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How does mitochondrial function relate to thermogenic capacity
and basal metabolic rate in small birds?
Myriam S. Milbergue1,2, François Vézina1,2,3, Véronique Desrosiers and Pierre U. Blier1,2,4,*

ABSTRACT
We investigated the role of mitochondrial function in the avian
thermoregulatory response to a cold environment. Using black-
capped chickadees (Poecile atricapillus) acclimated to cold (−10°C)
and thermoneutral (27°C) temperatures, we expected to observe an
upregulation of pectoralis muscle and liver respiratory capacity that
would be visible in mitochondrial adjustments in cold-acclimated
birds. We also predicted that these adjustments would correlate with
thermogenic capacity (Msum) and basal metabolic rate (BMR). Using
tissue high-resolution respirometry, mitochondrial performance was
measured as respiration rate triggered by proton leak and the activity
of complex I (OXPHOSCI) and complex I+II (OXPHOSCI+CII) in the
liver and pectoralis muscle. The activity of citrate synthase (CS) and
cytochrome c oxidase (CCO) was also used as a marker of
mitochondrial density. We found 20% higher total CS activity in the
whole pectoralis muscle and 39% higher total CCO activity in the
whole liver of cold-acclimated chickadees relative to that of birds kept
at thermoneutrality. This indicates that cold acclimation increased
overall aerobic capacity of these tissues. Msum correlated positively
with mitochondrial proton leak in the muscle of cold-acclimated birds
while BMR correlated with OXPHOSCI in the liver with a pattern that
differed between treatments. Consequently, this study revealed a
divergence in mitochondrial metabolism between thermal acclimation
states in birds. Some functions of the mitochondria covary with
thermogenic capacity and basal maintenance costs in patterns that
are dependent on temperature and body mass.
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INTRODUCTION
Upregulation of cold endurance in small avian species wintering at
northern latitudes is typically associated with an enlargement of the
skeletal muscles, heart and digestive organs and with elevated
physiological maintenance costs (basal metabolic rate, BMR) and
maximal heat production capacity (summit metabolic rate, Msum;
Swanson and Liknes, 2006; McKechnie, 2008; McKechnie and
Swanson, 2010; Swanson and Vézina, 2015; McKechnie et al.,
2015; Swanson et al., 2017). As shivering appears to be the main
thermogenic mechanism used by birds living in cold environments
(Saarela et al., 1995; Hohtola et al., 1998; Marjoniemi and Hohtola,

1999; Hohtola, 2004), the seasonal increase in muscle mass is often
interpreted as the driver of Msum variation. This interpretation is
supported by a number of studies showing that seasonal elevations
ofMsum are indeed associated with parallel increases of muscle mass
(O’Connor, 1995; Cooper, 2002; Vézina et al., 2011; Swanson
et al., 2013, 2014a; Petit et al., 2014; Swanson and Vézina, 2015)
and by correlations between muscle mass and Msum (Vézina et al.,
2011; Swanson et al., 2013; Petit et al., 2014; Barceló et al., 2017;
Milbergue et al., 2018). However, recent studies suggest that
metabolic intensity, the energy consumed per unit mass of tissue
(Vézina and Williams, 2005; Swanson, 2010), may also play a
significant role in explaining the variation in both BMR and Msum

(Vézina and Williams, 2005; Vézina et al., 2011; Swanson et al.,
2014a,b; Stager et al., 2015; Milbergue et al., 2018), and that
mitochondrial function could be a key player in this phenomenon
(Roussel et al., 1998; Zheng et al., 2008, 2014; Teulier et al., 2010;
Stager et al., 2015; Vézina et al., 2017).

Oxidative phosphorylation involves the mitochondrial electron
transport system (ETS), a set of protein complexes that transfers
electrons and creates a proton-driving force from either side of
the mitochondrial inner membrane. This force is used to generate
ATP, an energy-carrying molecule supporting most cellular
processes, including muscle contraction (Nicholls and Ferguson,
1992; Silva, 2003; Divakaruni and Brand, 2011). Higher oxidative
phosphorylation capacity could thus allow higher muscle contractile
activity such as shivering, as ATP is required for actin–myosin-
ATPase and Ca2+-ATPase activities. As oxidative respiration is not
100% efficient in transferring nutrient energy to ATP (Rolfe and
Brown, 1997; Hill et al., 2004), heat is generated as a by-product and
this production can be magnified by a proton leak through the inner
mitochondrial membrane (Brand et al., 2005; Divakaruni and
Brand, 2011). In mammals, mitochondrial proton leak is estimated
to represent 20–30% of basal metabolism (Rolfe and Brand, 1997a,
b; Rolfe et al., 1999; Divakaruni and Brand, 2011) and is thought to
be involved in thermogenesis in response to cold (Lowell and
Spiegelman, 2000; Mozo et al., 2005). In birds, the influence of
proton leak on thermogenesis remains unclear. Nevertheless, cold
environments can induce higher mitochondrial respiratory capacity
in birds. This is demonstrated by increases in the activity of citrate
synthase (CS), a regulatory enzyme of the Krebs cycle, and of
cytochrome c oxidase (CCO), the last complex of the ETS, in the
liver, kidneys and muscles of small passerines and shorebirds
(Zheng et al., 2008; Liknes and Swanson, 2011; Vézina et al.,
2017). Increases of LEAK respiration following exhaustion of
ADP (state 4 respiration) is also observed in cold-acclimatized or
-acclimated Chinese bulbul (Pycnonotus sinensis), tree sparrow
(Passer montanus) and muscovy duckling (Cairina moschata)
(Roussel et al., 1998; Zheng et al., 2008, 2014; Teulier et al., 2010).
The involvement of these cellular adjustments in the whole-
organism metabolic response to cold still needs clarification.
Indeed, although some studies have investigated the relationshipReceived 4 August 2021; Accepted 24 January 2022
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between Msum variation and mitochondrial properties such as lipid
transport across membranes (Stager et al., 2015; Vézina et al., 2017;
Zhang et al., 2017) and CS activity (Swanson et al., 2013, 2014b;
Stager et al., 2015; Vézina et al., 2017; Zhang et al., 2017), only
very few studies, to our knowledge, have investigated the potential
influence of the proton leak and oxidative phosphorylation capacity
on thermogenesis in birds.
Mitochondrial respiratory capacity can be adjusted in two different

ways. Firstly, through an increase inmitochondrial density (change of
total mitochondrial volume and/or membrane surface) and therefore
in enzyme content and maximal enzymatic activity. Such an increase
typically enhances aerobic capacity (Johnston et al., 1998) and is
known to occur both in mammals and birds in association with winter
or experimental cold conditions (Mathieu-Costello et al., 1998; Nisoli
et al., 2003; Zheng et al., 2008, 2014). Secondly, changes of
respiratory capacity could also occur alternatively or concomitantly
through adjustment of mitochondrial structure and function such as
variation in the activity of certain mitochondrial enzymes, cristae
density or the phospholipid composition of mitochondrial membrane
(St-Pierre et al., 1998; Nielsen et al., 2017). Because of the respective
location of CS and COO in the mitochondria (matrix and inner
membrane), their activity can be used as a proxy of mitochondrial
volume and surface density, respectively, and thus as a proxy of tissue
mitochondrial content (Picard et al., 2011, 2012; Larsen et al., 2012;
Munro et al., 2013), which allows evaluation of mitochondrial
quantitative adjustments. Reporting mitochondrial respiration per
unit CS and CCO partly controls for mitochondrial content and
therefore allows changes in the mitochondrial phenotype to be
studied. This approach has been used in fishes, rats, humans and
bivalves (Salin et al., 2016; Picard et al., 2010, 2011; Rabøl et al.,
2010; Munro et al., 2013) but, to our knowledge, it has not been used
with birds.
We recently found that captive cold-acclimated (−10°C) black-

capped chickadees (Poecile atricapillus) were maintaining a 20%
higher Msum than individuals kept at thermoneutrality (27°C),
despite a comparable mass of pectoralis and total skeletal muscles
(Milbergue et al., 2018), and suggested that this improved
thermogenic capacity in the cold required an up-regulation of cell
function. Here, we present a follow-up study where we document
changes in mitochondrial respiratory function (oxidative
phosphorylation and LEAK) in the liver and pectoralis muscles of
these same birds with the aim of uncovering the potential
mechanisms involved. If higher thermogenic capacity results from
changes in mitochondrial function in cold-acclimated birds, we
would expect to find higher oxidative phosphorylation and/or
LEAK in pectoralis muscles in the cold and that these parameters
would correlate positively with Msum. As changes in metabolic
intensity occurring with thermal acclimation can also influence
energy consumption in a resting state, we also investigated potential
relationships between mitochondrial function and BMR variation.
In this case, we predict positive relationships between BMR and
mitochondrial function (Zheng et al., 2008, 2013; Peña-Villalobos
et al., 2014; Zhou et al., 2016), particularly LEAK respiration, as up
to 30% of BMR variation is explained by LEAK in pectoralis
muscle and liver of rats (Rolfe and Brown, 1997; Rolfe et al., 1999)
and because significant correlations have been found between BMR
and LEAK in birds (Zhou et al., 2016).

MATERIALS AND METHODS
Animals
Wild black-capped chickadees, Poecile atricapillus (Linnaeus
1766), were captured at the Forêt d’enseignement et de recherche

Macpes̀ (48°19N, 68°30W) and lac à l’Anguille (48°25N,
68°25W), both in eastern Quebec, Canada. They were then held
in individual cages (39 cm×43 cm×31 cm) at the avian facilities of
the Université du Québec à Rimouski under a constant photoperiod
(10 h:14 h light:dark) and a temperature of −10°C for an average
period of 2 months. Birds had ad libitum access to sunflower seeds,
Mazuri small bird’s maintenance diet (MAZURI® exotic animal
nutrition) and water. They were fed with 0.20 g of living
mealworms and 0.30 g of freshly thawed frozen crickets each day.
They also received a supplement of electrolytes daily (Electrolytes
plus, Vetoquinol N.-A. Inc., Princeville, QC, Canada) and vitamins
once per week (Poly-tonine A® complex, Vetoquinol N.-A. Inc.) in
their water. Acclimation started the day we separated the birds
in two groups, with 24 individuals acclimated to −10°C (cold) and
25 individuals acclimated at the same time to 27°C (thermoneutral
zone for this species; Rising and Hudson, 1974; Cooper and
Swanson, 1994) for a minimum of 28 days before the metabolic
measurements. All procedures respected the Canadian Council on
Animal Care (CCAC) guidelines and were approved by the animal
care committee of the Université du Québec à Rimouski (CPA-60-
15-160). They were conducted under scientific and banding permits
from Environment Canada–Canadian Wildlife Service.

BMR and Msum measurement
Following thermal acclimation, we carried out metabolic rate
measurements using the protocol and respirometry setup described
by Milbergue et al. (2018) with measurements conducted on 4 birds
per day (2 per trial). Briefly, each Msum trial was conducted on two
randomly chosen birds from the same temperature treatment and
began approximately at 09:00 h and 12:30 h (alternating thermal
treatments between measurements). Trials began by exposing the
birds, in individual stainless steel metabolic chambers (volume
1350 ml), to temperatures declining by 3°C every 20 min in a 79%
helium, 21% oxygen environment (flow rate 900 ml min−1,
start temperature 0°C for cold-acclimated birds and 10°C for
birds from the thermoneutral treatment). Trials ended when birds
became hypothermic, which was identifiable as a decline in
oxygen consumption for several minutes and confirmed by body
temperature measured immediately after taking birds out of their
chamber (Milbergue et al., 2018). Msum is the highest 10 min
average O2 consumption measured over the trial.

After Msum measurement, birds were returned to their cage and
had access to food and water until BMR measurement, which was
conducted on all 4 birds starting at around 19:00 h (temperature
30°C, within the thermoneutral zone; Rising and Hudson, 1974;
Cooper and Swanson, 1994). Trials ended the following morning (at
approximately 07:30 h, as the duration of BMR trials was >12 h; all
birds were post-absorptive at the time of BMRmeasurement). BMR
was measured as the lowest 10 min average O2 consumption value
during this 12 h period, which was usually found towards the end of
the night. For both Msum and BMR, body mass was measured prior
to and after measurement and the average was used in analyses.
Birds were then returned to their cages.

Permeabilization of hepatocytes and muscles fibers
Birds were euthanized by decapitation and biopsies of the right
pectoralis muscle and liver were sampled within 10 min of the
bird’s death and wereweighed with a precision balance (Cole-Parmer
Symmetry, PA-Series; 0.0001 g). These fresh biopsies were then
immediately immersed in an ice-cold wash and preservation solution
(in mmol l−1: 2.77 CaK2EGTA, 7.23 K2EGTA, 6.56 MgCl2, 20
taurine, 0.5 DTT, 50 potassium-methane sulfonate, 5.77 Na2ATP, 15
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creatine phosphate and 20 imidazole, pH 7.1: solution I; Scott et al.,
2009). Mechanical permeabilization of biopsies was performed
in this ice-cold solution by dissection using two extra-sharp
antimagnetic forceps to help the liquid penetrate the tissues. We
then transferred muscles samples in a permeabilizing solution
(solution I plus 50 µg ml−1 of saponin) that was stirred for 30 min
(Pesta and Gnaiger, 2011). Liver biopsies were directly placed in a
respiration solution (in mmol l−1: 0.5 EGTA, 3 MgCl2, 60 potassium
lactobionate, 20 taurine, 10 KH2PO4, 20 Hepes, 110 sucrose and
1 g l−1 fatty acid-free BSA, pH 7.1: solution II; Kuznetsov et al.,
2002) and stirred for 10 min to wash out endogenous adenine
nucleotides and creatine. After the 30 min of permeabilization,
muscles samples were also placed in this respiration solution and
stirred for 10 min. After dryingmuscle and liver samples quickly on a
soft paper, we weighed tissues using an analytical balance (Mettler
Toledo; 0.0001 g). It should be noted here that preliminary tests were
also conducted on isolated mitochondria but despite multiple
attempts, we could not obtain mitochondria of sufficient quality, as
expressed by respiratory control ratio (RCR) or respiration rate
following cytochrome c addition, or an appropriate magnitude of
signal to be able to ensure decent measurements. This was obviously
not the case with permeabilized fibers. We also aimed to work in
conditions as close as possible to a natural physiological state, and
therefore the permeabilized tissues were more suitable for this.

Mitochondrial respiratory measurements
We inserted hepatocytes and muscles fibers (0.7–2.7 mg wet mass)
in respiration chambers of a high-resolution respirometer (Oroboros
Oxygraph-2k, Innsbruck, Austria), in 2 ml of respiration solution II
kept at 35°C under continuous stirring. Glutamate (10 mmol l−1)
and malate (10 mmol l−1) were injected into chambers to stimulate
non-phosphorylating respiration (i.e. LEAK, mitochondrial
respiration in the absence of ATP production). Then, stepwise
additions of ADP (5 mmol l−1) and succinate (10 mmol l−1) were
conducted to measure OXPHOS, which is the respiration rate
induced by the activation of NADH-dehydrogenase (CI) and of
succinate dehydrogenase (CII), which provides electrons for the
ETS and supports ADP phosphorylation. This combination of
substrates gave us the maximal respiration capacity in tissues. A
stable rate of O2 consumption was reached after 5–30 min between
each addition of substrates. The activity of LEAK, OXPHOSCI and
OXPHOSCI+CII is presented in pmol O2 s−1 mg−1 of wet tissue.
Total values (total capacity of the whole tissue for each
mitochondrial parameter) were calculated by multiplying the
parameter (expressed by unit of tissue mass) by the total mass of
the corresponding organ (pectoral muscle or liver). Values of RCR
correspond to the ratio between OXPHOSCI and LEAK.

CCO and CS activity assays in liver and pectoralis muscle
homogenates
Part of the pectoralis muscle and liver biopsies was frozen in liquid
N2 less than 10 min after extraction and stored at −80°C. Later, the
frozen tissues were weighed and chopped with a razor blade and
then homogenized on ice in 9 volumes of homogenization buffer (in
mmol l−1: 2 EDTA, 100 Tris-HCl and 0.05% Tween-20, pH 7.5)
using an Heidolph DIAX 900 (Sigma-Aldrich) blender for 3×10 s
for pectoralis muscle and 2×10 s for liver, at 40% of full power. The
homogenates were then centrifuged at 4000 g for 5 min in a
refrigerated centrifuge (Eppendorf 5810R) to pellet contractile
proteins and cellular debris and to recover the supernatant. Part of
the homogenate supernatant was stored at−80°C for protein content
assays performed later (see below).

CCO and CS activity was assayed according to Thibeault
et al. (1997) with a Perkin Elmer spectrophotometer at 35°C.
The CCO assay medium contained 100 mmol l−1 potassium
phosphate, 100 µmol l−1 cytochrome c, which was reduced with
500 mmol l−1 dithiothreitol at pH 8.0 (final concentration:
4.5 mmol l−1). Enzyme activity was calculated by following
oxidation of reduced cytochrome c using an extinction coefficient
of 29.5 ml cm−1 µmol−1 at 550 nm. The CS assay medium
contained 100 mmol l−1 Tris, 2 mmol l−1 EDTA, 0.1 mmol l−1

5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB), 0.2 mmol l−1 acetyl
coenzyme A (acetyl CoA) and 0.5 mmol l−1 oxaloacetic acid
(OAA), at pH 8.0. Enzyme activity was calculated using an
extinction coefficient of 13.6 ml cm−1 µmol−1 at 412 nm. All
enzyme assays were run in quadruplicate and activity is presented
in U mg−1 of tissue (where 1 U=1 µmol min−1). These values
give us an estimation of CS and CCO activity in the muscle and liver
biopsies and were used to measure mitochondrial respiration rate.

Protein content quantification
Protein concentration of wet pectoralis muscle and liver tissues was
determined using the bicinchoninic acid (BCA) method (Walker,
1994) with bovine serum albumin (Bio-Rad) as protein standard.
All protein assays were run in triplicate with an incubation time of
30 min at 37°C.

Statistical analysis
Our analyses first tested whether thermal treatments (−10°C and
27° C) generated differences in mitochondrial function or content
in the liver and pectoralis muscle. We therefore (1) investigated
the effects of thermal treatments on mitochondrial density by
comparing the tissue activity of CS and CCO between treatments.
We also (2) studied how treatments affected mitochondrial
respiratory capacity by testing for treatment effects on LEAK and
OXPHOS (CI and CI+CII) respiration rate. We then (3) determined
whether acclimation to low temperature generated phenotypic
changes in mitochondria by testing for effects of thermal treatments
on mitochondrial respiratory capacity (LEAK and OXPHOS)
reported per unit of CS and CCO activity. These analyses were
performed using ANCOVA models that included the effect of
thermal treatment and the effect of body mass as a covariate to
consider their effects on tissue metabolism (West et al., 2002;
Krijgsveld et al., 2012). Models also included the interaction
treatment×body mass. Furthermore, we (4) investigated the
potential link between mitochondrial respiratory capacity and
maximal heat production, measured as Msum, and resting energy
consumption, measured as BMR. This was done using separate
ANCOVA models testing for the effects of each mitochondrial
parameter (CS, CCO, LEAK, OXPHOS) on Msum and BMR using
values per mg or g of tissue and values per unit CS and CCO. The
models included the effects of treatment, body mass and the
interactions treatment×body mass and treatment×mitochondrial
parameter.

Analyses were conducted using R Studio (3.3.1) and JMP Pro
(12.0.1). In all models, we eliminated non-significant interactions
and variables. Outlier values were discriminated by the Cook
distance test and removed from analyses if necessary. Normality and
homoscedasticity of model residuals were confirmed in all analyses
using the Shapiro–Wilk test, Bartlett test and the ‘par’ function to
visualize residuals distribution graphically (Murrell, 2005). The
unexpected death of some of the birds and technical issues during
measurements led to differing sample size among treatments and
among mitochondrial parameters.
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RESULTS
Markers of mitochondrial density
There was no significant influence of thermal treatment on CS and
CCO activity in both the liver and the pectoralis muscle when
expressed per g of tissue (Table 1). When considering total
enzymatic activity for the whole organ (activity per mg of tissue
multiplied by the organ total mass), the total activity of CCO in the
whole liver and total CS activity in thewhole pectoralis muscle were
39% and 20% higher at −10°C than at 27°C, respectively (Table 1).
Total CS activity was also significantly and positively correlated
with body mass in the pectoralis muscle and liver (Table 1).

Mitochondrial respiration
Thermal treatment did not affect mitochondrial respiratory
measurements of pectoralis muscles (all P>0.25; Table S1). In the
liver, however, temperature did influence mitochondrial phenotype.
We observed a marginally non-significant effect of thermal
treatment on LEAK and OXPHOSCI+CII normalized by CCO,
with cold-acclimated birds expressing lower values compared with
birds maintained at thermoneutrality (Table 2). Our data showed
that LEAK normalized by CS (LEAKCS) in the liver declined with
body mass in cold-acclimated individuals, whereas it remained
stable when birds were acclimated to 27°C (Table 2, Fig. 1).
Independent regression analysis showed that this relationship with
body mass was significant for birds kept at −10°C (adjusted
r2=0.46, n=13, P<0.01; P=0.4 at 27°C). We also observed an
interaction between treatment and body mass for liver OXPHOSCI

respiration rate (Table 2). Mitochondrial respiration capacity
(OXPHOSCI rate) tended to increase with body mass in warm-
acclimated birds and to decrease with mass in cold-acclimated
individuals, although independent regressions were not significant
in any case (lowest P-value=0.26, r2 range: 0.02–0.48).
Collectively, these results suggest that body mass dependence of
proton leak and respiration rate induced by NADH dehydrogenase,
in the liver mitochondria, varies with thermal regime.

BMR, Msum and mitochondrial activity
As observed previously (Milbergue et al., 2018), both thermogenic
capacity and BMR were higher in cold-acclimated birds than
in individuals kept at thermoneutrality. In this specific sample
of birds, Msum (n=30) and BMR (n=34) were 20.4% and 14.3%
higher, respectively, in the cold- relative to the warm-acclimated
birds when considering the effect of body mass (Msum: F1,27=31.2,
P<0.0001, mass: F1,27=9.5, P<0.01 no interaction; BMR:
F1,30=13.6, P<0.001, mass: F1,30=6.5, P<0.05, interaction:
F1,30=4.1, P=0.05).

Analyses testing for relationships betweenMsum andmitochondrial
respiration in muscles and liver confirmed the effect of treatment and
body mass on mitochondrial measurements in all models (no
significant interaction treatment×body mass). None of the liver
mitochondrial respiration measurements covaried with Msum (P>0.5
in all cases), whereas in the muscles, once controlling for the effect of
body mass (F1,19=9.4, P<0.01), we found correlations between
LEAK and Msum that depended on temperature (LEAK: F1,19=12.7,

Table 1. Effect of thermal treatment and body mass on CS and CCO activity

Activity Treatment Body mass

Cold Thermoneutral F (d.f.) P F (d.f.) P

Liver
CS 13.8±1.1 13.7±1.0 0.09 (1,34) 0.8 2.9 (1,35) 0.09
CCO 17.3±1.1 15.9±1.0 0.6 (1,34) 0.4 1.3 (1,35) 0.3
CStotal 1.1±0.09 1.0±0.09 1.2 (1,24) 0.3 7.1 (1,25) 0.01
CCOtotal 1.4±0.09 1.0±0.09 10.3 (1,24) <0.01 3.4 (1,24) 0.07

Pectoralis
CS 114.5±7.8 100.9±7.2 1.6(1,35) 0.2 0.6 (1,34) 0.4
CCO 6.6±0.7 5.8±0.6 0.7 (1,35) 0.4 0.2 (1,34) 0.6
CStotal 46.9±3.4 39.1±3.2 5.5 (1,33) 0.02 7.2 (1,33) 0.01
CCOtotal 2.7±0.3 2.3±0.3 1.2 (1,34) 0.3 0.5 (1,33) 0.5

Citrate synthase (CS) and cytochrome c oxidase (COO) activity (mean±s.e.m.) is given as µmol min−1 g−1 tissue and as total (whole-organ) values in µmol min−1.
CS and CCO values for the whole organ were calculated by multiplying the CS and CCO activity by g of tissue with the value of dry lean mass of the pectoral and
liver. Lean dry mass values were on average 0.4 g for pectoral and 0.07 g for liver (see Milbergue et al. 2018). Bold indicates significance.

Table 2. Effect of thermal treatment and body mass on mitochondrial LEAK, OXPHOSCI, OXPHOSCI+CII and RCR in the liver

Activity (pmol O2 s−1) Treatment Body mass Interaction

Cold Thermoneutral F (d.f.) P F (d.f.) P F (d.f.) P

LEAK per mg tissue 28.5±3.4 33.5±2.9 0.95 (1,30) 0.3 0.00 (1,30) 1.0 – –

LEAKCS 202.8±31.5 251.1±27.2 1.34 (1,26) 0.3 0.35 (1,26) 0.6 6.0 (1,26) <0.05
LEAKCCO 160.4±33.0 245.2±27.3 3.9 (1,30) 0.06 0.96 (1,28) 0.3 – –

OXPHOSCI per mg tissue 25.3±4.1 30.4±3.5 0.9 (1,28) 0.35 0.01 (1,28) 0.9 5.7 (1,28) <0.05
OXPHOSCI/CS 186.8±35.8 245.6±31.9 1.5 (1,25) 0.2 0.0 (1,25) 1.0 9.1 (1,25) <0.01
OXPHOSCI/CCO 149.5±34.4 218.6±29.8 2.3 (1,26) 0.1 0.73 (1,26) 0.4 7.6 (1,26) <0.05
OXPHOSCI+CII per mg tissue 96.1±9.8 102.6±8.2 0.28 (1,30) 0.6 0.0 (1,30) 0.95 – –

OXPHOSCI+CII/CS 713.1±91.2 813.4±77.6 0.7 (1,29) 0.4 0.07 (1,27) 0.8 – –

OXPHOSCI+CII/CCO 509.0±85.2 725.3±70.5 3.8 (1,30) 0.06 0.78 (1,28) 0.4 – –

RCR 1.78±0.21 1.87±0.18 0.1 (1,31) 0.76 0.3 (1.29) 0.6 0.02 (1,28) 0.9

Activity data (means±s.e.m.) are shown for mitochondrial LEAK, oxidative phosphorylation activity of complex I (OXPHOSCI) and complex I+II (OXPHOSCI+CII)
[per mg tissue and normalized to citrate synthase (CS) and cytochrome c oxidase (COO)], and respiratory control ratio (RCR) under the different thermal
acclimation treatments. Values were obtained using ANCOVA models that included the effect of thermal treatment and the effect of body mass as a covariate.
Models also included the interaction treatment×body mass. Bold indicates significance.
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P<0.01; LEAKCS: F1,16=9.2, P<0.01), with a strong positive
covariation between Msum and LEAK only in the cold (Fig. 2,
LEAK: adjusted r2=0.67, n=11, P<0.05; LEAKCS: adjusted r

2=0.71,
n=10, P<0.01). Independent regressions ofMsum and LEAK showed
no clear relationships at thermoneutrality (P>0.2 in all cases).
We found no influence of pectoralis muscle mitochondrial

content or respiratory capacity on BMR (only treatment and mass
significantly affected BMR; see also Milbergue et al., 2018). In the
liver, when statistically controlling for body mass (F1,25=16.7,
P<0.001), we found that BMR covaried with NADH
dehydrogenase-dependent respiration rate (OXPHOSCI), and that
this influence depended on thermal treatment (F1,25=8.9, P<0.01).

This was observed in analyses considering both mass-specific and
total liver OXPHOSCI respiration rate (Fig. 3). However,
independent regression analyses showed that the only significant
relationship was between total OXPHOSCI and BMR at −10°C
(−10°C: r2=0.39, n=10, P<0.05; 27°C: P=0.5). Although a similar
pattern was observed when normalizing OXPHOSCI respiration rate
by CS activity (F1,22=7.3, P<0.05), no significant correlation was
observed with BMR in independent regression analyses. Therefore,
we found evidence that liver mitochondrial functions influence
BMR, but only in cold-acclimated birds.

DISCUSSION
We predicted that, if an improvement in thermogenic capacity
resulted mostly from changes in mitochondrial properties rather
than muscle mass (Barceló et al., 2017; Milbergue et al., 2018), then
oxidative phosphorylation and/or LEAK in pectoralis muscle
should be higher at −10°C than at 27°C and should correlate
positively with Msum. We also expected that changes in metabolic
intensity resulting from thermal acclimation could lead to
correlations between BMR and both oxidative phosphorylation
and LEAK in liver and pectoralis muscle. We found no differences
in mitochondrial content in the liver and pectoralis muscles of cold-
relative to warm-acclimated individuals when expressed per unit
mass of tissue. However, we observed that mitochondrial phenotype
varied with body mass in the liver of cold-acclimated birds. We also
found that maximal oxidative phosphorylation, when mitochondria
are fed at complex I, varied with BMR in these birds. However,
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quantitative markers of mitochondrial respiratory capacity did not
differ between treatments in the pectoralis muscle. Nevertheless,
proton leakage measured in the pectoralis did correlate significantly
with Msum in cold-acclimated birds.

Markers of mitochondrial density
CS and CCO are regularly used as proxies for tissue maximal
oxidative capacity and it has been shown that their activity increases in
the liver and muscles of birds acclimated to cold wintering
environments or cold experimental conditions (O’Connor, 1995;
Dawson and Olson, 2003; Zheng et al., 2008, 2014; Liknes and
Swanson, 2011; Peña-Villalobos et al., 2014; Vézina et al., 2017). In
our study, there was no treatment effect on CS and CCO enzymatic
activity when reported per g of tissue (Table 1). Our results therefore
contrast with the observations of Liknes and Swanson (2011), who
found notably higher (52%) CS activity per unit wet tissuemass in the
pectoralis muscle of wintering chickadees, and of Zheng et al. (2008),
who reported 37% higher CCO activity per mg of protein in the liver
of winter-acclimatized Eurasian tree sparrow (Passer montanus)
relative to birds measured in summer. The exact reasons for the
discrepancies between these results and our study are not obvious but
they might result from the difference in settings between the studies
(experimental captives versus free living). Considering total organ
activity, however, we found a 20% higher total CS activity in the
pectoralis muscle and a 39% higher total CCO activity in the
liver of cold-acclimated chickadees compared with birds kept at
thermoneutrality (Table 1). These findings corroborate observations
byLiknes and Swanson (2011), who reported a 62.5% higher total CS
activity in the pectoralis muscles of black-capped chickadees
wintering in South Dakota relative to their summer counterparts.
Similarly, Zhou et al. (2016) reported higher total CCO activity in the
liver of hwamei (Garrulax canorus) acclimated to 15°C relative to
individuals kept at 35°C. Similar to our observations, Peña-Villalobos
et al. (2014) also observed no differences in tissue mass-specific
activity of CS or CCO between winter and summer in rufous-collared
sparrow (Zonotrichia capensis) but found a 70% higher total CS
activity in the flight muscles of cold-acclimated (15°C) compared
with warm-acclimated (30°C) captive birds. Collectively, these results
suggest that total aerobic capacity of both muscle and liver increase in
birds acclimated to low temperatures. These results might seem
counter-intuitive as muscle and liver mass, as well as mitochondrial
capacity, were not significantly different between the two groups.
This apparent discrepancy likely results from a multiplying effect,
where differences in tissue mass and mitochondrial respiration rate
between the two groups were not large enough to be detected as
significant but amplified when multiplied with each other. Albeit
being non-significant (P=0.17), Milbergue et al. (2018) did report
18% heavier livers (lean dry mass) and 5% heavier pectoralis muscles
in cold-acclimated chickadees.

Mitochondrial respiration
Given that birds increased thermogenic capacity without changing
muscle size (Milbergue et al., 2018), we expected to find higher
oxidative phosphorylation and/or higher LEAK respiration in
muscles of cold-acclimated birds as this could contribute to the
heat production mechanism (Duchamp et al., 1999; Lowell and
Spiegelman, 2010). Instead, our data revealed no effect of thermal
treatment on pectoralis muscle mitochondrial respiration. This result
came as a surprise, particularly for proton leak as it is suspected in
endotherms that upregulating LEAK could operate to partially
dissipate the proton-motive force in themitochondria, thus leading to
additional heat production (Duchamp et al., 1999; Divakaruni and

Brand, 2011). Furthermore, several studies have reported higher
pectoralis LEAK respiration in isolated mitochondria of cold-
acclimated birds (Roussel et al., 1998; Teulier et al., 2010; Zheng
et al., 2014; Zhou et al., 2016). Yet, it is not uncommon to find
inconsistencies among such studies. For instance, muscle
mitochondria of muscovy ducklings (Cairina moschata) had 38%
higher state 3 respiration (oxidative phosphorylation) per mg of
protein in individuals reared at 4°C compared with that in individuals
reared at thermoneutrality (25°C; Teulier et al., 2010) and this
contrasts with a previous study on the same species using the same
thermal treatment, where no significant difference in muscle state 3
respiration was observed (Roussel et al., 1998). Another study on
ducklings also reported no impact of temperature acclimation (11°C
relative to 25°C) on oxidative phosphorylation and proton leak in the
gastrocnemius muscle (Salin et al., 2015). In addition, Cheviron and
Swanson (2017) observed no upregulation of genes putatively
involved in non-shivering thermogenesis in winter- compared with
summer-acclimatized American goldfinch and black- capped
chickadee. Collectively, these findings suggest that the cellular
adjustments observed in muscles of several species in association
with cold (Roussel et al., 1998; Zheng et al., 2008, 2014; Teulier
et al., 2010; Stager et al., 2015; Zhou et al., 2016) may be context
specific or simply not part of an obligate adaptive response to cold
environment in birds. Moreover, previous studies worked with
isolated mitochondria and this technique can produce different
results from permeabilized fibers as we used here (Kuznetsov et al.,
2008; Korzeniewski, 2015; Mathers and Staples, 2015).

As for pectoral muscles, we expected to find higher oxidative
phosphorylation capacity and/or higher LEAK respiration rate in the
liver. Indeed, previous studies reported higher state 4 respiration in
the liver of cold-acclimated Eurasian tree sparrow, Chinese bulbul
and hwamei relative to values measured in individuals acclimated to
summer or thermoneutrality (Zheng et al., 2008, 2014; Zhou et al.,
2016). Mitochondrial function in the liver did seem to respond to
temperature acclimation. Indeed, both the LEAK and rate of
electron entry in the ETS normalized per CCO activity tended to be
lower in cold-acclimated birds (LEAK/CCO 35%, OXPHOSCI+CII/
CCO 30%; Table 2) with the effect approaching significance for
both variables (P=0.06). This suggests that the capacity to feed the
ETS with electrons was reduced, relative to the capacity of CCO to
reduce oxygen. Thus, in the liver of cold-acclimated birds, it seems
that the electron pressure and the level of reduction in the ETS could
be lower during non-phosphorylating and phosphorylating
respiration. One would suspect that this reorganization could
prevent the adverse impact of reactive oxygen species induced by
increased mobilization of aerobic capacity. However, at this point
we can only speculate on the adaptive function, if any, of these
responses to cold acclimation and further investigation is required.

In the liver, both the proton leak (expressed per CS) and CI-
dependent respiration rate (OXPHOSCI) varied differently with
body mass depending on thermal regime. The respiration rate
tended to decrease with body mass in cold-acclimated birds (Fig. 1).
Negative correlations have previously been reported in studies
comparing species of various body sizes. For example, proton leak
in the liver has been reported to negatively correlate with body mass
in frogs (Roussel et al., 2015), mammals (Porter et al., 1996) and
birds (Brand et al., 2003; Else et al., 2004). This correlation could
potentially be associated with variation of fatty acyl composition in
the mitochondrial membrane. Indeed, across a wide range of body
mass in birds, from the 13 g zebra finches (Taeniopygia guttata) to
the 35 kg emus (Dromaius novaehollandiae), proton conductance
correlates positively with polyunsaturation and negatively with
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monounsaturation of phospholipid fatty acyls (Brand et al., 2003;
this is also found in mammals: Porter et al., 1996; Couture and
Hulbert, 1995), supporting the idea that mitochondrial membranes
act as a metabolic pacemaker (Hulbert and Else, 1999). Liver and
muscle membranes from larger birds also have less polyunsaturated
and more monounsaturated fatty acyl chains than those from smaller
birds (Hulbert et al., 2002; Brand et al., 2003). Thus, although the
variation in body mass was small among our birds, mitochondrial
membranes of heavier birds at −10°C could have lower membrane
proton conductance as a result of fatty acid profile (Hill et al., 2004).
However, the exact cause of the apparent lack of mass effect at
thermoneutrality is not obvious.

Msum, BMR and mitochondrial activity
Msum was strongly and positively correlated with mitochondrial
proton leak in the pectoralis, but only for cold acclimated birds
(Fig. 2). At first glance, the strong relationship found here suggests
that cold-acclimated birds expressing higher LEAK values might
have benefited from the increase in heat generated by less-efficient
mitochondria. Yet, this result is counter-intuitive given that there
was no treatment effect on LEAK per se (no significant differences
between birds acclimated to −10°C and 27°C). This contribution of
mitochondrial proton leak to maximal thermogenic capacity could
thus be related to a trait that partly drives both the measured proton
leak and the maximal respiration rate; for example, higher
transmembrane potential or oxidative phosphorylation efficiency
(ATP/O) or the effect of membrane fluidity on the catalytic capacity
of membrane-embedded enzymatic complexes. However, this result
will require further investigation.
In birds, BMR increases have been associated with elevated

proton leak (Zheng et al., 2008, 2013, 2014), CS activity (Peña-
Villalobos et al., 2014; Vézina et al., 2017) and oxidative
phosphorylation (Zheng et al., 2013, 2014) in both liver and
muscles. Our results indicated that BMR variation was partly related
to oxidative phosphorylation capacity but only in the liver. They
also showed that these relationships were temperature dependent.
BMR increased with CI-dependent respiration rate but only in cold-
acclimated birds (Fig. 3). We previously found that the relationship
between body mass and BMR was uncoupled in cold-acclimated
chickadees in such a way that the lightest birds had a BMR as high
as that of the heaviest birds, whereas BMRwas positively correlated
with mass at thermoneutrality (Milbergue et al., 2018). We
suggested that this phenomenon could be rooted in adjustments
of metabolic intensity at the cellular level in cold-acclimated
individuals. Interestingly, we observed here that in the cold, the
lightest birds had high mitochondrial LEAK respiration rates in the
liver (Fig. 1) and that, overall, cold-acclimated birds with high CI
respiration rate also had high BMR (Fig. 3). The current finding is
therefore consistent with our previous hypothesis. It suggests that
mitochondrial adjustments in internal organs, such as the liver,
might contribute to overall resting energy consumption, although
this influence differs depending on the acclimation state of the birds.
Changes in liver phenotype in association with cold acclimation
have been noted in several bird species before. Reported changes are
typically an increase of liver mass (Williams and Tieleman, 2000;
Zheng et al., 2008, 2014; Petit et al., 2014; Barceló et al., 2017),
which has been identified as a response to elevated cold-induced
food consumption (Barceló et al., 2017), and which may
significantly influence BMR variation (Chappell et al., 1999;
Williams and Tieleman, 2000; Petit et al., 2014; Barceló et al.,
2017). In our experiment, cold-acclimated chickadees consumed
44%more food on average and, although not significant, their livers

were also 18% larger than those of individuals from the
thermoneutral group (Milbergue et al., 2018).

Our study showed variation in quantitative and qualitative aspects
of mitochondrial respiration between thermal acclimation states in
birds. Some of the respiratory parameters co-varied with maximal
thermogenic capacity and basal maintenance costs, depending on
temperature and body mass. In cold-acclimated birds, Msum was
positively correlated with mitochondrial proton leak in the
pectoralis muscle while BMR was positively correlated with
oxidative phosphorylation capacity in the liver. This connection
between LEAK or oxidative phosphorylation and whole-animal
metabolic performance vanished in birds acclimated to 27°C.
Although the exact mechanism explaining how birds can improve
thermogenic capacity without changing muscle mass still needs
clarification, our study suggests that this capacity is nevertheless
associated with significant adjustments in muscle or liver
mitochondrial machinery. Our study also demonstrated that the
increase of thermogenic capacity in these birds was not simply a
result of upregulating proton leak or oxidative phosphorylation, as
often suggested. Consequently, it might also not be the result of an
improvement of muscles fiber ATP production for shivering but this
remains to be confirmed.
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Vézina, F. and Williams, T. D. (2005). Interaction between organ mass and citrate
synthase activity as an indicator of tissue maximal oxidative capacity in breeding
European Starlings : implications for metabolic rate and organ mass relationships.
Funct. Ecol. 19, 119-128. doi:10.1111/j.0269-8463.2005.00942.x
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