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Vocalization-associated respiration patterns: thermography-
based monitoring and detection of preparation for calling
Vlad Demartsev1,2,3,*, Marta B. Manser3,4,5 and Glenn J. Tattersall6

ABSTRACT
Vocal emission requires coordination with the respiratory system.
Monitoring the increase in laryngeal pressure, which is needed for
vocal production, allows detection of transitions from quiet respiration
to vocalization-supporting respiration. Characterization of these
transitions could be used to identify preparation for vocal emission
and to examine the probability of it manifesting into an actual vocal
production event. Specifically, overlaying the subject’s respiration
with conspecific calls can highlight events of call initiation and
suppression, as a means of signalling coordination and avoiding
jamming. Here, we present a thermal imaging-basedmethodology for
synchronized respiration and vocalization monitoring of free-ranging
meerkats. The sensitivity of this methodology is sufficient for
detecting transient changes in the subject’s respiration associated
with the exertion of vocal production. The differences in respiration
are apparent not only during the vocal output, but also prior to it,
marking the potential time frame of the respiratory preparation for
calling. A correlation between conspecific calls with elongation of the
focal subject’s respiration cycles could be related to fluctuations in
attention levels or in the motivation to reply. This framework can be
used for examining the capability for enhanced respiration control in
animals during modulated and complex vocal sequences, detecting
‘failed’ vocalization attempts and investigating the role of respiration
cues in the regulation of vocal interactions.

KEY WORDS: Acoustic signalling, Respiration monitoring,
Thermography, Vocal emission

INTRODUCTION
Vocal communication is a multi-stage process. The basic vocal
production-and-reply exchange can be described as: (1) the
reception and neural translation of an audible signal; (2) the
informational integration (Belin et al., 2000); (3) the activation of a
behavioural response (Chen et al., 2009); (4) the motor preparation
of the vocal apparatus (Winkworth et al., 1995); and finally, (5) the

sound emission. However, most current research on vocal
exchanges focuses mainly on the first and the last stages – the
acoustic stimulus and its effect on the receiver’s behaviour (e.g. the
presence or absence of a vocal response; Herbinger et al., 2009;
Schulz et al., 2008; Seyfarth and Cheney, 2003; Sugiura, 1998).
Such an approach creates a binary link between stimulus and
response, largely ignoring potentially intervening factors that
might modify the communication event. Monitoring neural (Hage
and Nieder, 2013) and/or physiological processes in the gap
between a stimulus and a response would enable examination of
the communication events in more detail. For example, perceived
stimuli being ignored as not relevant or not triggering a vocal
response as a tactical decision (e.g. confrontation avoidance) will
register on a neural/physiological level and could be distinguished
from an undetected stimulus, despite both of these conditions
not manifesting into a behavioural reaction. Additionally,
quantifiable physiological changes, triggered by a vocal input and
preceding observable behaviour, could reflect modulation of
response motivation and allow detection of signal intensity and
type-dependent response thresholds. Furthermore, monitoring the
timing and the dynamics of physiological changes, at the gap
between receiving and responding to a call, might allow estimation
of the extent of preparation for vocal emission (Rochet-Capellan
and Fuchs, 2014), and perhaps the levels of volitional control over
initiation and duration of vocalizations.

Because communication is a socially driven process (Blumstein
and Armitage, 1997), observing it under natural group settings is
needed to generate insights into its ecologically relevant dynamics.
While recording the neural activity throughout stimuli perception
(Aubie et al., 2014) and vocal production (West and Larson, 1993;
Wild, 1997) is possible, it is not easily implemented outside
laboratory conditions. Monitoring of physiological processes, on the
other hand, is less invasive and more suitable for field-based studies
(Elliott, 2016). One candidate physiological process that is directly
related to vocal emission is respiration (Riede, 2011; Smotherman
et al., 2006). The mechanism of vocal production relies on a flow of
gases within the respiratory tract, generating sufficient subglottal
pressure for laryngeal tissue vibration and emission of sound (Herbst,
2016). The orientation of the vocal folds in most terrestrial mammals
allows efficient sound production on the expiration phase. Phonation
by an inspiratory air stream is also possible, but rarely occurs (Fitch,
2006). The duration of continuous vocalization and the rate of vocal
unit production is limited by the caller’s lung capacity and by the
thoracic muscle activity, the latter aiding in maintaining subglottal
pressure beyond the point of elastic lung recoil (MacLarnon and
Hewitt, 1999). The pressure requirements of vocal production, call
structure and duration, introduce alterations to the ‘quiet’ respiration
pattern (Häusler, 2000; Hernandez et al., 2017).

Studies of respiration patterns in the context of vocal
communication have traditionally focused on human conversations.
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of speaking turn, allowing better timing of speaker exchange and
overlap avoidance. Speaking duration is positively correlated with the
inspiration amplitude, potentially indicating early planning of the
speaking turn. Additionally, breathing patterns are used by the
counterparts in a conversation as cues indicating intention to speak
(MacLarnon and Hewitt, 1999; McFarland, 2001; Rochet-Capellan
and Fuchs, 2014). Animals have been claimed to have less
sophisticated control over their respiration in the context of vocal
emission (Maclarnon and Hewitt, 2004; MacLarnon and Hewitt,
1999). However, several studies have demonstrated a disruption of
the respiration cycle after (Laplagne, 2018) and before vocal onset
(Häusler, 2000; Hernandez et al., 2017; Riede et al., 2020) in animals,
suggesting that claims of complex vocalization-correlated respiratory
movements (VCRMs) being uniquely human (Häusler, 2000) are not
well justified.
Here, we establish a proof-of-concept methodology for

remote respiration monitoring in a free-ranging animal, as a tool
for tracing VCRMs. Additionally, we demonstrate the ability to
characterize changes in respiration preceding vocal production
and to detect the extent of the preparation phase that the individual
needs to produce a call. Additionally, correlating the vocalization-
preparatory phase with external social events could reveal stimuli
that fail to reach a threshold for an audible response, but might still
have a stimulatory effect on the receivers’ motivation to reply. On
the flip side, partial vocalization events, in which an individual was
interrupted before the active vocalization phase, could be detected.
Both of those conditions have the potential to be reflected in
respiratory changes typical to vocal preparation, but not resulting in
call emission.
To identify VCRMs, we observed meerkats [Suricata suricatta

(Schreber 1776)], a mammalian species with very well understood
social and communication systems (Clutton-Brock and Manser,
2016;Manser et al., 2014). Meerkats are social mongooses, living in
the Kalahari Desert region of Southern Africa. They have an
extensive vocal repertoire and most of their behaviours are
accompanied by vocalizations (Gall and Manser, 2017; Manser,
1999; Townsend et al., 2010). This species has been intensively
studied for more than 20 years and the wild meerkat population,
monitored by researchers at the Kalahari Research Centre (KRC),
South Africa, is well habituated to human presence (Clutton-Brock
and Manser, 2016). Close access to the animals allows individual
audio recording and a clear distinction between calls produced by
the recorded focal individual and the calls produced by
neighbouring conspecifics (Demartsev et al., 2018).
While individual audio recording is extensively applied in

field studies, respiration monitoring is less trivial. Solutions
for externally tracing respiration, outside of laboratory settings,
mostly rely on wearable sensors, detecting rib cage expansion
and contraction movements (Chu et al., 2019). A non-invasive
alternative for recording respiration is based on thermographic
imaging of external airway openings (Pereira et al., 2016). The
changes in surface temperature of the airways are due to the
temperature differences between the inspired and expired air; under
most circumstances, cooler, drier air from the environment is
inhaled and warmer, moist air from the lungs is exhaled (Pereira
et al., 2019). These temperature modulations are shown to reliably
represent respiration and correlate not only with the respiration
waveform, but also with tidal volume (Vainer, 2018).
In this work, we present the methodological procedures for

recording respiration using thermographic imaging of non-restricted
subjects in natural settings. We demonstrate the method’s sensitivity
for detecting VCRMs and discuss the potential for identifying call

intention by breathing patterns as well as the effect of conspecific
calls on the respiration rate of focal individuals.

MATERIALS AND METHODS
Field procedures
Data were collected in June 2019 at the Kalahari Research Centre,
in the Kuruman River Reserve, Northern Cape, South Africa. Daily,
at dawn, one meerkat group was observed during its morning
emergence from the sleeping burrow. Following emergence,
meerkats often spend time in a bipedal posture, warming up in the
sun before beginning to forage. This behaviour is accompanied by
the emission of ‘sunning calls’, a short and soft call type that
potentially functions as a social bonding signal (Demartsev et al.,
2018). During this timewindow, a focal animal, located at >0.5 m to
the nearest neighbour, was simultaneously audio recorded and
filmed. The focal subjects were not restricted in their movement and
were able to freely move, change location and posture. Each
continuous individual recording lasted up to ∼5 min. The daily
recording session was terminated after the majority of the group
moved away from the sleeping burrow and started foraging.

The focal animal’s vocalizations were recorded using a Marantz
PMD-661 solid state digital recorder (Marantz, Japan) and a
directional Sennheiser ME66 microphone with K6 power module
(Sennheiser electronic, Germany), sampling rate 44.1 kHz, 16-bit.
A FLIR T1030 (FLIR Systems, USA) thermal camera with 12 deg
lens was fixed on a tripod, in front of the focal animal at 1–1.5 m
distance. The camera was angled in a way to not obstruct the
animal’s field of vision while having a horizontal view of its nasal
region. The audio recording and thermal video data were collected
simultaneously for each individual. To achieve synchronization
between the audio and video streams a piezo-electric lighter was
activated 3 times in front of the camera and in close proximity to the
microphone. The distinctive sound coupled with the appearance of
heat signature provided the markers required for accurately aligning
the audio and video tracks.

All procedures were approved by the ethical committees of the
University of Pretoria, South Africa (permit: EC011-10) and
the Northern Cape Department of Environment and Nature
Conservation (permit: FAUNA 1020/2016).

Audio and video processing and synchronization
Collected audio files were analysed in Avisoft-SASLab Pro
v. 5.2.13 (Avisoft Bioacoustics, Germany) and all recorded calls
were manually marked. Focal (recorded individual) and non-focal
(NF; conspecific neighbours) calls were identified by their relative
amplitude levels and labelled accordingly (Fig. S1). Recordings
with no clearly distinguishable focal versus non focal differences in
amplitude were omitted from further analysis.

FLIR video (CSQ) file formats were converted to AVI
(FFMPEG) format while retaining the original frame rate, pixel
dimensions and colour palette. The conversion was performed using
ThermImageJ plugins for the Fiji (ImageJ) environment (https://
github.com/gtatters/ThermImageJ) and carried out as outlined in
Tattersall et al. (2020). The conversion process first split the video
file into its subsequent FLIR file format (FFF) image frames using a
custom perl script (available in ThermImageJ; https://github.com/
gtatters/ThermImageJ). The underlying raw thermal data from each
FFF file was extracted using Exiftool’s (https://exiftool.org/) raw
thermal image extraction option, which created a series of lossless
greyscale JPEG-LS files, where pixel intensity corresponded to the
raw sensor data from the thermal imaging camera. These files were
subsequently converted into a portable video file (AVI) using
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FFMPEG software and used for synchronization with the audio
recordings. Matching audio (WAV) and video (AVI) files were
imported into SHOTCUT (Meltytech, LLC, USA) video editing
software. The synchronization markers in both audio and video
tracks were manually aligned and a conversion table between video
and audio time lines was generated. No time drift between the AV
tracks in different parts of the recording was detected and single
triplet of synchronization markers was sufficient for the duration
(≤5 min) of the recorded files Movie 1).

Nasal area detection and tracking
For locating the animal’s nasal area in the videos, the relevant ROI
(region of interest) on each video frame were defined and tracked.
To automate ROI tracking, Loopy (loopbio, Austria) pose
estimation tool was used. Briefly, a key point detector was trained
by manually labelling 1400 exemplars of meerkat nostril centre
points, randomly pulled from our video data set. This was used as
the training set for a deep-learning-based detector, which was used
to process all video files and list the pixel coordinates for each
detection above 0.95 certainty score. Five randomly selected video
files were visually inspected for correct ROI detection (Movie 1).

Nasal temperature estimation
Raw nostril detection output consisted of frame number, x–y pixel
coordinates and indication of laterality (left versus right nostril).
To extract intensity values corresponding to the raw sensor radiance
value, a custom-written macro batch function was used for
exporting pixel coordinates into Fiji, defining a 10×5 pixel ROI
(Movie 1) and measuring its median intensity. The ROI size for
intensity extraction was chosen to include the size of meerkat
nostril pixel dimensions across filming distances (16×9–11×6 px).
The intensity values were converted to estimated temperature
by using standard thermal image conversion algorithms outlined
in ThermImageJ (https://github.com/gtatters/ThermImageJ) and
described in Minkina and Dudzik (2009). The raw2temp function
in ThermImageJ follows FLIR’s algorithms, requiring information
on emissivity, relative humidity, atmospheric temperature, reflected
temperature, object distance and the camera’s unique calibration
constants. An emissivity of 0.95 was assumed based on other
biological studies (Tattersall, 2016), while the other parameters
were recorded at the beginning and, as permitted, throughout the
daily data collecting session (1–2 h). As our data analysis was
focused on changes in temperature, the average atmospheric values
recorded in a given day were used for temperature conversion of all
videos captured on that day. This approach helped us to streamline
workflow and was made possible by the relatively stable
atmospheric conditions, throughout which the possible error in
absolute temperature measurements would be minimal (Tattersall,
2016).
The calibration constants were extracted from the original thermal

image file using Exiftool. Sample images were tested using FLIR’s
ResearchIR (FLIR Systems) software and compared with the
functions above to ensure the extracted temperature calculations
were according to manufacturer recommendations.

Data quality control and filtering
The video data were subjected to several quality control and filtering
steps. Frame sequences shorter than 150 frames (5 s) and with ROI
detection gaps of more than 5 consecutive frames were omitted.
This ensured that analysed segments span at least three full
respiration cycles allowing for reliable identification of periodicity
associated with breathing. The frame cut-off was decided based on

the mean±s.e.m. meerkat respiration rate of 0.603±0.112 Hz
(Worthington et al., 1991) and the 30 frames s−1 rate of the
recorded videos (3 respiration cycles×1.6 s cycle−1×30 frames s−1

=144 frames). Only frame sequences with simultaneous detections
of both left and right nostrils were used to control for focal subject
head orientation as front-view, minimizing potential measurements
errors due to varying angles of ROI exposure. Only sequences with
clearly identifiable cyclic patterns were selected for further analysis
(Fig. S2A,B) by visual inspection of time–temperature line plots.

Data smoothing and respiration phase detection
A low-pass Butterworth filter (second order, critical frequency=1/5)
was applied for smoothing the high frequency noise in temperature
values, possibly originating from muscle contractions affecting ROI
shape and tracking errors (Fig. S2B). A custom script was used to
locate local minimum points, indicating maximum cooling of the
nostril, equivalent to the end of inspiration phase. The local
minimum points were used as a starting point for locating the
beginning of the inspiration and the end of expiration phases. This
was achieved by calculating the local slope of the curve to the point
of it becoming infinitesimal, indicating the plateauing of the curve
and the boundaries of expiration pause (Fig. S1A, Fig. S2C) – a rest
phase in which the nostril temperature is expected to remain stable.
Identification of the three transition points (end of expiration pause,
maximum inspiration, maximum expiration) defined a single
respiration cycle and allowed us to quantify each respiration phase
(inspiration, expiration, expiration pause) in terms of duration (s),
amplitude (Δ°C) and slope (amplitude/duration).

Marking vocalization times and defining breath types
Video frames corresponding to focal and non-focal (NF) call times
were marked according to the audio-video synchronization table
and breathing cycles were defined as: (1) Call: cycles during
which focal calls were produced; (2) Pre-call: cycles immediately
preceding a call cycle; (3) Post-call: cycles immediately following a
call cycle; (4) Quiet: cycles which were not associated with vocal
production (Fig. 1B, Fig. 2). In order to ensure correct identification
of respiration cycles located on the edges of detected breathing
sequences, audio recordings were examined for focal calls
occurring 2 s before and after usable video sequences. If focal
calls were recorded within those time windows, the designation of
the following or preceding cycle was set as Post-call or Pre-call,
respectively.

Additionally, video frames corresponding to breath phases
(inspiration, expiration, etc.) were defined according to the timing
of NF calls; NF heard: phases during which or immediately
preceding when a NF call was produced; No calls: breathing phases
not associated with NF calls.

Data structure summary and statistical analysis
The collected raw data set included ∼3 h of AV material of 33 adult
individuals from 3 different social groups. Approximately 25% of
the raw material was omitted from further analysis at the quality
control phase due to acoustic interferences and inability to reliably
identify focal calls. Individuals that did not produce any calls were
discarded from the dataset to allow within-individual data
permutation procedure. Each traced respiration cycle was divided
into three breathing phases (Inspiration, Expiration, Expiratory
pause) which were tested separately. Following the processing and
filtering stages, a final dataset consisted of 800 respiration phases
(inspiration=256, expiration=283, expiratory pause=261) defined
by the detection of vocalization: (Pre-call=78, Call=86, Post-
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call=88, Quiet=548). The per-individual call count mean±s.d. in the
analysed data set was 2.9±2.4 calls from 10 individuals (4 males
and 6 females). The test statistic used was the change in the
mean (Δmean) of the measured parameters (e.g. mean duration of
inspiration phases in Call cycles–mean duration of inspiration
phases in Quiet cycles).
A permutation procedure was designed in which respiration cycle

type identifiers (e.g. Call and Quiet) were randomly reshuffled
against the measured values creating a new null data set. To control
for potential biases related to variation in respiration and call rates
between individual animals we restricted the permutations to within
individuals only. Permutations were repeated 10,000 times,
calculating the Δperm_mean for each iteration. Two-tailed pseudo
P-values were estimated by calculating the percentage of absolute
Δperm_means, which were lower than absolute Δmean (calculated
from the data).
For estimating the effect of neighbour calls on individual

respiration, only ‘Quiet’ respiration cycles were subsetted from
the data, as an individual’s own call emission could potentially
mask the likely subtle effects of auditory perception. Based on the
timing of NF calls, breathing phases during which or immediately
preceding which NF calls were detected were designated as ‘NF
heard’. The analysed dataset consisted of 714 respiration phases (NF
heard=142; No calls=572). The dataset was analysed using a similar

permutation procedure, reshuffling ‘NF heard’ and ‘No calls’
respiration phase designations.

All quality control, filtering procedures, permutations and
statistical testing were done in R 3.6.3 (https://www.r-project.org/).
A graphical representation of the data collection, processing and
analysis process is detailed in Fig. 3.

RESULTS
The nasal region of recorded subjects, tracked in the collected
thermal video material, showed an obvious variation in
median temperature corresponding to respiration trace (Movie 1).
Examination of the respiration cycle ratio (inspiration time/
expiration time) showed a nearly symmetrical value of 0.987,
indicating a roughly balanced airflow during active respiration
(Fahlman and Madigan, 2016) and confirming consistency of
our respiration tracing. As expected, vocalization demonstrated
detectable respiratory exertion (Fig. 1C, Fig. 2). The amplitude
(Δtemperature) of the expiration phase during Call cycles
(median=1.14, IQR=0.73) was significantly higher than in Quiet
cycles (P<0.01, median=0.78, IQR=0.40, Fig. 4A, middle panel,
Fig. S3A). The slope (temperature–time) of expiration was also
significantly steeper (median=2.87, IQR=1.52) in comparison to
the control condition of Quiet cycles (P=0.02, median=2.33,
IQR=1.56, Fig. 4C, middle panel, Fig. S3C). These results
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correspond to higher aerobic expenditure during call emission,
which confirms the accuracy and sensitivity of the proposed
methodology. This justified testing the ability for detecting
respiration patterns associated with the preparation to call and the
effects of conspecific vocal signals on focal respiration.
Median inspiration amplitude in Call cycles (median=1.21,

IQR=0.83) was larger than in Quiet cycles (P=0.02, median=0.87,
IQR=0.48), indicating that calling requires deeper inspiration
(Fig. 4A, middle panel, Fig. S3A). Comparison between Pre-call
and Quiet respiration cycles (Fig. 1B) showed a difference between
expiratory pause amplitudes of Pre-call (median=0.22, IQR=0.33)
and Quiet cycles (P=0.04, median=0.16, IQR=0.26, Fig. 4A, left
panel, Fig. S4A). Taken together, this supports the prediction
that there are detectable alterations of respiration patterns before
call emission, with the most noticeable changes occurring during
the inspiration phase of the Call respiration cycle; however, Pre-call
cycles are also potentially affected. The recovery from vocalization
is evident from the duration of the expiratory pause of Call cycles
(median=0.65, IQR=0.53), which demonstrates a shorter rest period
following call emission in comparison to Quiet respiration
cycles (P<0.01, median=0.9, IQR=0.65, Fig. 4B, middle panel,
Fig. S2B). Examination of Post-call cycles shows traces of recovery
with trends for higher amplitude during inspiration and expiratory

pause in comparison with Quiet respiration cycles (Fig. 4, Fig. S5,
Table 1).

To test whether the magnitude of vocalization-associated
respiration changes are correlated with the duration of produced
call; parameters (amplitude, duration, slope) of Call cycles were
subtracted from the corresponding median values of Quiet cycles. A
Spearman correlation test, between call duration and the difference
from median of the three respiration phases was performed. No
significant correlation with call duration could be detected
(Table 2).

It has been previously hypothesized that conspecific calls have
the potential to stimulate, but also suppress focal vocalizations
(Demartsev et al., 2018). Thus, we tested whether focal respiration
patterns were affected by incoming non focal calls as a potential
indication of changes in motivation towards vocal production. In a
comparison between ‘NF heard’ respiration phases (during or
immediately before which NF calls were recorded) and ‘No calls’
phases (no NF calls were recorded), the durations of expiration and
expiratory pause, in the former, were significantly longer (P≈0.01)
and inspiration phase demonstrated a similar trend (P=0.08, Fig. 5B,
Fig. S6B). This indicates a transient decrease in breathing rate when
conspecific calls are heard by the focal. Additionally, the inspiration
and expiration slopes of the NF heard respiration phases appeared
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steeper; however, they did not reach statistical significance (P≈0.06,
Fig. 5C, Fig. S6C).

DISCUSSION
This work describes a methodological framework for
thermography-based remote monitoring of breathing in a free-
ranging mammal and demonstrates the sensitivity of this method for
detecting vocalization-correlated respiratory movements (VCRMs).
Additionally, it demonstrates the capability to measure the effects of
conspecific calls on the respiration of a focal subject as a potential
indication of attention and signal perception.
As expected, calling had an effect on respiration (Fig. 1C), and

despite the relatively low amplitude and short duration of the calls in
focus (50 ms, Fig. S1), they could not be accommodated by regular
expiration. Both the amplitude (Fig. 4A) and the slope (Fig. 4C)
measurements during calling exceeded expirations while quiet,
probably because of the increase in subglottal pressure needed for
call production. The duration of an expiratory pause (in which the
volume of lungs remains unchanged, Fig. 1A) is dependent on
accumulation of the respiratory chemical drive (low oxygen and high
carbon dioxide levels) leading to the activation of respiratory muscles
and active inspiration (Rafferty et al., 1995). Additionally, mechano-
receptors located in the lungs and the airways, react to lung inflation

by adjusting the rate and volume of respiration. Vocalizing increases
the gas flow during the expiration phase, resulting in a decreased lung
volume in comparison to quiet respiration. This is expected to
increase the respiratory drive, and to shortening the expiratory
pause. Our results fit this assumption, as the duration of call cycle
expiratory pause is significantly shorter than during quiet respiration
cycles (Fig. 4B). Taken together, the increased flow during vocalizing
and the shortening of subsequent expiratory pause support the
notion that the temperature measurements, extracted from the
subject’s nasal area are representative of its respiration curve. The
resolution and consistency of this representation were adequate
for detecting the magnitude of changes related to vocal emission. The
proposed methodology may be limited in its ability to detect mini-
breaths, associated with separate notes in trill vocalizations, for
example. However, the effect of the whole calling bout on the
full tidal volume trace is likely to be detectable. This procedure can
be extended to other mammalian species given the possibility of
individual audio recording and steady horizontal view of the nasal
region for the duration of at least three full respiration cycles. Special
attention should be given to environmental conditions during thermal
data collection, as with ambient temperature being nearly equal or
above the subjects’ body temperature, the spectral resolution between
inspired and expired air will be limited.

1 2 3

Field data collection QC of respiration curves

Call labelling

Automated nostril
tracking 

Timing of calls and
respiration phases

Cycle type
comparisons

Measuring nostril
temperature 

1-inspiration
2-expiration
3-expiratory

pause

QC of respiration phase
transition points 

Smoothing of the temperature signal

Detection of individual respiration cycles 

Audio and video
sync. 

VCRM identification

CallPre call Post call Quiet Quiet Amplitude
Duration

SlopePhase 1

Phase 3

Phase 2

Measurement of
phase parameters Controls:

• Inspiration/expiration time is balanced
• Detected respiration rate is within biologically
 relevant range
• Call emission timing is synced to the
 expiration phase 

Automated nostril
tracking 

Measuring nostril
temperature 

Audio and video
sync.

Focal

Non focal

1

2

3

»2

»3

Fig. 3. A schematic of the data collection, processing and analysis process. (1) Meerkats are recorded and filmed with thermal video camera. Audio and
video tracks are synced by aligning audio and heat signature cues. Calls are labelled with distinction between calls of a focal individual and calls of neighbouring
conspecifics. Meerkat nostrils are tracked using Loopbio posture detection tools. Using the tracked nostril ROI coordinates, nostril median temperature is
calculated from the image intensity, using ThermImageJ plugins. The temperature traces are plotted on a time scale and visually inspected for clear continuous
cyclic patterns. (2) The selected respiration curves are smoothed and go through a local peak detection process for identifying respiration phase transition points.
The detection of respiration phases (inspiration, expiration, expiratory pause) is visually verified. A summary data set is constructed including ROI median
temperature values, respirational phase, video frame numbers, corresponding audio time, timing of focal calls, timing of non-focal calls. (3) Respiration cycles are
labelled according to association with produced calls: Pre-call, preceding call production; Call, call produced within the cycle; Post call, following call production;
Quiet, no association with vocal production. Three measurements are calculated for each respirational phase: amplitude, temperature change; duration, length of
the phase; slope, change of temperature for a unit of time. A pairwise comparison is performed with vocalization-associated respiration cycles compared with
Quiet cycles. QC, quality control; VCRMs, vocalization-correlated respiratory movements.
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The changes in respiration preceding vocal production are of
interest as they indicate preparation for vocalizing, either as part of
an automated process (Riede et al., 2020) or perhaps having an
intentional component. Mammalian vocal production is usually

considered to be a flexible behaviour both in terms of call
production and usage (Maciej et al., 2013; Sugiura and Masataka,
1995). Recent findings suggest that there is no point of no-return for
calling and demonstrate that some species can suppress calls shortly
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Fig. 4. Parameters measured and compared for the different respiration phases per cycle type. Horizontal brackets denote pseudo P-values calculated in
pairwise permutation procedure detailed in the Materials and Methods. Pairs without brackets do not show significant differences. Sub-panels show pairwise
comparison of: Pre-call/Quiet (left), Call/Quiet (middle) and Post-call/Quiet (right) cycles. Respiration phases (inspiration, expiration, expiratory pause) are plotted
on the x-axis. Boxplots show median, IQR (box) and 95% CIs of the median (notches). (A) Temperature (°C) change during respiration phase. Expiratory pause
phases (n=26) of Pre-call cycles show a tendency towards higher change in temperature in comparison to Quiet respiration cycles (n=177). Call cycles show
significantly higher temperature change during both inspiration (n=25) and expiration phases (n=32) in comparison to respective phases in Quiet cycles (n=179
and 192). (B) Duration (s) of the respiration phase. Duration of expiratory pause phase (n=29) of Call cycles are significantly shorter in comparison to Quiet
respiration cycles (n=177). (C) Slope of the respiration curve per relevant phase. Expirations (n=27) during Pre-Call cycles show a tendency towards higher slope
values in comparison to Quiet respiration cycles (n=192). Call cycles show significantly higher slope values during expiration phases (n=32) in comparison to
Quiet cycles (n=192).

Table 1. Descriptive statistics for measured respiration parameters

Quiet Pre-call Call Post-call

Median IQR Median IQR Median IQR Median IQR

Inspiration
Slope (°C s−1) −2.331 1.564 −2.234 1.387 −2.453 1.433 −2.062 1.605
Amplitude (°C) 0.877 0.485 1.056 0.519 1.219 0.838 1.055 0.733
Duration (s) 0.367 0.166 0.433 0.333 0.367 0.200 0.433 0.191

Expiration
Slope (°C s−1) 2.301 1.793 2.510 2.474 2.872 1.526 2.522 1.684
Amplitude (°C) 0.785 0.402 0.778 0.512 1.143 0.728 0.752 0.557
Duration (s) 0.333 0.233 0.267 0.341 0.367 0.133 0.300 0.158

Expiratory pause
Slope (°C s−1) 0.071 0.397 0.214 0.379 −0.047 1.056 0.130 0.427
Amplitude (°C) 0.163 0.255 0.215 0.334 0.305 0.309 0.282 0.336
Duration (s) 0.900 0.808 0.983 0.900 0.650 0.525 0.967 0.700

Median and interquartile range (IQR) values for duration, amplitude (temperature change) and slope of respirational phases. The values were separately
calculated for vocalization-associated (Pre-call, Call, Post-call) and Quiet respiration cycles.
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before and even during call emission (Demartsev et al., 2018;
Pomberger et al., 2018). In social settings, there could be instances
in which an individual, stimulated to vocalize, was interrupted
immediately before sound emission. The respiration patterns
preceding calling in the inspiration phase of call cycles (Fig. 4A)
and trends visible in expiration and expiratory pause of the pre-call
cycles (Fig. 2A,C), suggest that the window of preparation to call is
detectable. The physiological duration of this window is likely to be
equal to the duration of inspiration, corresponding to the interval
between the neural activation of vocalization and accumulating the
pressure capacity for vocal emission. This theoretical minimum,
however, is likely to be affected by the length of the call and by the
intensity of the vocal exchange. Emission of long call or call
sequences, performed on a single respiration cycle requires deeper
inspiration (Riede et al., 2020). The current data could not show
correlation between the duration of the produced call and the
magnitude of the detected respiration changes. The described
methodology is, however, fully capable of detecting such effects,
perhaps if comparing different call types of variable duration or
looking at continuous vocal bouts. Similarly, louder vocalizations

requiring higher subglottal pressure could also result in stronger
VCRM deviation from quiet respiration. To what extent respiratory
preparations for longer or louder calls are distinguishable and
whether call types or calling properties can be independently
predicted from preceding respiration patterns is yet to be
determined.

Precise call timing, needed to achieve caller coordination for
synchrony or anti-synchrony, might result in multiple calling
initiation attempts and suppression events, which could be reflected
in irregularities of respiration patterns. By tracing focal respiration
during exposure to conspecific calls we could detect social effects
on quiet breathing cycles, specifically with longer expirations and
expiratory pauses (Fig. 5). Although, experimental work is needed
to test the causal link between conspecific calls and focal
respiration, we can think of three potential explanations for the
elongation of respiration phases. First, ‘sunning’ call exchanges in
meerkats demonstrate strong turn-taking patterns (Demartsev et al.,
2018) and individuals time their calls between the calls of multiple
conspecifics, perhaps to avoid overlap. This could result in failed
initiations and transient irregularities in respiration, as each
suppressed calling initiation event could be represented by a
partial respiratory preparation for calling. Second, the elongation of
breathing phase duration could be a general indication of attention.
It was suggested that attention and respiration are coupled (Maric
et al., 2020; Melnychuk et al., 2018) and that respiratory inhibition
is related to increased auditory sensitivity (Stekelenburg and Van
Boxtel, 2001). So, tracing respiration during social vocal
interactions could aid in identifying momentary attention changes
that do not manifest into behavioural responses, perhaps
in combination with heart rate logging and muscular micro
movement detection. Third, slowed down breathing could be
related to the proposed function of meerkat sunning call exchanges
as an acoustic grooming behaviour. Similarly to direct physical
grooming, acoustic grooming is expected to have an appeasing
effect on the participants (Kulahci et al., 2015), which can result in
physiological responses of decreased heart rate and slower
breathing. Further work is required in order to distinguish
between ‘vocalization attempts’, ‘auditory perception’ and
‘general appeasing’ explanations for the demonstrated slowing
down of breathing.

Table 2. Correlation test for call duration and the magnitude of
respiratory change

Phase
Amplitude
(°C)

Duration
(s)

Slope
(°C s−1)

Inspiration Coefficient −0.21 0.05 −0.27
P-value 0.34 0.808 0.22
n 23 23 23

Expiration Coefficient 0.03 −0.07 0.15
P-value 0.879 0.72 0.461
n 27 27 27

Expiratory pause Coefficient 0.06 0.15 −0.03
P-value 0.773 0.475 0.899
n 26 26 26

Spearman correlation test for call duration and the magnitude of respiratory
change in the corresponding breathing cycle. The vocalization-associated
respiratory change was calculated by subtracting the measured values for
each one of the measured breathing phase parameters (duration, amplitude
and slope) of ‘Call’ respiration cycles from the corresponding median values
of ‘Quiet’ respiration cycles.
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Fig. 5. Parameters measured and compared for the three respiration phases of Quiet respiration cycles with (non-focal calls) and without (no calls)
conspecific calls. Horizontal brackets denote pseudo P-values calculated in pairwise permutation procedure detailed in the Materials and Methods. Pairs
without brackets show no significant differences. Boxplots show median, IQR (box) and 95% CIs of the median (notches). Measured parameters are: amplitude,
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Examining an animal’s VCRMs in producing long, loud, high
pulse rate or highly modulated calls offers interesting perspectives
for understanding the production similarities with the sequential
assembly of vocal utterances in human speech (Hernandez et al.,
2017). The ability for complex respiration control has been
suggested to be a uniquely human trait, likely important for
syntax and combinatorial structure of human speech (MacLarnon
and Hewitt, 1999). These claims, however, were based only on
mostly ancillary data, as direct respiration monitoring during vocal
production of animal subjects is scarce. Existing evidence indicate
that a relationship between breathing movements and vocal
production is often more complex than the call-per-breath
paradigm (Hage et al., 2013; Häusler, 2000) and there is little
support for the claims that animals have limited ability to control
pitch, modulate amplitude and produce rapidly changing sound
sequences on a ‘single breath’ (Fitch, 2018; Maclarnon and Hewitt,
2004). There are numerous mammalian species capable of long,
variable and high-rate vocal performance (Haimoff, 1984;
Passilongo et al., 2010), which could benefit from efficient
respiration control beyond the call-per-breath paradigm.
Additionally, there is a growing body of evidence demonstrating
precise motor control of animals over both initiation (Hage and
Nieder, 2013) and termination (Pomberger et al., 2018) of their
vocal signals. Further focused studies on animal respiration during
vocal production would be able to refute or confirm the claims about
complex respiration control being an adaptation to the complexity of
human vocal production.
This work provides the methodological framework for remote

respiration monitoring in free-ranging animals and demonstrates its
sensitivity for detecting respiration cues indicating vocal
preparation. Further exploration of the association between
respiration patterns and vocalization will provide a perspective on
intentionality and planning of animal vocal signalling. Additionally,
respiration cues could function as an interaction regulation
mechanism, with individuals identifying their neighbours’
preparations to vocalize and adjusting their own behaviour
accordingly. Addressing this aspect could provide insights on the
levels of social awareness during communicative interactions and
the ability to perceive conspecific intentions.
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