al., 2018a, Bodensteiner et al.,
2021). The approach used influences whether the most relevant data
are observational or experimental, and whether databases must be
compiled de novo from primary studies or involve extracting
data from taxonomic compendia or other accessible databases
(Fig. 1). Importantly, the form of comparative study has profound
implications for database-building that begin immediately during
the searching and filtering process, through decisions regarding the
structure of a database, and the duration of curation.

Despite the eccentricity of each database, all databases share
some major challenges that create trade-offs for researchers as well
as the research field. We highlight three over-arching and inter-
related challenges that span multiple stages of database curation and
that will motivate our tips. (1) Curating a database requires large
effort. The time commitment required usually demands that a team
of researchers collaborate on the project. (2) Much effort goes into
discarding information. Resources need to be screened for data that
are relevant and meet quality thresholds. Thus, only a small
proportion of information screened will be retained for the database.
Over time, multiple researchers repeatedly screen the same
information leading to repeated effort within the field. (3) A
database may only have immediate utility for a single study. All
databases should have certain qualities about them: transparency,
(re)usability and reproducibility (Borries et al., 2016; Wilkinson
et al., 2016). However, trade-offs between effort and utility typically
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lead to single-use structures in databases as a matter of efficiency for
a specific research question.
Most researchers undertaking comparative analyses, including

ourselves, are biologists with little training in database curation. The
effort and challenges of compiling a quantitative database may
partly explain why qualitative reviews (literature and systematic
reviews) remain vastly more common than quantitative reviews
across physiology and biomechanics journals (Fig. 2A). Meta-
analyses, in particular, remain under-utilized in comparative
physiology and biomechanics. Although meta-analysis studies
appear to be more commonly published in broader-audience
journals rather than discipline journals, they remain modest in
number, especially if other types of reviews are similarly enriched in
the broad-audience journals [Fig. 2A; Noble et al., 2022 (this
issue)]. In this Commentary, we aim to lower the barrier to all types
of quantitative reviews by providing tips for building a database that
are based on our experiences and perspectives (Fig. 1). By
navigating the trade-offs associated with database creation,
researchers can efficiently curate a database that is effective for
the current research question, supports immediate additional
studies, and inspires new inquiry by other researchers.

Tip 1: strategize your search
Comparative analyses often begin with exploratory perusals through
known published papers or datasets. This exploration phase can
help refine the research question(s), optimize search terms, and

strategize data extraction (Stewart et al., 2013). However, it is best to
step back after exploration and develop a search strategy before
beginning the formal search (Côté et al., 2013; Foo et al., 2021
preprint). This refinement is of critical importance to consider how
best to match your search with your identified inclusion criteria and
the analytical approach. The quality of comparative science can be
impacted early in the searching stage.

Comparative analyses aim to include all relevant, quality data,
and thus begin with a methodical search. By this stage, the search
terms, exclusion and inclusion criteria, the type of data (see Fig. 1)
and the key variables to be extracted from the original sources
should be clearly defined (Côté et al., 2013; Forero et al., 2019). To
reduce the chances of overlooking relevant data, it is usually
recommended to use several bibliographical databases, such as
Google Scholar, Web of Science, PubMed or Scopus (Falagas et al.,
2008; Forero et al., 2019). In addition, it is advisable to search
forwards (for papers that cite the original study) and backwards (for
previous papers that the original study cited) on influential reviews
on the topic. It is also useful to target unpublished data and grey
literature – as far as the quality of the data remain similar to those in
published studies – in an effort to make the dataset comprehensive
(Côté et al., 2013).

The research question and type of comparative analysis will have
specific demands on the search and data screening protocols. For
example, trait-based analyses often focus on broad questions, so
they frequently include data compiled from other reviews, datasets
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Fig. 1. Three types of comparative
research syntheses and a relational
schematic of the database curation
required. We provide tips for initial search
strategies, decisions regarding database
structure, and the necessity of version control
and curating accessible databases. The type
of synthesis, particularly when quantitative,
impacts strategies of searching and
structuring databases, and creates trade-offs
between multi-use and curation effort.
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or taxonomic compendia (particularly data on body size, taxonomy,
life-history traits), as well as target trait data (e.g. hormone levels,
range size, bite force). In contrast, meta-analyses typically have a
focused question, for which the data can only be sourced from a
limited number of primary studies that have examined the focal
question. Because of this difference, meta-analyses and trait-based
analyses often differ in the rigidity of the data search and collection.
While trait-based analyses can be flexible and opportunistic in data
collection, meta-analyses usually require rigid search and screening
protocols to avoid bias, as well as a rigorous assessment of the data
quality (e.g. sample size) and uncertainty.
In meta-analysis, the screening process has two steps: first, an

initial screening of the title and abstract of the list of studies that
matched the searching criteria; and then, a second full-text screening
of the reduced list of the potential studies with available data,
followed by data extraction (Côté et al., 2013). Fortunately, there are
several tools that facilitate this screening process, including Rayyan
(Ouzzani et al., 2017), Abstrackr (Wallace et al., 2012), Covidence
(www.covidence.org) or the R package revtools (Westgate, 2019),
which usually provide a more visual and summarized view of the
studies to explore. There are also tools to help with data extraction
such as the R package metaDigitise (Pick et al., 2019) or the
program DataThief (www.datathief.org). These steps have to follow
the best practices for transparency and repeatability in a systematic

review (Forero et al., 2019; O’Dea et al., 2021a; Salameh et al.,
2020), such as providing a PRISMA diagram (Moher et al., 2009)
alongside formal, clearly explained search strategies and terms, and
clear exclusion/inclusion criteria of studies.

Data heterogeneity is an important, and sometimes unanticipated,
factor to consider during a search. In particular, data quality
thresholds must be established that include the types of sources used
and whether or not to rely on datawith varying accuracy (see Borries
et al., 2016; Gerstner et al., 2017). In addition, a database requires
complete descriptions of the variables, units and detailed definitions
about how variables were measured to ensure the collected data are
comparable. This is extremely important when the traits measured
vary depending on taxon, sex or environmental factors (Johnson
et al., 2018), or indeed, when traits have multiple definitions or
assaying protocols across research domains or taxonomic groups
(e.g. critical temperatures; Bates and Morley, 2020). In this regard,
an advantage of meta-analyses is that differences in units, methods
or measurements between the studies are not a barrier [see Noble
et al., 2022 (this issue)], because unitless effect sizes are being
analysed. However, for trait-based analyses, reduced comparability
between raw data or missing information in the original studies
(e.g. studies of mass-corrected traits that do not present mass) might
be problematic. In this sense, tools like the R packages Rphylopars
(Goolsby et al., 2017) and mice (van Buuren and Groothuis-
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Fig. 2. Recent abundance and search effort associated with quantitative syntheses. (A) Annual frequency of qualitative reviews, trait-based analyses, and
meta-analyses between January 2014 and July 2021 found in a survey of all issues within six major journals focused on physiology and biomechanics
(Conservation Physiology, Integrative and Comparative Biology, Journal of Comparative Physiology A, Journal of Comparative Physiology B, Journal of
Experimental Biology and Journal of Experimental Botany). Description of the data collected is provided on Github (https://github.com/nicholaswunz/JEB-
commentary-database). For comparison, the number of meta-analyses in the field published in 13 non-specialist journals found via systematic search in Noble
et al. (2022; this issue) is also plotted (continuous pink line). (B) Based on 29 meta-analyses [out of 62 from Noble et al. (2022; this issue)] that clearly reported
sample sizes, the percentage of primary studies included (orange) and discarded (blue) after the first (title and abstract) and second (full-text) screenings. The
black line represents the minimum and maximum of the percentage of studies included across all 29 meta-analyses. For more information on the systematic
search of meta-analyses (e.g. search terms, inclusion criteria, PRISMA), see Noble et al. (2022; this issue). Data were obtained with permission from
D.W.A. Noble.
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Oudshoorn, 2011) can allow, in some scenarios, the interpolation
and imputation of missing data. Similarly, several R packages can
handle uncertain or variable taxonomy for phylogenetic analyses
(e.g. Taxa; Foster et al., 2018). The multiple and often complicated
design elements of original studies means that researchers need
to trade off narrowing the search and data extraction criteria
to fit their specific question, against the inclusion of additional
data that might be used to answer similar questions. A good
balance would be to carefully decide the inclusion criteria for
your current study, but keep track of excluded or accessory data
that could be used for expanding into future studies (see Tip 2).
For example, metadata referring to taxonomic reference databases,
such as NCBI Taxonomic Database or Open Tree of Life (Hinchliff
et al., 2015), may aid in updating your database if taxonomy
changes.
A final key element of efficient searching is to recruit

collaborators to assist with the large time and effort required in
collecting data from the original sources. In meta-analyses, for
example, around 92% of studies initially identified during a search
do not match the criteria needed to answer the research question
[Fig. 2B; from Noble et al., 2022 (this issue)]. Most biologists
building databases are unlikely to have a dedicated data curator;
the work will be done by students, post-doctoral researchers
and more senior scientists with a specific project in mind, and future
curation will only occur with new projects. Thus, it is incredibly
valuable to have several collaborators to divide the effort. It is
critical that contributions from collaborators are consistent and
comparable. Inconsistencies in data entry among individuals
can be minimized by agreeing upon inclusion and exclusion
criteria during the planning phase and training on a random subset
of initial studies to assess agreement. During data compilation,
random checks for consistency and quality can be conducted in
combination with version control to correct arising issues (see
Tip 3).

Tip 2: structure your databases for multiple uses
At minimum, a database requires two layers: (1) the data, and
(2) associated reference information for the data. Each of these
layers needs a metadata file to explain the data columns. The data
layer may include trait values (typically raw or summary data) and
their associated error metrics, as well as important covariates, such
as location, taxonomic rank and reference database identifiers, and
units (Fig. 3). The associated reference information could include
(in addition to the bibliographic reference for each data point)
definitions of trait measurements or relevant information on
methodology. Creating a reference database that is rich in
information about each study adds value to the database beyond
its original purpose. For example, a reference dataset that includes
all papers that were full-text screened and coding for exclusion/
inclusion, as well as noting additional relevant variables not used in
the initial study, will provide future users with a starting point if they
wish to broaden the inclusion criteria. Having detailed and clear
metadata overcomes problems associated with vague or inconsistent
trait measurements in the data by unambiguously defining the
variable for the user (which may be your future self ).

Once you have decided which variables to include in your
database, there are twoways of structuring the database (‘effect size’
format and ‘stacked’ format; Fig. 3) that depend on its intended
purpose. Because a meta-analysis is focused on examining the
strength of effect associated with a specific hypothesis, the statistical
analyses often require a dataset where each row is a meta-analytic
effect size arising from a quantitative correlation (e.g. an r-value) or
a paired comparison of treatments [e.g. standardized mean
difference (Hedges’ g) or odds ratio]. Thus, each row of effect
sizes effectively represents two or more data points (e.g. control
mean versus treatment mean; Curtis et al., 2013). Trait-based
analyses have a longer, ‘stacked’ format, with one datum per row
representing a single observation (e.g. mean trait value for a group).
Both types of databases have additional columns for relevant

ES 1

Effect size format for meta-analysis databases
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•   Latitude/longitude/elevation

Record-specific data
•   Trait name and grouping
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•   Source (figure, table, text)
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Fig. 3. Relationship between an ‘effect size’ format for meta-analysis and a ‘stacked’ format for general comparative databases. Study-specific data
(blue) and record-specific data (red) may be shared between both formats. Columns refer to trait values for different groups within the study (C: control; T:
treatment). A pairwise comparison in an ‘effect size’ format translates to rows in a ‘stacked’ format. Calculated effect sizes (ES) are unique tometa-analyses. In our
diagram, N is sample size and SD is standard deviation. *Note that databases may have multiple records per row (e.g. mass, lifespan, metabolic rate) compiled
from multiple sources; columns for each record and bibliographic reference will be included.
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covariates, moderators or grouping categories (e.g. ‘male’ or
‘female’).
These two general structures conflict between best practice for

specific immediate use and best practice for future multi-use. Thus,
trade-offs arise when deciding between database structure and
function. This trade-off is particularly strong for meta-analyses.
Effect sizes are highly specific for the intended question and an
indication of the associated trait data is required if the same data
points are applied to other questions. An ‘effect size’ format can be
expanded into a ‘stacked’ format to facilitate use in other
comparative analyses as long as the trait data are provided in the
database, but this process is arduous and error-prone. Furthermore,
some moderators or covariates of interest to the meta-analysis may
be contrast specific and lost when the data are stacked, while other
important covariates that were treatment specific may not be
documented in the ‘effect size’ format. We argue that creating an
initial ‘stacked’ format database, even for meta-analyses, has little
cost and large benefit because of the greater applicability and ease of
use in a wide range of comparative questions. The stacked database
can be the primary focus for version updates (see Tip 3) and
accessibility for other researchers (see Tip 4), whereas ‘effect size’
format versions can be linked directly to the research paper they
support.
For any comparative analysis, extracting a comprehensive set of

information from original sources may improve the re-usability
of the database, the applicability for other questions, and the
ease of combining the database with other relevant databases
(e.g. phylogenies or global climate databases). However, this
benefit occurs at the expense of the time and effort to obtain these
data. It may be that these additional variables are not critical for the
initial analysis, but are commonly reported covariates in certain
fields, such as latitude or longitude, species identity and body mass.
When possible, adding these common covariates as reported in the
original sources is preferable to appending values from an
independent comparative dataset, because a measure reported in
such a dataset may differ from the mean of the population for which
the focal data are compiled. Arguably the foresight to include
common covariates represents a significant saving in time compared
with repeatedly extracting these data, enabling multiple research
studies from the single database effort. For example, during the
creation of HormoneBase (hormonebase.org; Vitousek et al.,
2018b), in addition to the focal hormone data, collaborators
compiled a wide range of geographical, body size and life history
data (Johnson et al., 2018) that have led, to date, to 10 publications,
including seven trait-based analyses (e.g. Vitousek et al., 2019;
Injaian et al., 2020; Husak et al., 2021).

Tip 3: version control your database
During the curation of a database (within a single study or across
multiple studies), it will change and evolve as you use it – through
finding errors in a previous version, updating recent literature and
data, and expanding or changing the purpose of your database.
Changes in the database can escalate quickly, especially when
multiple collaborators are involved. This process can lead to general
chaos: uncertainty of which is the most up-to-date version of the
database, one person doing something incorrect and no means of
correcting it without substantial effort, and uncertainty regarding
the steps you took in creating your database. Ideally, the group
would be able to document each of their changes individually,
including what they were and who made them, particularly because
this would facilitate reproducibility and transparency (Ram, 2013;
Shaw et al., 2016; Lowndes et al., 2017; Powers and Hampton,

2019). One straightforward means of accomplishing this is version
control, also known as a revision or source control (Ruparelia,
2010).

Even if version control seems unfamiliar, you have probably been
using a very simplified form of it to keep track of versions of draft
manuscripts or datasets already! The most basic and technologically
simple type of version control would be to keep your database (e.g. a
.csv file) saved as versions with different, sequential names, paired
with a meta-document detailing the major differences between the
versions. However, there are also many elegant and easy-to-use
systems for more complex and collaborative means of version control
[i.e. Apache™; Subversion® (Pilato et al., 2008); Concurrent
Versions Systems (Grune, 1986); Git (Somasundaram, 2013);
Perforce; and as reviewed in Zolkifli et al., 2018]. The use of these
systems requires technological know-how, but can be a worthwhile
investment in the long run. The technological challenges can be
navigated by having a designated person within your collaboration
lead their use, as well as employing graphical user interfaces, like
Sourcetree (www.sourcetreeapp.com) or GitKraken (www.gitkraken.
com). Using version control, files are saved as they are edited and you
can jump to any instance in time. That means if youmake amistake in
the database and notice it in the short- or long-term, then you can
simply revert to the version of the database before that mistake was
made! Two aspects of version control that are also particularly helpful
are: (1) providing comments on what was modified and how, and
(2) tracking who made each change. These features facilitate
understanding how your database evolves over time and determine
with whom to follow-up to discuss any changes that were made.
Indeed, version control is critical for the facilitation of a ‘living
database’ that is updated and used for multiple studies over time, as it
is a clear method for tracking discrete database updates. A ‘living
database’ maintains its scientific value over time by providing up-to-
date data, but obviously generates a cost associated with performing
the updated searches, data extraction and version control. We assert
that version-controlled updates should be prioritized overmaintaining
a continuously updated ‘dynamic database’ because researchers
can directly refer to the version that they base their study on. It is
important to report which version of your database is used in a
publication and, if your database is publicly available on a website, to
keep all versions of your database accessible in case someone
wants to reproduce an older study. Overall, version control is an
efficient way of ensuring reproducibility and transparency in database
construction, and as an offshoot will streamline the construction
process, especially for projects with many collaborators.

Box 1. Checklist for making a database
1. Survey the literature to establish the scope of your research
question(s), and determine the ideal statistical approach to address the
question
2. Determine your strategy for a systematic search of the primary (and
possibly grey) literature
3. Determine the list of variables (and their standardized units) to be
compiled from each study, including any covariates and non-target traits
that may have long-term utility (e.g. latitude and longitude of study
location, body mass) and any necessary reference information
4. Establish a strategy for version control of your database
5. Compile the data in your database and use the database to test your
question(s) of interest
6. Make your database accessible (i.e. on a webpage or repository) to
maximize use to other researchers
7. Publish a description of the database in a data paper to maximize its
visibility to other researchers
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Tip 4: make your database accessible
There are several ways to ensure that a comparative database will be
of maximum use to other researchers, either for their own projects or
to replicate your results. First, it is important to consider which data
to share. Most comparative analyses focus on the mean and
variability of response variables, and authors often share only those
values. However, in many cases it is beneficial to share the raw data
from which those summary statistics were calculated.
Next, it is important to ensure that the database is stored in a

format from which it is easy to extract information. For example,
data in a table format saved as a comma-separated values (.csv) or
text (.txt) file can be opened by many programs such as R and
Python for downstream analysis. Avoid unusable formats such as
word documents and PDFs, as these essentially force others to re-
enter your data. Most published papers today provide useable data,
but it is still relatively common for data to be shared in an unusable
format. For example, when surveying the meta-analyses in
comparative physiology identified by Noble et al. (2022; this
issue), only 70% (37) of the 53 papers that provided data did so in a
useable format and 30% (16) did so with an unusable format.
Similarly, around 64% of data archives in ecology and evolution are
not usable (Roche et al., 2015).
Where and how data are hosted is also important. Data can be

hosted on a researcher’s website (e.g. Reptile Development
Database, www.repdevo.com), as a supplementary document
hosted by the journal (e.g. Gunderson and Stillman, 2015), or on
a data repository site such as Dryad (www.datadryad.org), Figshare
(www.figshare.com; e.g. Vitousek et al., 2018b; hormonebase.org),
the Open Science Framework (www.osf.io; e.g. Merkling et al.,
2018) or Github (www.github.com). Ideally, the data are associated
with a doi number so that they have a permanent location that can be
reliably accessed; doi numbers are most easily assigned by hosting
on journal or data repository websites. If the dataset is large in size
and scope, particularly if larger than any single comparative analysis
performed using it, writing a ‘data paper’ maximizes the profile,
accessibility and citability of the dataset. A data paper would be in
addition to any papers written using the dataset to test the original,
specific biological hypotheses and predictions. Data papers describe
the features of the dataset, such as what information is included, how
it was compiled, and how it can be used (e.g. Noble et al., 2018b;
Vitousek et al., 2018b). Data papers often also include tables and
graphics that summarize key features of the data. Furthermore, data
papers can be used to inform other researchers about the existence of
your dataset, the location where it is stored, as well how it may be
best utilized for future research. Ideally, promoting your database in
this way will maximize the utility of your database for the
advancement of the field.

Conclusions
The collective experience of the authors in creating databases for
use in a variety of quantitative comparative studies has revealed to
us the potential for more efficient database creation. It is striking that
∼90% of papers examined during a targeted literature search are
discarded as being inappropriate for the immediate research
question; this represents a massive loss of effort that may be
repeated by multiple research teams considering related questions.
Instead, we argue that the creators of new comparative databases
maymaximize the future utility of these databases with the inclusion
of common, standardized covariates and non-target traits, even if
they are not of direct interest to the question that drives the initial
effort. In addition, we appeal for greater uptake of open science
principles that facilitate synthesis and database curation, including

reducing barriers to accessing data, implementing standardized
methodologies and documenting reproducible analyses (O’Dea
et al., 2021b). The effort and pay-off associated with compiling a
useful comparative database should compel our community to work
towards the creation of databases with more collaborative, multi-use
potential. To this end, participating in community curation of data
(e.g. an ‘open synthesis community’; Nakagawa et al., 2020) and
initiatives that aggregate datasets (e.g. Open Traits Network;
Gallagher et al., 2020), will increase efficiency and reduce
redundancy in scientific synthesis, as well as (ideally) establish
common workflows or approaches and formalize metadata across
databases.

Comparative approaches offer the exciting opportunity to address
biological questions at increasingly large taxonomic, geographic,
temporal and conceptual scales. As theoretical and statistical tools
are being continually developed and refined, the concurrently
increasing availability of comparative databases provide the
means with which macro-ecological and -evolutionary hypotheses
may be tested (Beck et al., 2012). The fields of physiology and
biomechanics, along with many other areas of biology, are thus
poised to take full advantage of the power of comparative analyses.
Yet the first step in many comparative studies – the compilation of a
database that allows a team of investigators to examine a specific
research question – remains a daunting task for many of us. Our
hope is that this Commentary demystifies this process, and provides
a resource for others who wish to pursue it (Box 1).
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