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A simple method reveals minimum time required to quantify
steady-rate metabolism and net cost of transport for
human walking
Bolatito Adeyeri1,2, Shernice A. Thomas1,2 and Christopher J. Arellano1,2,*

ABSTRACT
The U-shaped net cost of transport (COT) curve of walking has
helped scientists understand the biomechanical basis that underlies
energy minimization during walking. However, to produce an
individual’s net COT curve, data must be analyzed during periods
of steady-rate metabolism. Traditionally, studies analyze the last few
minutes of a 6–10 min trial, assuming that steady-rate metabolism
has been achieved. Yet, it is possible that an individual achieves
steady rates of metabolism much earlier. However, there is no
consensus on how to objectively quantify steady-rate metabolism
across a range of walking speeds. Therefore, we developed a simple
slope method to determine the minimum time needed for humans to
achieve steady rates of metabolism across slow to fast walking
speeds.We hypothesized that a shorter timewindow could be used to
produce a net COT curve that is comparable to the net COT curve
created using traditional methods. We analyzed metabolic data from
21 subjects who completed several 7 min walking trials ranging from
0.50 to 2.00 m s−1. We partitioned the metabolic data for each trial
into moving 1, 2 and 3 min intervals and calculated their slopes. We
statistically compared these slope values with values derived from the
last 3 min of the 7 min trial, our ‘gold’ standard comparison. We found
that a minimum of 2 min is required to achieve steady-rate
metabolism and that data from 2–4 min yields a net COT curve that
is not statistically different from the one derived from experimental
protocols that are generally accepted in the field.

KEY WORDS: Metabolic power, Metabolic rate, Steady-state
metabolism, Energetics

INTRODUCTION
The U-shaped net cost of transport (COT) curve of walking
is a highly conserved feature in humans (Ralston, 1958), which
has helped scientists understand the mechanical determinants
that underlie metabolic energy minimization during walking
(Alexander, 1989; Kuo and Donelan, 2010; Ralston, 1958).
Understanding the mechanical determinants that allow humans to
minimize their net COT during walking can act as a key measure for
diagnosing and treating individuals with gait pathologies (Kuo and
Donelan, 2010; Ralston, 1958; Schwartz, 2007;Waters andMulroy,
1999). However, producing a net COT curve is a time-consuming

process that requires each subject to walk across a range of slow to
fast walking speeds and reach a steady rate of metabolism at each
speed. In past and recent experiments, it has been common for
walking trials to last 6–10 min with the average metabolic data of
the last 2–3 min of the trial being used for analysis (Arellano et al.,
2020; Donelan et al., 2001; Ralston, 1958). This is done under the
assumption that a subject has achieved steady-rate metabolism
during this period. However, it is possible that steady-rate
metabolism is reached earlier than expected and, thus, data
collection times could be substantially reduced. Reducing the
protocol time for generating a net COT curve can help lessen the
overall burden on both experimenter and subject. Yet, there has been
no consensus on how to define steady-rate metabolism to date.
Therefore, as a field, we lack a simple, objectivemethod for defining
steady-rate metabolism.

For human walking, Duffy et al. (1996) stated that steady-rate
metabolism usually occurs after 2 min, but it is unclear how they
reached this conclusion. Since then, there have been several
attempts to develop criteria for defining steady-rate metabolism.
For example, Schwartz (2007) used Kendall’s tau, a non-parametric
rank correlation coefficient, as a statistical means to determine
steady rates of oxygen consumption. For reasons unknown, this
approach has not been widely adopted in the field of locomotion
energetics. In contrast, other scientists have used a slope method,
which quantifies the rate of change in oxygen consumption as a
function of time. Plasschaert et al. (2009), for instance, used a slope
threshold of 0.00025 ml O2 kg−1 s2 to define steady-rate
metabolism. Along similar lines, others (Dennis et al., 2006;
Kramer et al., 2018) have defined steady-rate metabolism as a time
period when a subject exhibits low variability in their oxygen
consumption values across time (a change of <10% or
≤2.0 ml O2 kg−1 min−1). While these variability criteria appear
reasonable, there still lacks a methodological explanation as to why
these thresholds were selected. This may be the reason why these
approaches have not been widely adopted by others. And lastly,
others have defined periods of steady-rate metabolism by visual
identification of a plateau in the rate of O2 consumption (e.g. Sims
et al., 2018), which fits the classical definition seen in many exercise
physiology textbooks (Brooks et al., 2004).

While there is a lack of consensus as to how to objectively identify
periods of steady-rate metabolism, there have been significant
advancements in decreasing the time required to estimate the
metabolic demand of human walking using more advanced
computational methods. For instance, Selinger and Donelan (2014)
developed a mathematical approach that models the dynamics of
breath-by-breath data during walking. In their study, they evoked a
rapid change in the demand for metabolic energy under various
conditions during treadmill walking. Subjects were tasked with
initially walking at a fixed speed with their preferred step frequencyReceived 27 April 2022; Accepted 29 June 2022
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enforced with a metronome. Then an unexpected change in both
treadmill speed (faster or slower) and metronome-enforced step
frequency (faster or slower) demanded a spontaneous adjustment in
their walking pattern, requiring subjects to reach a new steady-rate of
metabolic energy consumption. The change in metabolic energy
consumption, which was captured from the initial to final steady state,
followed an exponential rise or decay that approached the final value.
They discovered that the underlying dynamics of the breath-by-breath
data could be accurately modeled by a first-order linear differential
equation. Based on the model’s time constant, they found that human
subjects reached 95% of their steady-state metabolic energy
consumption by the 2 min mark. This methodological approach has
re-shaped experimental designs and proven extremely useful in
studies of ‘human-in-the-loop’ optimization of walking, allowing
engineers and scientists to optimize the use of powered prostheses in
real time (Zhang et al., 2017). While Selinger and Donelan (2014)
used model fits to breath-by-breath metabolic data, other approaches
have used different types of movement data (e.g. ground reaction
forces, electromyography and body-worn sensors; see Slade et al.,
2019, for a concise review) to predict the metabolic cost of human
walking. A noteworthy example has been laid out by Slade et al.
(2019), who propose a data-drivenmodeling approach that uses linear
regression and neural network models to predict the metabolic cost of
walking. They used left and right vertical ground reaction forces and
lower limb electromyographic data to estimate metabolic energy from
previous experiments studying conditions of walking with a powered
ankle exoskeleton (Jackson and Collins, 2015) and conditions of
walkingwith different loads and inclines (Silder et al., 2012).While it
was noted that this approach lacks the accuracy of indirect
calorimetry, an estimate of metabolic energy consumption could be
achieved from an individual gait cycle or from a 4 s interval of data.
Although these approaches provide significant advancements in

estimating metabolic cost during walking with the minimum
amount of time possible, some of their drawbacks may limit their
generalizability. In particular, the method of Slade et al. (2019) can
estimate metabolic cost with average errors in the range 4.4−11.7%.
The relatively larger errors in predicting metabolic energy cost may
pose problems in settings where: (i) accuracy is critical for
understanding how metabolic cost changes across speed (Thomas
et al., 2021); (ii) various populations walk under different
biomechanical constraints (Antonellis et al., 2022); and (iii) time-
dependent adaptation processes are involved (Finley et al., 2013;
Huang et al., 2012; Selinger and Donelan, 2014). For example, it
has been shown that by making small adjustments to their walking
step frequency, humans can converge to a new metabolic optimum
when driven by a cost saving that ranges between ∼4% and 8%
(Selinger et al., 2015). While predicting metabolic cost using some
form of gait information may be helpful in cases where metabolic
measurements cannot be acquired using standard equipment,
we favor an approach like that of Selinger and Donelan (2014),
where estimates of metabolic power are based on the captured rates
of oxygen consumption and carbon dioxide production (V̇O2

and
V̇CO2

, respectively). Capturing V̇O2
and V̇CO2

not only informs an
experimenter of the demand for metabolic power but also provides
critical information as to whether this demand is met within the
expected physiological range, where respiratory exchange ratios
(RER) should reside at values less than 1.0, indicating that energy is
predominantly derived by aerobic pathways. Given the complexity
and limited generalizability of the current approaches, we set out to
understand whether a simpler approach, one that would not require
some form of advanced computational modeling, could offer a
means to identify steady rates of metabolism based on the data,

without the need to make any assumptions about the underlying
dynamics that govern the demand for metabolic energy.

In the spirit of simplicity and generalizability, we developed a
systematic approach that would allow us to both define steady-rate
metabolism and identify the minimum time required to generate the
net COT curve for human walking, which may provide evidence in
support of decreasing protocol times.We explored the slope method
carried out by Plasschaert et al. (2009) because it is relatively
simple, and could be easily understood and applied by novice
and experienced scientists undertaking measurements of metabolic
energy consumption during walking. As our approach relies on a
simple slope method, it avoids the need for advanced, complex
computational modeling of first-order dynamical processes
(Selinger and Donelan, 2014) or neural networks (Slade et al.,
2019). Based on the prediction of Duffy et al. (1996), we
hypothesized that our slope method would identify an earlier time
interval that would yield a net COT curve that is not statistically
different from the net COT curve produced by the last 3 min of a
7 min walking trial. For practical purposes, we considered a net
COT curve produced by the last 3 min of a 7 min walking trial as our
‘gold’ standard, as this reflects a generally accepted methodology in
the field of locomotion biomechanics and energetics.

MATERIALS AND METHODS
Participants and experimental protocol
Twenty-one young, healthy adults (13 females, 8 males)
participated in this study (mean±s.d. age 25.38±2.92 years, mass
68.37±12.41 kg, height 1.70±0.09 m) (Thomas et al., 2021). They
were non-smokers and were physically active according to ACSM
guidelines (American College of Sports Medicine Guidelines,
2018), with a body mass index <30.0. All participants gave written
informed consent as per the University of Houston Institutional
Review Board rules.

The experiment began with measurement of the subjects’ standing
metabolic energy consumption for 7 min using a metabolic cart
(Parvo Medics TrueMax2400, Salt Lake City, UT, USA), with a
setting that reported average V̇O2

and V̇CO2
approximately every 15 s.

In brief, average data were calculated from the accumulated VO2
,

starting with the beginning of the first detectable breath and ending
with a complete breath detected close to or after time exceeds 15 s.
Therefore, the average data were quantified by dividing the
accumulated VO2

by the accumulated time window of roughly 15 s
(personal communication, Pat Yeh, Parvo Medics). The same
procedure was followed for average V̇CO2

. We followed the
guidelines for metabolic testing described by the Parvo Medics
manual, starting with a 3 l syringe flowmeter calibration procedure.
The flowmeter calibration comprised defining room temperature,
barometric pressure and relative humidity. Then, the 3 l syringe
was used to achieve slow to fast peak stroke rates, in the range
50–100, 100–199, 200–299, 300–399 and 400–499 l min−1. We
continued the flowmeter calibration until reaching a ±0.5% difference
between the average volume measured during the calibration and
the known volume of the 3 l syringe. This was usually achieved
within two attempts. After successful flowmeter calibration, gas
analyzers were calibrated with a gas tank with known percentages of
CO2 and O2. Again, this process was continued until the gas
concentration readings from the metabolic cart matched the known
gas tank concentrations. This was also typically achieved within two
attempts.

The subjects walked on a dual-belt treadmill (Bertec Corp.,
Columbus, OH, USA), completing the 7 min trials in a randomized
order for all seven speeds, which ranged from 0.50 to 2.00 m s−1
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in 0.25 m s−1 intervals (Fig. 1). To minimize the effects of fatigue,
participants rested for 5 min between the trials. The RER was
monitored for each subject to ensure values remained <1.00,
indicating that metabolic energy was provided primarily by aerobic
pathways. If any subject was unable to maintain a walking gait
at a given speed, or produced a RER above 1.00, the trial was
stopped and excluded from data analysis. We excluded 2 subjects
at 1.75 m s−1 (because their RER was >1.0) and 9 subjects at
2.00 m s−1 (7 could not maintain walking gait and 2 had a RER
>1.0). Additionally, we excluded 1 subject at 1.00 m s−1 who did
not reach a steady rate of metabolism during the trial.

Data analysis
We used the average V̇O2

and V̇CO2
values to calculate metabolic

power for each standing and walking trial using the Brockway
equation (Brockway, 1987) and the Péronnet and Massicotte
equation (Péronnet and Massicotte, 1991; Kipp et al., 2018). For
each speed, we calculated net metabolic power by subtracting each
participant’s standing metabolic power from their gross metabolic
power values in each walking trial (Fig. 1). To mirror typical
data collectionmethods, we divided the 7min trials into overlapping
3, 2 and 1 min intervals. For the 3 min analyses, for example,
the first window started at 15 s and ended at 180 s. Note that
the 15 s mark represents the average metabolic data sampled
between the start of the walking trial and the subsequent 15 s. For
simplicity, we refer to the first window as 0–3:00 min:s. Then,
this window moved to the next time point, starting at 30 s and
ending at 195 s. The 30 s mark represents the average metabolic data
sampled between the end of the first 15 s of the trial and the
following 15 s. We refer to this second window as 0:15–3:15 min:s.
This process continued until reaching the end of the entire 7 min
time-series. This analysis was replicated for the 2 min and 1 min
intervals. This resulted in 17 intervals lasting 3 min each, 21
intervals lasting 2 min each, and 25 intervals lasting 1 min each. For
each subject and speed, we used the time-series intervals to quantify
the magnitude of the slope (ml O2 kg

−1 min−1 s−1 or W kg−1 s−1)
using linear regression and refer to this variable as the slope time
window (slopeTW) throughout the rest of the text. By quantifying
the slopeTW along each 7 min trial, we expected its magnitude to
reach a value of ∼0, reflecting a flat line and, thus, a period of
time when subjects have reached steady-rate metabolism. For
subsequent analyses, we also quantified the net cost of transport

by dividing net V̇O2
(ml O2 kg−1 min−1×1 min/60 s) by walking

speed (m s−1) and net metabolic power (W kg−1) by walking
speed (m s−1). We used MATLAB (Mathworks, Inc., Natick, MA,
USA) to perform all computational calculations and descriptive
analyses.

Statistical analysis
For each 1, 2 and 3 min interval, we aggregated the individual data
points at each speed for all subjects and then calculated the
regression line that estimated the change in slopeTW as a function of
speed (i.e. 0.5 m s−1 to 2.0 m s−1; see Fig. 2). For instance, a
regression line was derived for each 1 min interval, starting from
0–1:00 min:s, then from 0:15 to 1:15 min:s, then from 0:30 to
1:30 min:s and so on, until reaching the final 6:00–7:00 min:s. The
same approach was carried out for the 2 min and 3 min intervals. We
then used the Dunnett method of multiple comparison (MC) to
determine whether each regression line was statistically different
from the regression line that was based on the last 3 min of the 7 min
trial, predesignated here as the control. The criteria for significance
were based on a directional one-tailed test, an alpha value equal to
0.05, k number of comparisons, and v degrees of freedom based on
the residual sum of squares. To calculate the critical t-value for the
Dunnett multiple comparison method, we used the ‘nCDunnett’
package provided in R software, which yielded the following
results: t1min=2.721 (k=25, v=266), t2min=2.674 (k=21, v=266) and
t3min=2.598 (k=16, v=266).

Based on the outcomes of the Dunnett method, we moved
forward with a non-linear regression analysis using R software to
compare the net rate of oxygen consumption, net metabolic power
and net COT curves derived from a 2–4 min and 2–5 min window
with that derived from the last 4–7 min window (see Discussion for
details). We then followed up with pre-planned comparisons
between the average net COT values at each level of speed using
paired t-tests with α=0.05 (SPSS Inc., Chicago, IL, USA). Note that
for each level of speed, where values were compared using a paired
t-test, sample sizes were always equal. If the data did not meet the
assumptions of normality, we used the non-parametric Wilcoxon
signed-rank test. For clarity, the mean and s.d. for net COT at each
speed and time window are provided in Tables 1–3 while the
regression equations signifying the slope, intercept, adjusted
coefficient of determination (r2adj), along with the F and P values
are provided in Table 4.
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Fig. 1. Calculation of net V̇O2 and net metabolic power. Representative time-series data from a single subject illustrating the demand for net oxygen
consumption (A) and net metabolic power, according to the equations of Brockway (1987) (B) and Péronnet and Massicotte (1991) (C) while walking across slow
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RESULTS
Influence of time window across speed
The regression lines based on the initial time window of 1, 2 and
3 min intervals revealed that the magnitude of slopeTW
significantly increased as a function of speed (Fig. 2). For
example, the slopeTW derived for a 1 min interval was closer
to zero for the slowest speed (0.5 m s−1) and increased to its
highest value at 2.0 m s−1. As the time window moved along,
toward the end of the metabolic time-series data, the unit increase
in the magnitude of slopeTW decreased and, therefore, the
linear relationship between slopeTW and speed became less
steep. In general, the linear relationship between the magnitude

of slopeTW and speed for the last 2 min and 1 min time windows
overlapped closely with the last 3 min time window, i.e. the
control.

In the sections that follow, we summarize the results of our
linear regression analyses, which quantified the change in slopeTW
as a function of speed. The linear regression analyses are
reflected in general form as Y=BYXX+Bo, after the notation
adopted by Cohen et al. (2002). In this case, Y is the estimate of
slopeTW, X is speed, Bo is the Y intercept and BYX is the regression
coefficient for estimating slopeTW from speed and represents
the rate of change in slopeTW per unit change in speed. For ease
of interpretation, the regression lines are only reported for
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equations of Brockway (1987) (middle) and Péronnet and Massicotte (1991) (right) over the specific time window across the time-series data. By plotting slopeTW
as a function of speed (using the individual data points), a regression linewas fitted across all the 1min intervals, starting from 0–1:00 min:s, then 0:15–1:15 min:s,
then 0:30–1:30 min:s and so on, until reaching the final 6:00–7:00 min:s. The same procedurewas followed for the 2min and 3min intervals. The trends show that
as the time window moved along, toward the end of the original metabolic time-series data, the unit increase in slopeTW decreased, eventually reaching similar
values to those observed from the 4–7 min time window, our ‘gold’ standard (solid black line). To allow for closer inspection, the insets for the 2 and 3 min graphs
highlight the earliest timewindow that is not statistically different from the gold standard. No inset is included for the 1min intervals as theywere not considered for
curve comparisons. For clarity, several time intervals were omitted; however, those omitted exhibited the same downward trend.

4

RESEARCH ARTICLE Journal of Experimental Biology (2022) 225, jeb244471. doi:10.1242/jeb.244471

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y



the initial and last time window for the 1, 2 and 3 min intervals.
As we will see, the regression coefficient (BYX) was high when
the best fit lines were based on using initial time windows and
lowest (approximating a value of zero) when the best fit lines were
based on using the last time windows of the metabolic time-series
data.

Change in slopeTW based on net V̇O2

The regression lines for the initial and last time window for the
1 min intervals were slopeTW=0.094(speed)−0.049, r2adj=0.413
and slopeTW=0.010(speed)−0.010, r2adj=0.012, respectively. The
regression lines for the initial and last time window for the 2 min
intervals were slopeTW=0.047(speed)−0.018, r2adj=0.412 and
slopeTW=0.002(speed)−0.003, r2adj=−0.002, respectively. And
finally, the regression lines for the initial and last time window for
the 3 min intervals were slopeTW=0.024(speed)−0.007, r2adj=0.369
and slopeTW=0.002(speed)−0.003, r2adj=0.017, respectively.

Change in slopeTW based on net metabolic power via the
Brockway equation
The regression lines for the initial and last time window for the
1 min intervals were slopeTW=0.030(speed)− 0.016, r2adj=0.416
and slopeTW=0.003(speed)−0.003, r2adj=0.013, respectively. The
regression lines for the initial and last time window for the
2 min intervals were slopeTW=0.016(speed)−0.007, r2adj=0.442
and slopeTW=0.001(speed)−0.001, r2adj=0.001, respectively. And
finally, the regression lines for the initial and last time window for
the 3 min intervals were slopeTW=0.009(speed)−0.003, r2adj=0.429
and slopeTW=0.001(speed)−0.001, r2adj=0.027, respectively.

Table 1. Net cost of transport (COT) derived from net V̇O2 data extracted
from the selected time windows at each speed

Walking
speed
(m s−1)

Net COT (ml O2 kg−1 m−1)

2 min interval
(2.00–4.00 min)

3 min interval
(2.00–5.00 min)

‘Gold’ standard
(4.00–7.00 min)

0.50 0.132±0.026 (n=21)
d=0.306
P=0.322 (WS)

0.132±0.027 (n=21)
d=0.479
P=0.040

0.129±0.026
(n=21)

0.75 0.113±0.022 (n=21)
d=0.406
P=0.078

0.112±0.022 (n=21)
d=0.414
P=0.050 (WS)

0.109±0.020
(n=21)

1.00 0.103±0.017 (n=20)
d=0.108
P=0.634

0.104±0.016 (n=20)
d=0.274
P=0.236

0.102±0.016
(n=20)

1.25 0.105±0.017 (n=21)
d=0.327
P=0.150

0.104±0.016 (n=21)
d=0.259
P=0.250

0.103±0.014
(n=21)

1.50 0.115±0.016 (n=21)
d=0.423
P=0.062 (WS)

0.114±0.016 (n=21)
d=0.353
P=0.085 (WS)

0.113±0.015
(n=21)

1.75 0.131±0.020 (n=19)
d=−0.204
P=0.385

0.132±0.195 (n=19)
d=−0.201
P=0.494 (WS)

0.132±0.020
(n=19)

2.00 0.155±0.018 (n=12)
d=−0.942
P=0.008

0.156±0.018 (n=12)
d=−1.242
P=0.001

0.161±0.017
(n=12)

Values are expressed as means±s.d. Effect size was calculated based on
Cohen’s d=t/√n. All comparisons at each speed were made between an
earlier interval and the ‘gold’ standard interval with Bonferroni-adjusted
significance set atP<0.025.WS indicatesP-values fromWilcoxon signed rank
test and bold denotes significant differences when compared with the
gold standard.

Table 2. Net COT values derived from net metabolic power data
extracted from the selected time windows at each speed using the
Brockway equation

Walking
speed
(m s−1)

Net COT (J kg−1 m−1)

2 min interval
(2.00–4.00 min)

3 min interval
(2.00–5.00 min)

‘Gold’ standard
(4.00–7.00 min)

0.50 2.663±0.531 (n=21)
d=0.233
P=0.298

2.666±0.543 (n=21)
d=0.395
P=0.085

2.617±0.537 (n=21)

0.75 2.271±0.437 (n=21)
d=0.359
P=0.115

2.251±0.429 (n=21)
d=0.380
P=0.097

2.210±0.393 (n=21)

1.00 2.087±0.338 (n=20)
d=0.038
P=0.865

2.102±0.318 (n=20)
d=0.190
P=0.406

2.081±0.317 (n=20)

1.25 2.125±0.327 (n=21)
d=0.149
P=0.502

2.106±0.307 (n=21)
d=−0.026
P=0.906

2.108±0.290 (n=21)

1.50 2.325±0.328 (n=21)
d=0.069
P=0.614 (WS)

2.322±0.332 (n=21)
d=0.028
P=0.821 (WS)

2.320±0.30 (n=21)

1.75 2.692±0.417 (n=19)
d=−0.342
P=0.153

2.711±0.406 (n=19)
d=−0.380
P=0.115

2.743±0.418 (n=19)

2.00 3.226±0.397 (n=12)
d=−1.116
P=0.003

3.253±0.395 (n=12)
d=−1.388
P=0.001

3.359±0.372 (n=12)

Values are expressed as means±s.d. Effect size was calculated based on
Cohen’s d=t/√n. Net metabolic power was estimated from the equation
published by Brockway (1987). All comparisons at each speed were made
between an earlier interval and the gold standard interval with
Bonferroni-adjusted significance set at P<0.025. WS indicates P-values from
Wilcoxon signed rank test and bold denotes significant differences when
compared with the gold standard.

Table 3. Net COT values derived from net metabolic power data
extracted from the selected time windows at each speed using the
Péronnet and Massicotte equation

Walking
speed
(m s−1)

Net COT (J kg−1 m−1)

2 min interval
(2.00–4.00 min)

3 min interval
(2.00–5.00 min)

‘Gold’ standard
(4.00–7.00 min)

0.50 2.809±0.546 (n=21)
d=0.229
P=0.306

2.81±0.56 (n=21)
d=0.389
P=0.090

2.763±0.553 (n=21)

0.75 2.382±0.451 (n=21)
d=0.357
P=0.117

2.362±0.442 (n=21)
d=0.377
P=0.099

2.320±0.405 (n=21)

1.00 2.182±0.348 (n=20)
d=0.035
P=0.877

2.197±0.328 (n=20)
d=0.186
P=0.416

2.176±0.327 (n=20)

1.25 2.213±0.336 (n=21)
d=0.141
P=0.524

2.194±0.315 (n=21)
d=−0.038
P=0.862

2.197±0.298 (n=21)

1.50 2.415±0.338 (n=21)
d=0.053
P=0.689 (WS)

2.412±0.342 (n=21)
d=0.013
P=0.876 (WS)

2.411±0.311 (n=21)

1.75 2.791±0.430 (n=19)
d=−0.348
P=0.147

2.812±0.418 (n=19)
d=−0.388
P=0.108

2.844±0.431 (n=19)

2.00 3.339±0.410 (n=12)
d=−1.123
P=0.003

3.367±0.409 (n=12)
d=−1.392
P=0.001

3.477±0.385 (n=12)

Values are expressed as means±s.d. Effect size was calculated based on
Cohen’s d=t/√n. Net metabolic power was estimated from the equation
published by Péronnet and Massicotte (1991). All comparisons at each speed
were made between an earlier interval and the gold standard interval with
Bonferroni-adjusted significance set at P<0.025. WS indicates P-values from
Wilcoxon signed rank test and bold denotes significant differences when
compared with the gold standard.
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Change in slopeTW based on net metabolic power via the
Péronnet and Massicotte equation
The regression lines for the initial and last time window for the
1 min intervals were slopeTW=0.031(speed)−0.016, r2adj=0.416 and
slopeTW= 0.004(speed)−0.003, r2adj=0.013, respectively. The
regression lines for the initial and last time window for the 2 min
intervals were slopeTW=0.017(speed)−0.007, r2adj=0.444 and
slopeTW= 0.001(speed)−0.001, r2adj=0.001, respectively. And
finally, the regression lines for the initial and last time window for
the 3 min intervals were slopeTW=0.009(speed)−0.003, r2adj=0.431
and slopeTW=0.001(speed)−0.001, r2adj=0.028, respectively.

Dunnett’s MC method to determine earliest time window
As shown in Fig. 3, the comparisons between the regression lines
revealed that for 1 min window comparisons, the t-statistic fell
below the critical t-value at an interval between 1:15 and 2:15 min:s;
however, when contrasted with the 2 min and 3 min windows,
the t-statistic exhibited greater fluctuations for the subsequent
comparisons against the control. For the 2 min window,
comparisons of regression lines revealed that a window between
1:30 and 3:30 min:s was not statistically different from the last
3 min window. And finally, for the 3 min window, comparison
of regression lines revelated that a window between 2:00 and

5:00 min was not significantly different from the last 3 min window.
Given these observations, we chose to compare the 3 min window
defined from 2:00 to 5:00 min against the control. And to keep
consistent with our 3 min window comparison, we also chose to
compare the 2 min window defined from 2:00 to 4:00 min against
the control. Although the t-statistic fell below the Dunnett’s critical
t-value for the 1 min window, we avoided any regression fit
comparisons using this window because of higher fluctuations in
the pattern.

Net V̇O2, net metabolic power and net COT curves
The non-linear regression line comparisons characterizing net
V̇O2

as a function of speed did not significantly differ between the
last 3 min interval and the 3 min interval between 2:00 and 5:00 min
or between the last 3 min interval and the 2 min interval between
2:00 and 4:00 min (Fig. 4; P-values provided in the caption). In
addition, the non-linear regression line comparisons characterizing
the net COT as a function of speed did not significantly differ
between the last 3 min interval and the 3 min interval between 2:00
and 5:00 min or between the last 3 min interval and the 2 min
interval between 2:00 and 4:00 min. The same results were
observed when carrying out the non-linear comparisons for net
metabolic power and net COT, regardless of whether these data were

Table 4. Best fit curve equations and mean square error of the regression fits for the time windows displayed in Figs 4–6

Net V̇O2 Brockway (1987) Péronnet and Massicotte (1991)

Equations reflect
per unit time

2–4 min Net V̇O2 (ml O2 kg−1 min−1)=
(5.879±0.597)speed2 –
(5.426±1.470)speed
+(5.507±0.813),
R2

adj=0.904, F2132=632.46, P<0.001
MSE2–4min=2.050

Net metabolic power (W kg−1)=
(2.137±0.205)speed2 –
(2.117±0.505)speed
+(1.967±0.279),
R2

adj=0.906, F2132=650.20, P<0.001
MSE2–4min=0.242

Net metabolic power (W kg−1)=
(2.205±0.212)speed2 – (2.190±0.521)speed
+(2.063±0.288),
R2

adj=0.906, F2132=649.07, P<0.001
MSE2–4min=0.257

2–5 min Net V̇O2 (ml O2 kg−1 min−1)=
(6.058±0.586)speed2 –
(5.798±1.442)speed
+(5.653±0.797),
R2

adj=0.909, F2132=669.067, P<0.001
MSE2–5min=1.973

Net metabolic power (W kg−1)=
(2.203±0.202)speed2 –
(2.249±0.498)speed
+(2.020±0.275),
R2

adj=0.911, F2132=685.33, P<0.001
MSE2–5min=0.235

Net metabolic power (W kg−1)=
(2.273±0.208)speed2 –
(2.324±0.513)speed+(2.117±0.284),
R2

adj=0.911, F2132=683.91, P<0.001
MSE2–5min=0.250

4–7 min Net V̇O2 (ml O2 kg−1 min−1)=
(6.584±0.571)speed2 – (6.812±1.408)speed
+(5.983±0.778),
R2

adj=0.918, F2132=751.320, P<0.001
MSE4–7min=1.879

Net metabolic power (W kg−1)=
(2.378±0.198)speed2 –
(2.563±0.488)speed
+(2.121±0.270),
R2

adj=0.920, F2132=768.82, P<0.001
MSE4–7min=0.226

Net metabolic power (W kg−1)=
(2.452±0.204)speed2 –
(2.646±0.504)speed+(2.221±0.278),
R2

adj=0.920, F2132=767.35, P<0.001
MSE4–7min=0.240

Equations reflect
per unit distance

2–4 min Net COT (ml O2 kg−1 m−1)=
(0.069±0.008)speed2 –
(0.157±0.020)speed
+(0.192±0.011),
R2

adj=0.374, F2132=41.007, P<0.001
MSE2−4min=0.000388

Net COT (J kg−1 m−1)=
(1.477±0.166)speed2 –
(3.292±0.408)speed
+(3.925±0.225),
R2

adj=0.412, F2132=47.88, P<0.001
MSE2−4min=0.158

Net COT (J kg−1 m−1)=
(1.551±0.171)speed2 –
(3.496±0.420)speed+
(4.151±0.232), R2

adj=0.411,
F2132=47.81, P<0.001
MSE2−4min=0.167

2–5 min Net COT (ml O2 kg−1 m−1)=
(0.071±0.008)speed2 –
(0.160±0.020)speed
+(0.193±0.011),
R2

adj=0.396, F2132=44.935, P<0.001
MSE2−5min=0.000376

Net COT (J kg−1 m−1)=
(1.514±0.164)speed2 –
(3.366±0.403)speed
+(3.952±0.223),
R2

adj=0.433, F2132=52.12, P<0.001
MSE2−5min=0.154

Net COT (J kg−1 m−1)=
(1.591±0.169)speed2 –
(3.574±0.415)speed+
(4.180±0.229),
R2

adj=0.432, F2132=52.06, P<0.001
MSE2−5min=0.163

4–7 min Net COT (ml O2 kg−1 m−1)=
(0.074±0.008)speed2 –
(0.164±0.019)speed
+(0.192±0.011),
R2

adj=0.459, F2132=57.905, P<0.001
MSE4−7min=0.000342

Net COT (J kg−1 m−1)=
(1.573±0.158)speed2 – (3.427±0.389)speed
+(3.924±0.215),
R2

adj=0.491, F2132=65.57, P<0.001
MSE4−7min=0.144

Net COT (J kg−1 m−1)=
(1.650±0.163)speed2 –
(3.635±0.401)speed
+(4.151±0.222),
R2

adj=0.488, F2132=64.93, P<0.001
MSE4−7min=0.153
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derived using the Brockway (1987) equation or the Péronnet
and Massicotte (1991) equation (Figs 5 and 6; P-values provided
in the captions). Follow-up pairwise comparisons between the
last 3 min interval and the earlier time intervals showed that the net
COT values were not statistically different at speeds of 0.5–
1.75 m s−1 (all P>0.05). However, when compared with the last
3 min interval, the net COT values for the fastest speed of
2.00 m s−1 were consistently lower for the earlier time intervals
(Tables 1–3).

DISCUSSION
In this paper, we used a slope method as a simple approach to
identify when humans achieve steady rates of metabolism while

walking across a range of slow to fast speeds (0.5–2.0 m s−1). We
applied this method using awindow that quantified the slopes across
a 1, 2 and 3 min time period that moved along the time series from
beginning to end. In support of our hypothesis, we discovered that at
minimum, 4 min of walking at each speed is needed to produce a net
COT curve that is not statistically different from a net COT curve
obtained from traditional, longer data collection times.

When do subjects reach a steady rate of metabolism?
Our slope method revealed that across the walking speeds tested
here, subjects reached a steady rate of metabolism by 2 min,
confirming the prediction of Duffy et al. (1996). We came to this
conclusion based on our systematic analysis, which provided a clear
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Fig. 3. Determining the earliest time window for steady-rate metabolism. The trends illustrate changes in the observed Dunnett’s t-statistic derived from
systematic comparisons between regression lines based on net V̇O2 (left) or net metabolic power according to the equations of Brockway (1987) (middle) and
Péronnet and Massicotte (1991) (right). Each interval, from start to end, was compared against the control, defined as the last 3 min of a 7 min walking trial. In
general, the observed t-statistic was highest for the first interval, then showed a downward trend until reaching a value belowDunnett’s critical t-statistic (t1min, t2min,
t3min), indicating that subjects had achieved a steady rate of metabolism that was not statistically different from that of the last 3 min of the 7 min trial. Interval
number 1 represents the time window 0:00–1:00 min:s and interval number 2 represents the 0:15–1:15 min:s, and so on. Regression line comparisons revealed
that the 1 min window between 0:45 and 1:45 min:s (interval number 4) reached a value below threshold (A,D,G), but the observed t-statistic had higher
fluctuations in the pattern. In contrast, regression line comparisons revealed that a 2 min window between 1:00 and 3:00 min:s (interval number 5) (B,E,H) and a
3 min window between 0:45 and 3:45 min:s (interval number 4) (C,F,I) reached a value below Dunnett’s threshold, and remained consistent for subsequent
comparisons. Overall, the observed t-statistic trends for 2min and 3min windows demonstrate that subjects reached a steady rate of metabolismmuch earlier that
the last 3 min of a 7 min walking trial.
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picture as to how the slope of the net V̇O2
versus time and the slope of

net metabolic power versus time changed as each 1, 2 or 3 min
window moved along the time-series data. From Dunnett’s multiple
comparison method, one can see that for the 2 and 3 min intervals
(Fig. 3), the t-statistic values were highest for the first interval, then
decreased steadily until reaching the first minimum value at a time
window between 1:30–3:30 min:s and 1:30–4:30 min:s. Overall, a
longer time window of 2 and 3 min fared much better than a 1 min
time window.

Comparing net COT curves for walking
To keep our comparisons consistent, we calculated the net V̇O2

, net
metabolic power and net COT curves derived from a 2–4 min and 2–
5 min window. We chose these windows because the regression
lines characterizing the change in average slope as a function of
speed (Fig. 2) did not differ between a 2–4 min and 4–7 min
window and a 2–5 min and 4–7 min window. As illustrated in
Figs 4–6, the net V̇O2

, net metabolic power and net COT curves were
not statistically different from the curves produced from the last
3 min of the 7 min trial, our gold standard. Follow up comparisons at
each speed revealed that pairwise differences between the mean
values for net COT (e.g. mean at 2–4 min versus 4–7 min at
0.5 m s−1; mean at 2–5 min versus 4–7 min at 0.5 m s−1, and so on)
were not statistically different, except for the fastest walking speed
of 2.0 m s−1 (Tables 1–3). At this speed, the net COT derived from a

2–4 min and 2–5 min window was slightly higher than our gold
standard. We suspect that these differences at 2.0 m s−1 can be
explained by the relatively small sample size of 12 subjects.
Nonetheless, including a speed of 2.0 m s−1 in the net COT curve
should be interpreted with caution because this particular speed is
where humans prefer to transition from a walk to a run (Farris and
Sawicki, 2012; Minetti et al., 1994). This might explain why many
of our subjects could not keep up with the treadmill when
attempting to walk at 2.0 m s−1. If we restrict our walking speeds
to a typical range of 0.5–1.75 m s−1, our analyses suggest that either
a 2–4 min or a 2–5 min window will yield average net COT values
and curves that are not statistically different from our gold standard.

For cases where the entire net COT curve is not of primary
scientific interest, our simple method suggests that it is robust and
reliable for estimating net COT values at speeds below 2.0 m s−1. In
many walking experiments, it is quite common to measure
metabolic energy consumption across varying conditions, while
speed is held fixed at magnitudes between 1.0 and 1.3 m s−1. When
comparing the net COT values derived from net V̇O2

data, the 2–
4 min and 2–5 min windows were not significantly different from
the 4–7 min window (Table 1). In addition, the effect sizes for these
speeds ranged between 0.306 and 0.479, reflecting differences that
are <0.5 s.d. away from the gold standard values. The same results
hold when comparing the net COT values derived from either
Brockway (1987) or Péronnet and Massicotte (1991), which are
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Fig. 4. Net V̇O2 and cost of transport as a
function of speed. (A) Net V̇O2 and (B) net cost of
transport (COT) changed non-linearly with
walking speed, with estimates based on the
average V̇O2 measured (see Materials and
Methods). The left column represents the
individual data points and the right column
represents the regression curve fits to these
individual data points. For ease of comparing the
regression curve fits, the data in the right column
represent the mean±s.e.m. and are
superimposed to illustrate the high degree of
similarity. As expected, net V̇O2 increased
curvilinearly with speed. In contrast, net COT
exhibited a U-shaped curve, highlighting the
observation that walking at a speed between 1
and 1.3 m s−1 minimizes the net COT, i.e. the net
oxygen cost required to move 1 kg of body mass
1 m. For ease of visual inspection, a small offset
was applied to the original data points along the
abscissa in the left column. Statistical
comparisons made from the regression equations
characterizing the non-linear relationship of net
V̇O2 versus speed and net COT versus speedwere
not statistically different for the time windows
taken from 2–4 min, 2–5 min and 4–7 min (net
oxygen consumption comparisons: 2–4 min
versus 4–7 min P=0.741 and 2–5 min versus 4–
7 min P=0.796; net COT comparisons: 2–4 min
versus 4–7 min P=0.974 and 2–5 min versus 4–
7 min P=0.972). Note that the regression curves
for the 2–4 min window overlap with those for the
2–5 min window; therefore, they are
indistinguishable from one another. The
equations characterizing the polynomial non-
linear regression fits in the right column are listed
in Table 4.
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depicted in Tables 2 and 3. This was the case for all speeds, with the
exception arising at the fastest speed of 2.0 m s−1. One can avoid
this discrepancy by either not including 2.0 m s−1 in the derivation
of the net COT curve or ensuring that at 2.0 m s−1, the net COT
value is derived from a 4–7 min window.

Limitations and future work
While our slope method was successful for identifying steady rates
of metabolism across a range of slow to fast speeds, there are some
limitations that warrant further analysis. First, we were unable to
determine the effect of sampling rate on identifying periods of
steady rates of metabolism. Our data were based on a previous
study (Thomas et al., 2021) where our metabolic system was
configured to sample average rates of O2 consumption and CO2

production approximately every 15 s. It is possible that applying
our slope method on metabolic data that were sampled breath by
breath, as done by Schwartz (2007), could have identified shorter
time windows; however, breath-by-breath data are inherently
noisier. While we show that our results are independent of the
typical equations used in the field of locomotion energetics
and biomechanics (Brockway, 1987; Péronnet and Massicotte,
1991), further analysis is needed to address the potential effect of
different sampling rates and filtering techniques. Overall, we
recommend that any post-processing of these types of data should
be kept simple.

In line with the analyses carried out by Schwartz (2007), we also
compared our quadratic regression fits and found that the mean
square error for the net V̇O2

, net metabolic power and net COT
curves remains small, differing between 6.8% and 12.6% from the
gold standard (Table 4). This provides evidence that the total time
required for data collection can be substantially reduced without
sacrificing the accuracy of estimating an individual’s net metabolic
power and net COT curve. We can appreciate this finding by
comparing the values derived from the 2–4 min windowwith that of
the gold standard. For speeds ranging from 0.5 to 1.75 m s−1, an
example calculation using the Péronnet and Massicotte (1991)
equation shows that a 2–4 min and 4–7 min window yield similar
values for net COT (2.791 versus 2.746 J kg−1 m−1 at 0.50 m s−1;
2.401 versus 2.353 J kg−1 m−1 at 0.75 m s−1; 2.206 versus
2.166 J kg−1 m−1 at 1.00 m s−1; 2.204 versus 2.185 J kg−1 m−1 at
1.25 m s−1; 2.397 versus 2.411 J kg−1 m−1 at 1.50 m s−1; 2.783
versus 2.843 J kg−1 m−1 at 1.75 m s−1; and 3.363 versus
3.481 J kg−1 m−1 at 2.00 m s−1). The 2–4 min window predicts
net COT values that differ between −2.064% and 3.39% across the
entire speed range. Similar conclusions are reached for the 2–5 min
window and when using V̇O2

values or values derived from the
Brockway (1987) equation to estimate the net COT for walking.
While these estimates are robust, we recognize that our data are
based on a sample of healthy young adults; however, this slope
method could be easily applied to any population (e.g. clinical,
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Fig. 5. Net metabolic power and net COT derived
using the Brockway equation, and expressed as
a function of speed. (A) Net metabolic power
demand and (B) net COT changed non-linearly with
walking speed. The left column represents the
individual data points estimated from the Brockway
(1987) equation and the right column represents the
regression curves fitted to these individual data
points. For ease of comparing the regression curve
fits, the data in the right column represent the mean
±s.e.m. and are superimposed to illustrate the high
degree of similarity. Similar to the trends and
interpretation in Fig. 4, the demand for net metabolic
power increased curvilinearly with speed while the
net COT exhibited a U-shaped curve, highlighting
the observation that walking at a speed between 1
and 1.3 m s−1 minimizes the net COT. Statistical
comparisons made from the regression equations
characterizing the non-linear relationship of net
metabolic power versus speed and net COT versus
speed were not statistically different for the time
windows taken from 2–4 min, 2–5 min and 4–7 min
(net metabolic power comparisons: 2–4 min versus
4–7 min P=0.431 and 2−5 min versus 4−7 min
P=0.543; net COT comparisons: 2–4 min versus 4–
7 min P=0.710 and 2−5 min versus 4−7 min
P=0.781). Note that the regression curves for the 2–
4 min window overlap with those for the 2–5 min
window; therefore, they are indistinguishable from
one another. The equations characterizing the
polynomial non-linear regression fits in the right
column are listed in Table 4.
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young children, older adults, etc.) where metabolic measurements
are experimentally feasible. And because there are no assumptions
underlying the transient dynamics of metabolic energy
consumption, this slope method could be applied to different
tasks such as cycling, hopping and running, and potentially any task
where energy is provided primarily by aerobic pathways. One point
to consider is that although our approach provides the advantage of
simplicity, it leaves unanswered the question of how the transient
dynamics unfold during the period of non-steady-rate metabolism.
Modeling these transient dynamics has important implications for
understanding the physiological control processes that govern
pulmonary gas exchange during exercise (Whipp and Ward, 1990).
If a key objective is to model and understand these transient
dynamics during walking, then the methodology of Selinger and
Donelan (2014) should be adopted. If not, then one could easily
adopt our simple slope method to confirm periods of steady-rate
metabolism during exercise. Nonetheless, we encourage the
application of our simple slope method in future experiments that
study different tasks at varying exercise intensities, which will help
determine the generalizability of this approach and justify its use as
an analytical tool.

Conclusion
In summary, we used a slope method as a viable approach for
identifying steady rates of metabolism during human walking. Our

analyses explored a wide range of slow to fast walking speeds
(0.5–2.0 m s−1), revealing that at minimum, 4 min of metabolic data
for each walking trail is required to estimate a net COT curve that is
not statistically different from a net COT curve derived from
traditional data collection times. A key takeaway from our analyses
is that once steady-rate metabolism has been achieved after 2 min,
one only needs to average over 2 min of metabolic data, reflecting a
time window between 2 and 4 min. Our findings suggest that if
desirable, shorter trials can be performed, which will help decrease
total data collection time. Based on the traditional trial durations that
typically range from 6 to 10 min, we estimate a decrease in
experimental time of 14–42 min across all speeds per subject. For a
sample size of 21 subjects, this equates to a decrease of ∼5–15 h in
total data collection time. While it is common for steady rates of
metabolism to be confirmed through visual inspection, our slope
method provides an objective and simple way to accomplish this
experimental goal, which may prove useful for scientists studying
problems in or at the interface of exercise physiology and
locomotion biomechanics.
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walking speed. The left column represents the
individual data points estimated from the Péronnet
and Massicotte (1991) equation and the right
column represents the regression curves fitted to
these individual data points. For ease of comparing
the regression curve fits, the data in the right column
represent the mean±s.e.m. and are superimposed
to illustrate the high degree of similarity. Similar to
the trends and interpretation in Figs 4 and 5, the
demand for net metabolic power increased
curvilinearly with speed while the net COTexhibited
a U-shaped curve, highlighting the observation that
walking at a speed between 1 and 1.3 m s−1

minimizes the net COT. Statistical comparisons
made from the regression equations characterizing
the non-linear relationship of net metabolic power
versus speed and net COT versus speed were not
statistically different for the timewindows taken from
2–4 min, 2–5 min and 4–7 min (net metabolic power
comparisons: 2–4 min versus 4–7 minP=0.421 and
2–5 min versus 4–7 min P=0.532; net COT
comparisons: 2–4 min versus 4–7 minP=0.699 and
2–5 min versus 4–7 min P=0.774). Note that the
regression curves for the 2–4 min window overlap
with those for the 2–5 min window; therefore, they
are indistinguishable from one another. The
equations characterizing the polynomial non-linear
regression fits in the right column are listed in
Table 4.
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