
REVIEW

Variations in cost of transport and their ecological consequences:
a review
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ABSTRACT
Movement is essential in the ecology of most animals, and it
typically consumes a large proportion of individual energy budgets.
Environmental conditions modulate the energetic cost of movement
(cost of transport, COT), and there are pronounced differences in COT
between individuals within species and across species. Differences
in morphology affect COT, but the physiological mechanisms
underlying variation in COT remain unresolved. Candidates include
mitochondrial efficiency and the efficiency of muscle contraction–
relaxation dynamics. Animals can offset increased COT behaviourally
by adjusting movement rate and habitat selection. Here, we review the
theory underlying COT and the impact of environmental changes on
COT. Increasing temperatures, in particular, increase COT and its
variability between individuals. Thermal acclimation and exercise can
affect COT, but this is not consistent across taxa. Anthropogenic
pollutants can increase COT, although few chemical pollutants have
been investigated. Ecologically, COT may modify the allocation of
energy to different fitness-related functions, and thereby influence
fitness of individuals, and the dynamics of animal groups and
communities. Future research should consider the effects of multiple
stressors on COT, including a broader range of pollutants, the
underlying mechanisms of COT and experimental quantifications of
potential COT-induced allocation trade-offs.

KEY WORDS: Locomotion, Metabolic rate, Muscle, Mitochondria,
Temperature, Exercise, Allocation trade-off

Introduction
Limited resources lead to preferential allocation of resources to
biological processes that maximise overall fitness. However, if two
or more fitness-related processes compete for the same resource,
there will be an allocation trade-off that can potentially reduce
fitness (Angilletta et al., 2003). Most fitness-related processes, such
as growth, reproduction and locomotion, are thermodynamically
unfavourable and require energy (see Glossary) input. However,
energy supply is a constraint for most organisms either because of
limited environmental availability or because of physiological
constraints in the processing capacity to convert food to usable
cellular energy (adenosine triphosphate, ATP). Hence, fitness-
related processes are likely to compete for the same limited resource,
thereby causing an energy allocation trade-off.
One such trade-off may occur between locomotion and other traits

(Husak, 2016; Husak et al., 2016). Almost all animals need to move
in some way to maintain fitness by obtaining food (e.g. foraging,
competition), interacting with conspecifics to increase opportunities

for reproduction (e.g. territoriality, courtship, copulation), or
interacting with other species (e.g. escape predation) (Husak and
Fox, 2008; Lailvaux and Husak, 2014; Wilson et al., 2015).
Movement is expensive energetically and comprises a considerable
proportion of the energy budget of individuals (Malishev and
Kramer-Schadt, 2021; Di Santo et al., 2017; Thiem et al., 2016).
Energy allocation to locomotion is therefore likely to trade off with
other fitness-related processes such as reproduction and immunity
(Husak et al., 2016; Lailvaux and Husak, 2017).

However, the energetic cost of moving a given distance at a
particular speed (cost of transport; COT; seeGlossary) is not constant.
COT can vary with environmental conditions (Brown et al., 2011;
Claireaux et al., 2006; Li et al., 2017) and between individuals (Jahn
and Seebacher, 2019; Kraskura et al., 2021; Seebacher et al., 2016a),
populations (Fu et al., 2013, 2015; Gamperl et al., 2002; Rodnick
et al., 2004) and species (Rubio-Gracia et al., 2020a). Hence, the
factors causing variation in COT can be instrumental in determining
allocation trade-offs, and thereby ecological success and evolutionary
trajectories. Understanding the physiological mechanisms that
underlie COT, and the environmental and behavioural contexts
that influence COT is instrumental in predicting the impacts of
environmental change on animal energetics and hence ecology and
evolution (Fenkes et al., 2016; Morales-Marín et al., 2019). The aim
of this Review is to summarise existing knowledge of the causes of
variation in COT to identify the drivers and contexts of energy
allocation trade-offs.

COT denotes the aerobic energy expended per unit bodymass for a
given distance travelled (Claireaux et al., 2006; Halsey, 2016;
Wickler et al., 2000). Energy (ATP) for locomotion is primarily
supplied by mitochondria. However, anaerobic metabolism can
contribute to extend movement when the intensity of locomotion
surpasses the capacity for mitochondrial ATP production (Martin
et al., 2015; Zhang et al., 2018). Prolonged movement (exercise)
causes a metabolic imbalance that needs to be restored to resting
levels after completion of movement; for example, phosphocreatine
and glycogen stores need to be replenished, and muscle damage
needs to be repaired (Lee et al., 2003; Moxnes and Sandbakk,
2012). These post-exercise adjustments require aerobically produced
ATP in mitochondria (Moxnes and Sandbakk, 2012; Zhang et al.,
2018). Consequently, metabolic (oxygen consumption) rates
remain elevated following exercise (excess post-exercise oxygen
consumption, EPOC; see Glossary) (Gaesser and Brooks, 1984).
Together, COT and EPOC represent the total energetic cost of
locomotion (Fig. 2) (Cordero et al., 2019; Svendsen et al., 2010).

Theory predicts that undisturbed animals should travel at
speeds that minimise COT (optimal speed, Uopt; see Glossary)
(Claireaux et al., 2006; Weihs, 1973a). Adjusting speeds can
therefore improve locomotor performance and efficiency (Weihs,
1973a). Interestingly, animals rarely travel at maximal capacity,
but at intermediate realised speeds (Husak and Fox, 2006; Miln
et al., 2021; Wilson and Husak, 2015) that can be influenced by

School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW
2006, Australia.

*Author for correspondence (frank.seebacher@sydney.edu.au)

F.S., 0000-0002-2281-9311

1

© 2022. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2022) 225, jeb243646. doi:10.1242/jeb.243646

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

mailto:frank.seebacher@sydney.edu.au
http://orcid.org/0000-0002-2281-9311


physical constraints of the environment, behavioural contexts and
the energetic cost of movement (Rezende et al., 2006; Seebacher
et al., 2016b; Wilson et al., 2015). In aquatic environments,
constraints such as temperature (Kraskura et al., 2021), salinity
(Nelson et al., 1996; Seebacher et al., 2016b) and oxygen saturation
(Oldham et al., 2019) can operate in isolation or interact to influence
realised speeds (Kraskura et al., 2021; Oldham et al., 2019;
Seebacher et al., 2016b). Therefore, it is not advantageous to always
travel at maximal speed, and it is not always possible to travel at
speeds that minimise COT (Han et al., 2017).
Here, we review the literature to establish the current state of

knowledge of COT in animals, with a particular focus on identifying
drivers of potential energy allocation trade-offs and particular
conditions under which these may occur (Fig. 1). We focus on
animals other than humans and therefore exclude medical or sport
studies, which have a different focus to our aim here. Similarly, we
will not consider allometric scaling of energy use and COT because
this is quite a separate field with an extensive literature that is
tangential to our purpose here. We will begin by summarising the
measurement of COT, and exploring the physiological mechanisms
underlying differences in COT. We then summarise differences in
COT between individuals and species, and the environmental
drivers that influence COT. We finish with suggestions for further
research.

Measurement
Experimentally, COT is determined by measuring the oxygen
consumption (e.g. µmol O2 g−1 min−1) of animals across
different speeds, which, when divided by speed, gives COT
(µmol O2 g−1 m−1) (Lighton et al., 1993). Gross or total COT
(COTtot; see Glossary) represents the total amount of energy
required for movement plus resting metabolic rates (Fig. 2). Net
COT (COTnet; see Glossary) includes only the cost of movement,
excluding resting metabolic rates (Claireaux et al., 2006). Below, we

use COT to refer to COTtot and explicitly statewhen we refer to other
variants such as COTnet.

The function of COT when plotted against speed may take
on a variety of different shapes (e.g. U-shaped, J-shaped or more
L-shaped) (Fig. 3A,B). L-shaped functions of COT demonstrate that
as speed increases, COT decreases across the speeds attainable by a
given individual (Adams and Parsons, 1998; Jahn and Seebacher,
2019; Seebacher et al., 2016a). In U-shaped or J-shaped functions,
there is initially a reduction in COT as speed increases until it
reaches a minimum (COTmin; see Glossary), following which there
is an increase is oxygen consumption as speed increases (Behrens
et al., 2006; Claireaux et al., 2006). U-shaped functions for COT
have been predicted by models derived from hydrodynamic theory
in fish (Wakeman and Wohlschlag, 1981). The non-linearity of the
COT versus speed curve stems from the decreasing importance of
maintenance (resting) and postural costs of the non-moving animal
relative to the increasing cost of locomotion (Claireaux et al., 2006;
Dlugosz et al., 2009; Halsey, 2016). The difference in curve shape
may simply reflect the range of speeds attainable by different
species so that L-shaped curves reflect a more limited range.

COTmin is the minimum amount of energy an animal has to invest
to move itself a given distance (Halsey, 2016; White et al., 2016)
and occurs at the ‘optimal’ speed (Uopt; Fig. 3A) (Claireaux et al.,
2006; Williams, 1999). Some animals have a preferred speed that
coincides with Uopt (Tudorache et al., 2011). However, Uopt, COT
and COTmin can vary with the environment, such as with changes in

Glossary
Cost of transport (COT)
Energy expended per unit body mass for a given distance travelled
across varying speeds, often measured as the aerobic cost in terms of
oxygen consumption.
Critical swimming speed (Ucrit)
Themaximum swimming speed achieved in a ramping exercise protocol.
Energy
Here, refers to chemical energy in the form of adenosine triphosphate
(ATP) that is produced primarily aerobically in mitochondria, and to a
lesser extent anaerobically in glycolysis.
Excessive post-exercise oxygen consumption (EPOC)
Increased oxygen consumption following movement. EPOC is caused
by restoring pre-exercise physiological conditions after intense exercise.
Integrated COT
Integral of COT across a range of speeds that provides a single value to
compare individuals while incorporating the changes in costs across
speeds.
Minimum COT (COTmin)
The minimum point on the COTtot versus speed curve.
Net COT (COTnet)
Cost of movement only, where resting metabolic rates are subtracted
from the metabolic rate during movement.
Optimum swimming speed (Uopt)
The speed at which COTmin is minimised.
Total COT (COTtot)
The total amount of energy required to sustain movement, plus resting
metabolic rates.

Modifies
Causes

MorphologyBehaviour

Individual differences
• fitness
• selection gradient
• growth

Group function
• cohesion
• assortment
• gene flow
• population

Species differences
• community
• food web
• conservation

Consequences

COT

Environment:
temperature, exercise, pollution

Energy efficiency:
mitochondria, muscle

Energy allocation
trade-off

Fig. 1. Schematic outline of the Review. Environmental conditions,
including temperature, exercise-promoting environments and pollution,
modify cost of transport (COT) possibly by influencing the energy efficiency
of mitochondrial ATP production and muscle contractile function. Behaviour
and morphology can also influence COT and, together, COT and the factors
that modify it alter energy allocation trade-offs between locomotion and other
fitness-related functions such as reproduction and immunity. The resulting
effects on individuals, groups and species can have important ecological
and evolutionary consequences.
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terrain (Lees et al., 2013; Warncke et al., 1988; Wickler et al., 2000)
or with carrying load in horses (Wickler et al., 2001). However,
animals do not always assume speeds that minimise COT (Chappell
et al., 2004; Han et al., 2017; Seebacher et al., 2016a), and COT
across a range of speeds can be estimated by the integral of COT
across speeds (‘integrated COT’; W kg−1; see Glossary) (Jahn and
Seebacher, 2019; Seebacher et al., 2016a). This metric is useful in
offering a single value to compare individuals while incorporating
the changes in costs across speeds.
Field COT can be estimated by tracking movement in the field

in conjunction with published oxygen consumption data, and
modelling of environmental constraints such as drag from water in
aquatic environments (Sato et al., 2010; Trassinelli, 2016; Watanabe
et al., 2015). This approach may be the best estimate for large marine
animals such as sharks (Andrzejaczek et al., 2020; Gleiss et al., 2011;
Payne et al., 2016;Watanabe et al., 2019), whales (Christiansen et al.,
2014; Rodríguez de la Gala-Hernández et al., 2008), polar bears
(Griffen, 2018), penguins (Culik and Wilson, 1991) and seals
(Maresh et al., 2014) that cannot be used in the laboratory.

In fish, field COT can be estimated from tail beat frequencies,
which are a predictor of swimming speed and oxygen consumption
during forced swimming (Steinhausen et al., 2005). Given that tail
beat frequency is far easier to measure in the field, it may serve as a
predictor for the energetic cost of locomotion for species that are
difficult to maintain in laboratory conditions (Li et al., 2021). In
horses, COT was estimated from field heart rate data, which tend to
change linearly with oxygen consumption and speed (Coelho et al.,
2021; Piccione et al., 2013; Williams et al., 2009).

Mechanism underlying differences in COT
Mitochondria
Locomotion is constrained by the amount of ATP that can be
supplied to working muscles (Hargreaves and Spriet, 2020), and
animals with higher COT require increased ATP production for
movement (Guderley and Pörtner, 2010). It is possible therefore that
differences in COT between individuals may be related to differences
in the efficiency of mitochondrial ATP production (Salin et al.,
2015). Mitochondrial efficiency is measured either as the amount of
oxygen used to synthesise a molecule of ATP (P/O ratio), or as the
ratio of maximal substrate oxidation (S3) rates to uncoupled (S4)
rates in mitochondria (respiratory control ratio, RCR) (Brand and
Nicholls, 2011; Salin et al., 2018). The efficiency of mitochondrial
ATP production can be compromised by the re-entry of protons into
the mitochondrial matrix through the inner mitochondrial membrane
without contributing to the production of ATP (Brand, 2005), either
resulting from proton leak or via dedicated uncoupling proteins
(Jastroch et al., 2010). Mitochondrial efficiency can fluctuate
substantially between individuals (Salin et al., 2015). However,
there is no experimental support for the hypothesis that
mitochondrial efficiency determines COT, and COT did not
correlate with mitochondrial efficiency (P/O ratios or RCR) in
zebrafish (Jahn and Seebacher, 2019; Teulier et al., 2018). The
increased content of uncoupling protein 3 observed in the marsupial
Monodelphis domestica following cold exposure (Schaeffer et al.,
2005) may have decreased mitochondrial efficiency and thereby
led to the observed increase in COT (Salin et al., 2015; Schlagowski
et al., 2014), although this link would need to be shown
experimentally. The role of mitochondrial efficiency in influencing
COT has been explored under a very limited range of environmental,
developmental and phylogenetic contexts, and more research is
needed. For example, mitochondrial efficiency can change during

Start exercise

Speed

Stop exercise

Resting metabolic rate

EPOC

COT

O
xy

ge
n 

co
ns

um
pt

io
n

CO
T n

et

Fig. 2. Schematic representation of oxygen consumption during and
following exercise. Increases in metabolic rate following the start of
exercise (indicated by vertical red dashed line) are added to resting
metabolic rate (horizontal black dashed line) while animals are inactive.
Resting plus exercise-induced oxygen consumption together comprise total
COT, while exercise-induced metabolic rate alone represents net COT
(COTnet, red vertical line). Oxygen consumption remains elevated after
cessation of exercise (excess post-exercise oxygen consumption, EPOC,
vertical blue dashed line) as a result of energy used to restore pre-exercise
cellular equilibrium.
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Fig. 3. Examples of COT measurements. (A) A representative J-shaped COT curve with minimum COT (COTmin) and the speed at which COTmin occurs
(optimal speed, Uopt) indicated. (B) An L-shaped COT curve in zebrafish; decreasing COT with increasing speed reflects the diminishing proportion of resting
metabolic rate in total oxygen consumption as fish swim at higher speeds. (C) Integrated cost of transport (COTint=integral of COT across speeds) is a
repeatable trait over 10 days between measurements in zebrafish. COTint summarises energetic COT across a range of speeds, and the data shown here
indicate that COT is a stable trait within individuals. Data in A are replotted from Claireaux et al. (2006), and data in B and C are replotted from Jahn and
Seebacher (2019).
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ontogeny, and mitochondria tend to be more coupled early in
development when maximal rates of growth occur (Salin et al.,
2019). Variation in mitochondrial efficiency during development
could have pronounced impacts on growth and at the same time have
compounding effects on COT. Energy allocation to growth is
particularly important during early development so that the
consequences of energy allocation trade-offs during development
would be pronounced. Mitochondrial efficiency also increased with
reduced food supply, particularly at high temperatures (LeRoy et al.,
2021; Salin et al., 2015), and the role of mitochondrial efficiency in
modifying COT should be investigated at different life-history stages
and under different environmental conditions.

Efficiency of muscle contractile function
The activity of myosin ATPase modifies the speed at which muscles
contract and can differ betweenmuscle fibre types (Gundersen, 2011)
(Box 1). Type I (slow twitch) muscles have lower myosin ATPase
activity and use ATP more efficiently than type II (fast twitch) fibres
(Baylor and Hollingworth, 2012). Muscle fibre types vary between
individuals, and within individuals over a lifetime, and change in
response to environmental factors such as exercise (Egan and Zierath,
2013; Simmonds and Seebacher, 2017). Changes in muscle fibre
types may therefore alter the efficiency with which ATP is used
during locomotion and influence COT. Field data from migrating

wildebeests showed that muscle contractile efficiencies were higher
in wildebeests than in the same muscle group in a ruminant sedentary
cow (Curtin et al., 2018). It could be possible that the observed low
cost of myosin and actin interaction (cross-bridge cycling) and
muscle contraction (Box 1) in the wildebeest reduced COT, allowing
wildebeest to make long migrations in arid and hot conditions (Curtin
et al., 2018).

Similarly, the efficiency of SERCA can change with
environmental context and between individuals and species.
SERCA operates most efficiently with a coupling ratio of 2:1,
where two Ca2+ are transported for every ATP hydrolysed (Gamu
et al., 2020). However, the efficiency of SERCA can be compromised
by the magnitude of the Ca2+ gradient, the regulatory peptide
sarcolipin, membrane phospholipid composition (Verkerke et al.,
2019) and through oxidative damage (Xu and Van Remmen, 2021).
Additionally, different isoforms of SERCA have different efficiencies
of Ca2+ transport. There is a negative correlation between SERCA
coupling ratio and resting metabolic rate, and a positive correlation
between higher ratio of SERCA 1 to SERCA 2 and resting metabolic
rate (Gamu et al., 2020). Diminished Ca2+ cycling can reduce the rate
of force production, which can result in reduced locomotor
performance (Seebacher et al., 2012). Both myosin ATPase and
SERCA could cause individual differences in COT as muscles
regularly operate away from optimal conditions (Curtin et al., 2019;
Syme et al., 2008). However, these ideas need to be tested
experimentally.

Inefficiencies introduced by muscle fibre types or SERCA
activity are likely to reduce locomotor performancewhile increasing
COT. Hence, an energy allocation trade-off would be compounded
by lower performance, which would exacerbate the negative fitness
consequences. There is considerable variation between individuals
in these aspects of muscle function (James et al., 2011), so that
muscle contractile efficiencies may be particularly important in
introducing variation in COT between individuals. Investigating
these dynamics would be an important area for future research.

Differences between species and individuals
Differences between individuals
COT can differ substantially between individuals of the same
species (Jahn and Seebacher, 2019; Kraskura et al., 2021; Seebacher
et al., 2016a). However, COT was highly repeatable within
individual zebrafish (Danio rerio) over a 10-day period,
indicating that COT is a stable trait within individuals (Jahn and
Seebacher, 2019) (Fig. 3C). Similarly, in laboratory mice, COTwas
significantly repeatable between days after accounting for line type,
body mass and age in females (Rezende et al., 2006).

Individuals may alter their biomechanical gaits to maintain
COTmin at different speeds (Griffin et al., 2004). For example,
horses may spontaneously switch between a walk and a trot to
minimise COT (Griffin et al., 2004). Aquatic animals can alter their
behaviour to minimise COT, and in bottlenose dolphins (Tursiops
truncatus) and hammerhead sharks (Sphyrna mokarran), tagging of
wild individuals did not appear to affect COT significantly.
Dolphins reduced their speeds to compensate for the increase in
drag from the tags (van der Hoop et al., 2014) and hammerhead
sharks spent 90% of the time swimming at roll angles, which
hydrodynamic modelling showed reduces drag and therefore COT
by ∼10% compared with level swimming (Payne et al., 2016).
Animals can also exploit different spatial or temporal habitats that
reduce COT. For example, fish can reduce movement costs by up to
40% by selecting tidally generated currents known as ‘selective tidal
stream transport’: fish enter the water column when the current is

Box 1. Muscle contractile function
Most oxygen consumed during movement is a consequence of ATP use
during muscle contraction and relaxation. Muscle contraction is
instigated by an action potential from a motor neuron to the muscle
fibre, which causes dihydropyridine receptors (DHPR) to interact with
ryanodine receptors (RyR) on the sarcoplasmic reticulum (SR)
membrane to release Ca2+ from the SR (Barclay, 2017; Gundersen,
2011). Ca2+ binding to troponin on the motor unit leads to cross-bridge
formation between myosin and actin, and muscle contraction. Muscle
contraction uses ATP, which is hydrolysed by myosin ATPase activity
(Gundersen, 2011). Muscle relaxation is initiated by active, ATP-
consuming transport of Ca2+ back into the SR by the
sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) (Gundersen,
2011). During the muscle contraction–relaxation cycle, ∼65% of ATP is
used by myosin ATPase and ∼30% by SERCA (Barclay, 2017). Hence,
inefficiencies in energy conversion that could lead to increases in COT
would most likely be associated with myosin ATPase or SERCA
activities.
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flowing in a favourable direction and can use the flow to aid in
movement and reduce COT (Kelly et al., 2020; Weihs, 1978).
Morphological differences between individuals of the same

species can occur when individuals experience differences in habitat
use and food preference (Rouleau et al., 2010). For example, in
brook trout (Salvelinus fontinalis), a littoral ecotype with longer
pectoral fins is found in shallow water and feeding on zoobenthos,
whereas the pelagic ecotype with shorter pectoral fins is found in
deeper water and feeding on zooplankton (Rouleau et al., 2010).
COT increased more rapidly with increasing speed in littoral than in
pelagic ecotypes (Rouleau et al., 2010). However, littoral
individuals did not incur a higher COTmin than pelagic fish,
which was likely due to lower resting metabolic rate and Uopt in the
littoral ecotype (Rouleau et al., 2010). Similarly, pale chub (Zacco
playtypus) collected from locations with reduced predator stress and
fast water flow had lower COT compared with individuals collected
from slow-flowing streams with increased predation (Fu et al.,
2013). Lower COT was associated with more streamlined body
shape and increased water velocity (Fu et al., 2013). Populations of
Chinese hook snout carp (Opsariichthys bidens) from different
habitats differed in their morphology and COT, but these differences
could not be explained by genetic differences (Fu et al., 2012).
However, COT was measured under different environmental
conditions, which may have confounded comparisons (Fu et al.,
2012).
In leghorn chickens (Gallus gallus domesticus), bantam chickens

selectively bred for small size had lower than predicted COTmin for
their body mass compared with chickens bred for large size. The
relatively low COTmin in bantams was associated with a more erect
posture and lower energetic costs per stride (Rose et al., 2015). The
more vertical limb in the miniature chicken decreased the muscle
force needed to support body weight and improved the mechanical
advantage of the muscles compared with chickens bred for larger
body size (Rose et al., 2015). Mice bred for increased running
capacity (Dlugosz et al., 2009; Rezende et al., 2006) were
morphologically different to wild-type mice, and increased
running capacity was associated with increased COT (Dlugosz
et al., 2009). The increased COT could be attributed to increased
resting metabolic rate and less favourable posture (Dlugosz et al.,
2009).
When climbing lizards were modelled with robots, there was a

distinct trade-off between speed and stability, where high speeds
decreased stability and low speeds increased COT (Schultz et al.,
2021). Hence, the trade-off between speed and agility (Wynn et al.,
2015) can also have an energetic dimension that modifies a potential
energy allocation trade-off. For example, complex habitats would
require greater agility and lower speed, which would therefore
increase COT. However, increased agility in complex habitats can
increase survival of individuals (Rew-Duffy et al., 2020; Wilson
et al., 2020), so that increased COT must be interpreted in a broader
fitness context. These dynamics need to be understood at a greater
resolution to clarify the ecological dimension of COT-induced
energy allocation trade-offs.
Increased COT and its attendant trade-offs can be offset by

behavioural changes. For example, individual zebrafish with
relatively high COT showed reduced movement in a novel
environment (Jahn and Seebacher, 2019). Female guppies
(Poecilia reticulata) that were exposed to higher levels of male
harassment showed a decrease in COT, which may have been the
result of less pectoral fin-assisted swimming (Killen et al., 2016).
Predation pressure can also lead to increased COT that may be
associated with concomitant changes in behaviour such as selection

of different flow environments in fish (Fu et al., 2015). Predation-
induced change to COTmay be driven bymorphological changes of
prey (Pettersson and Brönmark, 1999). Predator cues induced
deeper body shape in crucian carp (Carassius carassius), which
increased drag and therefore increased COT at speeds other than
Uopt (Pettersson and Brönmark, 1999; Pettersson and Hedenström,
2000).

At least within similar environments, differences in COT between
individuals are particularly important because they may lead to
selection gradients within populations. Individuals with increased
COT could experience reduced fitness, particularly under
environmental circumstances that promote increased COT such as
climate warming (see below). These fitness differentials could lead
to a reduction in genetic diversity within populations if differences
in COT are mediated genetically (Seebacher and Krause, 2019).

Implications for social groups
The impacts of differences in COT between individuals can scale up
to impact social groups. An increase in magnitude of differences
between individuals would make social groups less homogeneous,
which can affect group behaviour (Conradt and Roper, 2000;
Seebacher and Krause, 2017). Group cohesion is important for
information transfer about predator presence, food detection and
reproduction, for example (Kurvers et al., 2014). Individuals with
increased COTmay compromise their own energy efficiency to stay
within a group, and group cohesion may require different energetic
investments to be made by different group members (Killen et al.,
2021; Seebacher and Krause, 2017). Consequently, the magnitude
of allocation trade-offs between locomotion and reproduction, for
example, would also vary between individuals within groups, and
particularly for animals with relatively high COT, there would be a
balance between the benefits of group living (Kurvers et al., 2014)
and potential fitness decrements. However, if these energetic costs
become too large, group cohesion may break down and individuals
with similar physiological make-ups may group together (Killen
et al., 2017). Hence, differences in COT may drive fission and re-
assembly of conspecifics that are more physiologically similar to
each other (Seebacher and Krause, 2017). These fission–fusion
dynamics can affect gene flow within populations (Sexton et al.,
2011).

Just as individuals can exploit their environment (Kelly et al.,
2020) or moderate their behaviour to reduce COT (Griffin et al.,
2004; van der Hoop et al., 2014; Tudorache et al., 2011), social
groups can be beneficial in reducing COT (Weihs, 1973b). For
example, fish schooling is associated with increased endurance
(Weihs, 1973b) and reduced costs of swimming mediated via
altered hydrodynamic conditions (Marras et al., 2015). Fish
following in the wake of other individuals experience the greatest
energy savings (Domenici et al., 2017). In male European eels, COT
at the optimal swimming speed was significantly lower when
swimming in a group compared with in solitary individuals
(Burgerhout et al., 2013). Similarly, group coordination in flying
birds, such as the typical V-formation of many birds, alters
aerodynamics so that individuals within the group experience lower
energetic costs (Portugal et al., 2014; Voelkl et al., 2015). Hatchling
green turtles (Chelonia mydas) digging out of a nest use less energy
when digging in larger groups, partly because the digging duration
is shortened and partly because individual digging effort is reduced
(Rusli et al., 2016). These interesting dynamics would warrant
further research to clarify the relationships between energy
reduction as a result of group living, and differences in COT
between group members that may lead to group fission.
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Differences between species
Identifying the factors that lead to interspecific differences in COT
can be important to understand energetics of movement and
responses of different species within communities to changing
environments. COT tends to be lower in larger animals (Rose et al.,
2015), although measured COT and COTmin values often do not
align with predicted values from allometric scaling (Langman et al.,
2012; Maloiy et al., 2009; Rose et al., 2015). This discrepancy may
be explained at least partly by the dependence of COT and COTmin

on mode of locomotion. At any given body size, COT is typically
lowest for swimming, followed by flying, and it is highest when
walking and running (Butler, 2016; Schmidt-Nielsen, 1972; Tucker,
1970). Mode of locomotion per se therefore can make different
species more or less vulnerable to allocation trade-offs.
Aquatic animals must navigate through a denser medium than

terrestrial animals, but have the advantage of being near-neutrally
buoyant and therefore do not need to consume energy to maintain
posture against gravity (Schmidt-Nielsen, 1972). A considerable
proportion of the movement cost of terrestrial animals stems from
the need to maintain body posture (Kram and Taylor, 1990).
Interestingly, smaller primates (<0.5 kg) experience the same COT
when walking or climbing for a given distance (Hanna et al., 2008).
Additionally, COT for climbing was not significantly different
across an eightfold range in body mass, but it did differ among five
nonhuman walking primates (Hanna et al., 2008). These patterns
allow primates to enter novel arboreal environments without
increasing metabolic costs (Hanna et al., 2008). Between-species
differences in terrestrial animals could also be explained by
effective limb length (Pontzer, 2007). Effective limb length,
which is the length of the leg as a strut (not the total length of
skeletal bones), explained 98% of the observed variance in
locomotor cost across birds and terrestrial mammals (Pontzer,
2007). However, these results are controversial because the log-
transformed data used in Pontzer (2007) conceal the absolute size of
the residuals, and many comparisons among pairs of species did not
support the hypothesis that longer effective limb length is negatively
associated with COT (Halsey and White, 2019). Simulation
modelling suggests that improved foot posture and heal contact
with the ground can reduce the COT of bipedal locomotion in the
Japanese macaque (Oku et al., 2021).
Generalist species that use a broader range of locomotor modes to

traverse wider ranges of habitats tend to experience increased COT
compared with animals specialised to particular modes (Williams,
1999). For example, surface swimming in air-breathing fish is more
costly than submerged swimming (John et al., 2021; Lefevre et al.,
2013), and in the catfish Pangasianodon hypophthalmus, surface
swimming incurred a significantly higher energetic cost (25%)
(Lefevre et al., 2013). Similarly, increased COT for aquatic
locomotion in semi-aquatic animals can largely be attributed to
incomplete streamlining of the body, increased drag owing to
surface swimming, and the paddle-based swimming mode imposed
by structures that evolved for terrestrial locomotion (Fish and
Baudinette, 1999; Fish et al., 2001; Videler and Nolet, 1990).
Conversely, a semi-aquatic lifestyle can reduce the efficiency of
terrestrial locomotion, and in the platypus (Ornithorhynchus
anatinus), COT for terrestrial locomotion was greater than for
swimming (Bethge et al., 2001; Fish et al., 2001). Similarly, COT
during running in the North American river otter (Lontra
canadensis) was greater than in fully terrestrial mammals of
comparable size and limb length (Williams et al., 2002).
Additionally, diving in aquatic birds can be more costly than
surface swimming, in part owing to the increased cost of

overcoming buoyancy, which contrasts with fish and other fully
aquatic animals (Ancel et al., 2000; Butler, 2000). Burrowing in
terrestrial animals also incurs high energetic costs (Withers et al.,
2000). In the semi-fossorial (surface burrowing animals) spinifex
hopping mouse (Notomys alexis), COTnet for burrowing was greater
than for specialised fossorial animals (White et al., 2006).

Even when locomotor modes are similar, gait differences
between species change locomotor efficiency. COTnet was ∼20%
higher in Indonesian blue-tongued skink (Tiliqua gigas), which
engage in belly-dragging locomotion, compared with the savannah
monitor (Varanus exanthematicus), which has a raised quadrupedal
gait (Dickinson et al., 2022). However, gait transition between
walking and trotting or pacing in terrestrial animals does not always
change COTmin (Maloiy et al., 2009). Fish change gaits to negotiate
different habitats or perform different activities (Cannas et al.,
2006). Median paired-fin swimming, where fins are the primary
means of locomotion, is associated with more complex habitats that
require manoeuvrability (Kendall et al., 2007). Undulatory or body-
caudal fin swimming is common in fish that live in open habitats
and during migrations (Kendall et al., 2007). In labriform fish,
median paired-fin swimming transitions to body-caudal fin
swimming at high speeds, resulting in increased COT (Kendall
et al., 2007; Korsmeyer et al., 2002). Unsteady burst swimming in
the striped surfperch (Embiotoca lateralis) increased EPOC, and
anaerobic metabolism constituted 25% of total swimming costs
(Svendsen et al., 2010). The hydrodynamic environment can
influence COT and potentially cause differences between species
and even individuals. For example, increased frequency of
undulations changed the hydrodynamic environment from laminar
to turbulent (low to high Reynolds numbers) and increased COT
(Shelton et al., 2014). However, these relationships are complex and
modified by body stiffness and dimensions, and mode of
locomotion (Chung, 2009; Liu and Jiang, 2021; Shelton et al.,
2014).

In fish, fineness ratio (body slenderness; ratio between standard
body length and maximum body depth) correlated negatively with
COT and COTnet (Ohlberger et al., 2006; Rubio-Gracia et al.,
2020b). More streamlined fish (higher fineness ratio) experienced
reduced drag, tailbeat frequency and oxygen consumption
compared with less streamlined morphotypes of the same length
(Blake et al., 2009). Relatively high COT in goldfish (Carassius
auratus) can be explained by their relatively low fineness ratio
associated with greater drag and lower stability when swimming,
together with a reduced percentage of oxidative (red) muscle and
low muscle efficiency (Blake et al., 2009). In the toothcarp
(Aphanius iberus) and mosquitofish (Gambusia holbrooki), Uopt

increased with increasing fineness ratio while COT decreased
(Rubio-Gracia et al., 2020b), and there was a negative correlation
between caudal peduncle depth and COT in A. iberus and G.
holbrooki as well as inOncorhynchus mykiss (Gamperl et al., 2002;
Rubio-Gracia et al., 2020b). Energetically efficient fish with high
fineness ratio can travel at a much wider range of speeds without
pronounced changes in energy expenditure (Ohlberger et al., 2006;
Rubio-Gracia et al., 2020b). In contrast, higher-drag fish (lower
fineness ratio) experience a more dramatic change in COT when
they deviate from Uopt (Pettersson, 2007; Pettersson and
Hedenström, 2000). Anguilliform swimming in fish (e.g. eels) is
particular efficient energetically (van Ginneken et al., 2005;
Tudorache et al., 2015), and it is restricted to species with
elongate and highly flexible bodies, where the body undulates
along its length in a wave-like motion pushing the animal forward
(Tack et al., 2021).
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Species comparisons in the literature are somewhat eclectic.
However, there appear to be some generalities: mode of locomotion
and gait are important in determining COT. Similarly, differences in
body shape between (and even within) species modify COT. Mode
of locomotion would introduce differences in trade-offs across
broader taxonomic groups (e.g. fish versus birds versus mammals),
whereas differences in shape also affect species within communities
of taxonomically similar animals (e.g. fish). Species comparisons
are complicated by phylogenetic differences, and locomotor
traits and their associated COT should be placed within a
phylogenetically corrected framework in future work.

Environmental impacts
Temperature
Temperature is the most studied environmental influence on COT,
particularly in fish. There is a consensus in the literature that COT
consistently increases with increasing test temperature in
ectothermic animals (Clark and Seymour, 2006; Duthie, 1982;
Jahn and Seebacher, 2019; Lim and Ellerby, 2009; Meskendahl
et al., 2019; Seebacher et al., 2016a; Tu et al., 2012; Whitney et al.,
2016; Yin et al., 2021). Similalry, the overall magnitude of EPOC
was greater at warmer temperatures (Kraskura et al., 2021; Lee et al.,
2003). Modelling suggests that COTmin increases exponentially
with an increase in environmental temperature (Hein and Keirsted,
2012). Interestingly, temperature also increased individual
variability in COT (Jahn and Seebacher, 2019; Kraskura et al.,
2021). However, the effects of increasing temperature on COTwere
not influenced by the oxygen saturation of water in brown trout
(Salmo trutta) (Nudds et al., 2020), indicating that exercise was not
oxygen limited. Thermal effects on COT are not always linear, and
in vendace (Coregonus albula), COTnet was lowest at 8°C, but
increased at 4°C and 15°C (Ohlberger et al., 2007). COT was
independent of temperature in adult pink salmon (Oncorhynchus
gorbuscha) and sockeye salmon (Oncorhynchus nerka) (Macnutt
et al., 2006). Changes in temperature can affect mitochondrial
efficiency, although the effects are not consistent across taxa (Salin
et al., 2015), and a direct link between temperature, mitochondrial
efficiency and COT has not been made experimentally. However, as
we pointed out above, the role of mitochondrial efficiency would
need to be investigated across a broader range of contexts. Similarly,
temperature affects muscle contractile function (James, 2013),
which may provide a mechanistic link between environmental
change and COT, although (and as for mitochondria) experimental
evidence is not available. Increases in temperature decreased COT
in larval fish as a result of reduced viscosity of water (Herbing,
2002), indicating that temperature effects on COT can interact with
other environmental variables and with life-history stages in fish.
Overall, these acute effects of temperature show that energy
efficiency of locomotion decreases in warmer habitats, in warmer
seasons and under climate warming.
Laboratory acclimation to warmer temperatures increased COT

(Claireaux et al., 2006; Dickson et al., 2002; Kirby et al., 2020;
Pang et al., 2013; Rouleau et al., 2010; Wolfe et al., 2020; Xia
et al., 2017), which means that acute temperature effects are
not compensated for by acclimation. Similarly, COT increased
in response to seasonal acclimatisation to warmer summer
temperatures in field-sampled buffalo fish (Ictiobus bubalus)
(Adams and Parsons, 1998). There was a sex-dependent effect of
season, and during winter, COTnet was significantly higher (24%) in
males than in females (Adams and Parsons, 1998). Acclimation can
alter sensitivity to acute temperature changes, and the impact of
acute temperatures may vary between populations with different

thermal histories (Sylvestre et al., 2007). COT in cod (Gadus
morhua) acclimated to 7°C increased when fish were exposed to
11°C, but remained stable when fish were cooled to 3°C (Sylvestre
et al., 2007). These responses may increase the proportion of the
energy budget spent on locomotion in fish populations at higher
latitudes with cool thermal histories when exposed to increasing
temperature owing to climate change. In two trout (Oncorhynchus
mykiss ssp.) populations that were genetically similar but occupied
different thermal habitats, COT and COTmin were both lower for the
population of trout that originated from the warmer habitat
(Gamperl et al., 2002). Nonetheless, COTmin was lower at cooler
temperatures in both populations (Gamperl et al., 2002).
Interestingly, both populations had the same relatively low
temperature preferences (∼13°C), which minimised COTmin

(Gamperl et al., 2002), demonstrating that environmental impacts
can be modified by behavioural adjustments. COT may increase
with increasing temperature as a result of increased resting
metabolic rates or increased energetic cost of locomotion, or both.
However, COTnet increased with increasing temperature in zebrafish
and European sea bass, indicating that increased resting metabolic
rates were not the driving mechanism (Claireaux et al., 2006; Jahn
and Seebacher, 2019).

The trend of increasing COT with temperature in fish is largely
reflected in terrestrial ectotherms. For example, COT was greater at
higher temperatures (35–40°C) than at 25°C in several lizards
[Heloderma suspectum (John-Alder et al., 1983); Tupinambis
nigropunctatus (Bennett and John-Alder, 1984); Dipsosaurus
dorsalis (John-Alder and Bennett, 1981)]. In red-spotted newts
(Notophthalmus viridescens) locomotion at 1°C or 5°C was less
costly than travelling at 25°C (Jiang and Claussen, 1992, 1993).
Interestingly, costs were lower when newts travelled on land
compared with in water at 5°C, but this difference disappeared at 25°
C (Jiang and Claussen, 1994). In contrast, COTnet in the lungless
salamander (Desmognathus ochrophaeus) was reduced in warm-
acclimated (21°C) compared with cool-acclimated (5°C or 13°C)
salamanders when tested at a common temperature (13°C) (Feder,
1986), although these data may be misleading because animals were
not tested at each acclimation temperature.

Only a limited number of studies exist detailing the effect of
temperature on COT of endotherms. Prolonged cold exposure in the
marsupialMonodelphis domestica increased COT by 15% compared
with thermoneutral controls, and was unaffected by exercise training
(Schaeffer et al., 2005). This increase in COT was accompanied by
upregulation of an uncoupling protein 3 homologue that may reduce
ATP production efficiency while increasing thermogenesis and
COT (Schaeffer et al., 2005). Endothermy in some sharks and tunas
allows fish to maintain some muscles above water temperature and
thereby improve swimming performance (Sepulveda and Dickson,
2000). However, the elevated muscle temperature doubled COT in
endothermic relative to comparable ectothermic fish (Watanabe
et al., 2015). Nonetheless, the benefits of increased travel distances
outweighed the disadvantage of increased COT in endothermic fish
(Watanabe et al., 2015).

The consensus in the literature is that increasing temperature is a
major driver for increased COT and can potentially exacerbate
energy allocation trade-offs. Allocation trade-offs can lead to
decreased growth and thereby decreased energy conversion
efficiencies across trophic levels at warmer temperatures, and
these dynamics could pose serious threats to ecosystems and
ecosystem services (Barneche et al., 2021). Nonetheless, thermal
effects on allocation trade-offs are not well characterised, and this is
an important area for future research.
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Exercise
Exercise in the sense of regular or consistent movement that elevates
metabolic rates to well above resting has pronounced physiological
impacts, including on muscle contractile function and mitochondria
(Egan and Zierath, 2013; Memme et al., 2021). Exercise can lower
COT while increasing aerobic capacity. In juvenile bream
(Megalobrama pellegrini), exercise training in fast-flowing water
(4 BLs−1) or exhaustive chasing training daily for 5 weeks increased
swimming performance (Ucrit, see Glossary) and reduced COT to a
greater extent than in controls or slow exercise training programs (1
and 2 BL s−1), indicating that fish swam with greater aerobic
efficiency (Li et al., 2017). Similarly, exercise training reduced COT
in juvenile whiting (Merlangius merlangus) (Hammer and Schwarz,
1996). However, COT did not change following exercise training in
zebrafish (Danio rerio) (Jahn and Seebacher, 2019). Rearing
rainbow trout (Oncorhynchus mykiss) in flowing water (0.9 BLs−1)
reduced Uopt compared with similar sized fish raised in still water
(Skov et al., 2011). However, at swimming speeds greater that
1.4 BL s−1 COT increased significantly in fish reared in flowing
water compared with still water (Skov et al., 2011), which may
reflect greater aerobic capacity in flow-reared fish and therefore less
reliance on anaerobic pathways at high speeds. In field populations
of the Chinese hook snout carp (Opsariichthys bidens) and pale cub
(Zacco platypus), river habitats with higher water velocities seemed
to correlate negatively with COT (Fu et al., 2012, 2013). However,
these habitats also differed in temperature and predation stress,
which can affect COT (Fu et al., 2012, 2013, 2015).
Similar to COT, there is variation in EPOC between individuals

and species (Kraskura et al., 2021; Lee et al., 2003), although
intensity of exercise is the best indicator of EPOC magnitude
(Borsheim and Bahr, 2003; Cordero et al., 2019). Unsteady burst
swimming which occurs at high speeds in fish is positively correlated
with the magnitude of EPOC following exercise, and may make a
substantial contribution to total energetic cost of locomotion (Lee
et al., 2003; Svendsen et al., 2010). Exercise training did not reduce
overall EPOC in juvenile common carp (Cyprinus carpio) (He et al.,
2013), but exercise-trained fish had higher oxygen consumption for
1–7 min following exhaustive exercise and recovery during this time
was faster compared to non-trained fish (He et al., 2013). Exercise-
trained fish took longer to reach exhaustion, but their greater aerobic
capacity meant that EPOC was similar to non-trained fish that
exercised for less time (He et al., 2013).
There can be a link between exercise training and growth,

mediated by the relationship between aerobic scope and COT
(Davison and Herbert, 2013). Aerobic scope is the difference
between resting and maximum metabolic rates, and is correlated
with the metabolic power available for activity, growth and other
fitness-related functions (Clark et al., 2013). If energy investment
into locomotion is minimised, the excess energy may be allocated to
growth (Palstra et al., 2015). For example, long-term (7 weeks)
exercise in juvenile yellowtail kingfish (Seriola lalandi) resulted in
reduced COT and COTmin compared with non-exercised fish
(Brown et al., 2011). In parallel, exercised fish showed a 10%
increase in growth (at 21.1°C) (Brown et al., 2011). However, the
relationship between exercise and growth is not consistent across
species. In juvenile hapuku (Polyprion oxygeneios), exercise
training did not affect COT and there was a limited effect of
exercise training on growth (Khan et al., 2014).
There is limited work on terrestrial animals (excluding humans)

regarding the impact of exercise on COT. In the marsupial
Monodelphis domestica and goats (Capra hircus), exercise
training did not affect COT (Schaeffer et al., 2001, 2005).

Exercise-trained lizards (Anolis carolinensis) had lower resting
metabolic rates, indicative of lower maintenance costs following
training. However, sprint-trained lizards had higher rates of oxygen
consumption and longer recovery times (EPOC) than untrained
lizards, indicating that sprint training increased COT (Lailvaux
et al., 2018).

The literature indicates that exercise frequently, but not always,
reduces COT so that habitat characteristics that promote exercise (e.g.
wind and water currents, or dispersed resource distribution;
Gudmundsson et al., 2021; Lihoreau et al., 2017) would also lead
to increased growth rates. Increased individual growth is a principal
input into population dynamics (Savage et al., 2004) so that habitat-
modified COT and the resultant shifted trade-off with growth can
have impacts on populations. Temperature can modify these
relationships via its effects on COT, metabolic rates, mitochondrial
efficiency, and hence growth and population dynamics (Loughland
et al., 2022; Savage et al., 2004). It will be challenging but essential to
disentangle the relative impacts of these factors on COT and the
extent of allocation trade-offs in different species to predict the
impacts of environmental change on populations.

Pollution
Most environments on Earth now contain a cocktail of chemicals
derived from human activity (Borrelle et al., 2020; Godfray et al.,
2019; Wilkinson, 2022) that can affect almost all biological
processes. Impacts of pollutants are unpredictable because they
can modify the way organisms respond to natural environmental
variables such as temperature (Wu et al., 2022). Given the enormous
diversity of environmental pollutants, very little is known about
their effects on animal physiology and ecology. Most of the research
testing the impact of pollutants on COT was conducted in fish, and
very few environmental pollutants have been studied to date.
Perfluorinated compounds (PFCs), specifically perfluorooctane
sulfonic acid (PFOS), which are used in the production of
adhesives, cosmetics, paints, cleaners and pesticides, among other
uses (Zhang and Lerner, 2012), are relatively common in aquatic
systems (Houde et al., 2011). Juvenile goldfish (Carassius auratus)
exposed to PFOS (32 mg l−1) for 48 h showed marked increases in
COT (Xia et al., 2013). PFOS-induced changes in COT were
accompanied by decreases in spontaneous activity and distances
moved, while Ucrit remained unchanged (Xia et al., 2013). Chronic
exposure of juvenile qingbo (Spinibarbus sinensis) to PFOS for
30 days across a range of ecologically relevant concentrations
increased COTnet regardless of temperature; however, the effect of
PFOS on COT increased at the combination of high concentrations
at high temperature (28°C) (Xia et al., 2015). Temperature and
PFOS also reduced social interactions and spontaneous movement
at high but not low temperatures (Xia et al., 2015). There may be a
link between increased COTnet and decreased activity, which could
be tested experimentally.

Selenium is an essential micronutrient and fish require low dietary
concentrations to maintain growth and physiological functions;
however, high concentrations of selenium can bioaccumulate to
become toxic (Thomas and Janz, 2011; Thomas et al., 2013).
Increased dietary selenomethionine (an organic form of selenium) for
60 days did not alter COT significantly in zebrafish (Thomas and
Janz, 2011). However, increased dietary selenomethionine for
90 days significantly increased COT in zebrafish (Thomas et al.,
2013) and fathead minnows (Pinephales promelas) (McPhee and
Janz, 2014). In the 90 day treatment, standard metabolic rate also
increased, which could explain the increased COT (Thomas et al.,
2013). Exposure (14 days) of zebrafish to an acutely toxic form of
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selenium, sodium selenite, significantly decreased active metabolic
rates and aerobic scope but had no effect on COT (Massé et al., 2013).
Mining and smelting activities can lead to runoff of lead (Pb) into

aquatic environments (Mager and Grosell, 2011). Acute (24 h) and
chronic (33–57 days) exposure of fathead minnows (Pimephales
promelas) to lead did not impact COT. However, aerobic scope and
Ucrit were reduced by lead compared with control fish (Mager and
Grosell, 2011). Crude oil contains toxic polycyclic aromatic
hydrocarbon (PAH) chains (Johansen and Esbaugh, 2017), but
exposure (24 h) of red drum (Sciaenops ocellatus) to PAH did not
alter COT or EPOC (Johansen and Esbaugh, 2017).
Increasing human use of synthetic glucocorticoids as anti-

inflammatories and immunosuppressants has led to increases in
their concentrations in waterways. Increased levels of the
glucocorticoid medication prednisone in waterways (Creusot
et al., 2014) can affect metabolism and endocrine function in fish
(Thibault et al., 2021). After 21 days of prednisone exposure,
sheepshead minnow (Cyprinodon variegatus) had a significantly
higher COT and EPOC compared with 7- and 14-day-exposed fish
(Thibault et al., 2021). The neurotoxic protein botulinum serotype E
is associated with visceral toxicosis, which can result in high
mortalities of channel catfish (Ictalurus punctatus) (Beecham et al.,
2014). Despite botulinum causing weakness and paralysis of
skeletal muscles by preventing acetylcholine release at muscular
junctions (Nigam and Nigam, 2010), there was no significant
difference in COT between botulinum-injected fish and controls
(Beecham et al., 2014). This indicates that COT was not impacted
by changes in the neuromuscular physiology of the fish.
Given the sparsity of the literature, it is impossible to reach a

consensus on the effects of pollutants on COT other than that
pollutants with diverse chemical compositions can affect COT. The
effects of pollution, and particularly of endocrine-disrupting
compounds, is one of the greatest challenges currently in
conservation (Sutherland et al., 2021), and understanding their
impact on COT will greatly enhance predictions of their ecological
consequences.

Conclusions and future directions
Life-history theory predicts that owing to a finite amount of resources
available to organisms, the allocation of energy to one phenotypic
trait prevents the same resources from being allocated to other, often
fitness-related traits (Husak et al., 2016; King et al., 2011; Stearns,
1989). Hence, there may be a trade-off between traits such as
movement, immunity, growth and reproduction (Husak et al., 2016;
Stearns, 1989). High COT may limit the energy that can be allocated
to growth and reproduction (Husak and Fox, 2008; Husak et al.,
2016), so that COT can be closely related to individual fitness.
A major conclusion to be drawn from the literature is that

allocation trade-offs are multidimensional and do not operate in
isolation from other biotic or abiotic inputs. The requirements to
respond to the broad range of environmental context experienced by
animals in their daily life modifies the energy allocation trade-offs.
The examples we gave above included the need to move at speeds
other than Uopt to fulfil different ecologically relevant tasks, trade-
offs between speed and agility, and interspecific and intraspecific
interactions during courtship or predation. Environmental change,
and particularly anthropogenic climate change and pollution,
interacts with this biotic context. COT increases with temperature,
and global temperature increases can place total energy budgets
under greater pressure, which may aggravate allocation trade-offs.
These changes may be exacerbated for aquatic animals by global
changes in salinity (Durack et al., 2012), which can increase

COT (Palstra et al., 2008). Climate change causes flow rates in
river systems to change more rapidly and at greater magnitude than
would occur naturally (Gudmundsson et al., 2021; Morales-Marín
et al., 2019). Substantial increases in water flow will place
additional pressure on the energy budgets of aquatic animals by
increasing the energy required for locomotion and to remain
stationary in a flowing stream (Martin et al., 2015). Temperature,
salinity and water flow changes may have pronounced
consequences for migrating species such as salmon, which
engage in long and energetically costly migrations that are closely
linked to fitness (Farrell et al., 2008). When river temperatures or
water flow rates rise above critical limits for metabolic scope, fish
are unable to complete migrations (Farrell et al., 2008; Rand et al.,
2006). Under these conditions, COT takes up a relatively larger
proportion of metabolic scope and reduces remaining metabolic
scope for tasks outside of locomotion (Butler, 2016; Martin et al.,
2015).

COT and energy allocation trade-offs affect processes that are
dependent on energy inputs; in a thermodynamically unfavourable
world, this includes almost all biological processes. The
consequences of biotic and abiotic impacts on COT and allocation
trade-offs thereby extend to individual fitness, the function of social
groups, population dynamics and potentially energy transfer in food
webs. The overarching challenge now lies in resolving the relative
impacts of these different drivers to enable predictions of how
ecosystems respond to change. Based on the literature reviewed, we
suggest a number of future research directions that could increase
understanding of how COT affects these macroecological patterns:
(1) the effects of multiple stressors: different environmental
variables are likely to interact, and these interactions need to be
tested experimentally to model responses to real-world
environments; (2) pollution: COT is a function of metabolism and
muscle performance, and is therefore likely to be affected by
endocrine-disrupting pollution, and it is essential to test the effects
of a wider range of pollutants; (3) underlying mechanisms:
mitochondrial and excitation–contraction–relaxation efficiencies
are likely to modify COT, but experimental work across a broader
range of life-history, phylogenetic and environmental contexts
is needed to clarify these relationships. Understanding the
underlying mechanisms will enable more precise predictions
about flow-on effects of changes in COT; (4) allocation trade-
offs: there need to be more explicit experimental tests to quantify
trade-offs so that reliable prediction can be made about changes in
energy budgets and conversion efficiencies resulting from
environmental change; and (5) consequences of differences in
COT between individuals for social group function, with respect to
group cohesion, assortment of phenotypes and gene flow.
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