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Towards understanding the neural origins of hibernation
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ABSTRACT

Hibernators thrive under harsh environmental conditions instead of
initiating canonical behavioral and physiological responses to
promote survival. Although the physiological changes that occur
during hibernation have been comprehensively researched, the role
of the nervous system in this process remains relatively
underexplored. In this Review, we adopt the perspective that the
nervous system plays an active, essential role in facilitating and
supporting hibernation. Accumulating evidence strongly suggests
that the hypothalamus enters a quiescent state in which powerful
drives to thermoregulate, eat and drink are suppressed. Similarly,
cardiovascularand pulmonary reflexes originating in the brainstem are
altered to permit the profoundly slow heart and breathing rates
observed during torpor. The mechanisms underlying these changes
to the hypothalamus and brainstem are not currently known, but
several neuromodulatory systems have been implicated in the
induction and maintenance of hibernation. The intersection of these
findings with modern neuroscience approaches, such as
optogenetics and in vivo calcium imaging, has opened several
exciting avenues for hibernation research.
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Introduction

Why study the neurophysiology of hibernation?

Life depends upon a certain degree of stability to flourish. Cellular
health and organismal survival require the powerful defense of set
points, or target values, for parameters such as temperature, oxygen
and osmolality. To maintain a consistent internal environment,
animals must constantly coordinate numerous physiological
responses to environmental changes in a process known as
homeostasis.

Among species living in harsh climates, these responses can be
complex. When faced with cues about the impending winter, some
animals will enter the unique state of hibernation (Andrews, 2019;
Mohr et al., 2020). A hibernating lifestyle enables survival in the
absence of warmth or resources for several months.

Studies from the past two centuries have revealed essential
insights into the function of individual organ systems during
hibernation (Mann, 1916; Rasmussen, 1916). The relationships
between organ systems in hibernation, however, remain
underexplored. In particular, the field lacks consensus on a
working model for how this extraordinary state is initiated and
enforced. In this Review, we focus on the central nervous system
(CNS) — particularly the hypothalamus and brainstem — as a
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potential master regulator of hibernation. The CNS exerts powerful
influence over the endocrine, cardiovascular, pulmonary and
peripheral nervous systems. We propose that it is this exquisite
control that affords hibernators resilience in the most harrowing of
conditions.

Emerging evidence suggests that hibernation is only a variation
on the theme of homeostasis, and that hibernators largely rely on the
basic biological machinery present in all vertebrates. In studying the
neural control of this extreme state, we aim to reveal basic truths
about how organ systems are coordinated to achieve stability in an
ever-changing world.

What is hibernation?

Hibernation is a physiological state defined by prolonged (>24 h)
bouts of torpor punctuated with arousals (Fig. 1). Torpor bouts are
periods of profound energy conservation characterized by a
decrease in core body temperature towards ambient levels.
Hypothermia in torpor is accompanied by decreases in heart,
respiratory and metabolic rates, and a drop in blood pressure. The
torpid animal assumes a fetal position from which it rarely moves,
sometimes for weeks. Torpor is interrupted periodically with
interbout arousals (IBAs). An IBA is a transient state of activity in
which the animal will recover active-like physiological parameters
such as body temperature, heart rate and blood pressure.

The purpose of IBA is not well understood, but it is thought to be
important for ‘housekeeping’ metabolic functions (Andrews, 2019).
Many species of ground squirrel will urinate and sleep during the
~24 h they spend in IBA, presumably clearing forms of waste that
have accumulated during torpor (Jani et al., 2012; Passmore et al.,
1975; Walker et al., 1977; D’Alessandro et al., 2017). Although
animals in IBA are mobile and have gone without resources
sometimes for months, they remain in their burrows. Ground
squirrels in IBA will drink and eat negligible amounts when offered
water or food (Feng et al.,, 2019; Healy et al., 2011). The
prioritization of certain behaviors and suppression of others
serves as a window into the neuronal mechanisms underlying
hibernation. Sleep, urination, eating and drinking are coordinated by
the hypothalamus, which integrates interoceptive cues to prioritize
behaviors that restore homeostasis.

What is the brain’s role in hibernation?

The hypothalamus and brainstem play an essential role in
coordinating behavioral and physiological responses to internal
and external stimuli (Bjursten et al., 1976; Mettler et al., 1935)
(Fig. 2). For example, specialized neurons in the arcuate nucleus of
the hypothalamus (ARC) are responsible for monitoring energy
balance (Augustine et al., 2020). When activated, these neurons
initiate feeding behavior. Similar processes are known to occur
in different hypothalamic regions for fluid homeostasis and
thermoregulation (Zimmerman et al., 2017; Angilletta et al.,
2019). These circuits do not act alone: instead, they inform each
other, allowing for the prioritization of one drive over another.
Brainstem nuclei perform a similar function to the hypothalamus,
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Fig. 1. Seasonal changes in body temperature in thirteen-lined ground
squirrels. During the summer (green), thirteen-lined ground squirrels are
active (core body temperature, T,=37°C). After passing through a period of
heterothermy (red), squirrels hibernate all winter (blue). Within hibernation,
squirrels oscillate between torpor (T,=4°C) and interbout arousal (IBA)
(Ty=37°C).

sensing and responding to interoceptive cues by triggering
autonomic reflexes, which maintain set points for blood pressure,
breathing rate and other organ functions.

All of the behavioral and physiological functions mentioned
above, as well as others, are altered during hibernation. We propose
that these changes are not a result of hibernation, but instead are
essential for its induction. Rather than mounting responses to cold
exposure and resource deprivation, hibernators suppress powerful
drives at the neuronal level. Electroencephalogram studies in
hibernators raised questions about neural activity in hibernation
over 60 years ago (Strumwasser, 1958; Andersen et al., 1960). The
field has since made great progress towards answering these
questions, and with the advent of new tools for neural measurement
and manipulation, we are surely on the precipice of a deeper
understanding of the neurobiology of hibernation.

Hypothalamic control of homeostasis

The initiation and maintenance of hibernation require the precise
coordination of hypothalamic drives. Hunger, for example, is a
powerful motivator that can supersede other important survival
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Fig. 2. Brain regions involved in homeostasis that may support
hibernation. The subfornical organ (SFO) and median preoptic nucleus
(MnPO) regulate fluid homeostasis. The preoptic area (POA) is a key player in
the neural control of thermoregulation. Neurons in the arcuate nucleus (ARC)
control feeding behavior. Nucleus of the solitary tract (NTS) neurons are
implicated in the baroreceptor reflex. The Botzinger (Bo) and pre-Bétzinger
complexes (PrBo) and rostral division of the ventral respiratory group (RVRG)
are involved in respiration.

signals like inflammatory pain (Alhadeff et al., 2018). It is probable
that in species relying solely on body fat for energy during
hibernation, the sensation of hunger would be counterproductive.
This rationale may be extended to other homeostatic processes,
including thirst and thermogenesis. Especially in IBA, animals must
suppress any motivation that would otherwise lead them to
terminate hibernation prematurely. Consistent with this notion,
bulk mRNA sequencing of the hypothalamus across the hibernation
cycle highlighted numerous transcriptional changes that may impact
neuronal function, protein turnover and specific homeostatic
processes (Schwartz et al., 2013). Although brainstem centers are
also reported to participate in hunger (Blouet and Schwartz, 2012),
thirst (Davern, 2014) and thermoregulation (Morrison and
Nakamura, 2011), little is known about how these processes are
affected during hibernation. For this reason, we focus in this section
on the hypothalamus.

Hunger

Hibernators can be categorized as either facultative or obligate.
Facultative hibernators enter hibernation in response to
environmental cues, such as temperature and food availability,
whereas obligate hibernators will do so regardless (Mohr et al.,
2020). Obligate hibernators can survive for 5—8 months without
food and water, and are the most robust form of hibernator. They
adhere to a circannual rhythm in feeding behavior, oscillating
between a high-fat appetite and anorexia. In summer, a diet rich in
polyunsaturated fatty acids promotes the enormous accumulation of
white adipose tissue. Weeks prior to hibernation, however, animals
reduce food intake in a period of anorexia that persists for the
duration of hibernation, including IBA (Healy et al., 2011; Torke
and Twente, 1977; Schwartz et al., 2015).

In the neuroendocrine circuit for hunger, reduced food intake will
induce the production of ghrelin in the stomach. High circulating
ghrelin levels signal hunger to agouti-related peptide (Agrp")
neurons in the arcuate nucleus of the hypothalamus, which are
responsible for the coordination of feeding behavior (Augustine
et al.,, 2020). Consequent cues about food intake will rapidly
suppress the activity of Agrp" neurons, as will the production
of short- and long-term satiety hormones, including insulin and
leptin.

A barrage of cues is involved in the neural suppression of feeding
behavior; olfactory, gustatory, oropharyngeal and gastrointestinal
sensations all contribute, as do endocrine signals. Any combination
may be involved in the prolonged anorexia observed in obligate
hibernators. One possibility is that ghrelin has a diminished ability
to stimulate Agrp” neurons during hibernation. In golden-mantled
ground squirrels, plasma ghrelin levels remain relatively consistent
across physiological states (Healy et al., 2010). However, whereas
intraperitoneal treatment with ghrelin strongly potentiates food
intake in the summer, torpid squirrels forced to arouse in the
winter exhibit a much smaller response (Healy et al., 2011). This
treatment also elevates hypothalamic levels of AMP-related protein
kinase (AMPK) and acetyl-coA carboxylase (ACC) in active, but
not hibernating squirrels. Hypothalamic AMPK and ACC are
upregulated in response to ghrelin in non-hibernators and may be an
essential part of its orexigenic effect (Kohno et al., 2008; Lage et al.,
2010; Galic et al., 2018). Thus, it is possible that ghrelin does not
achieve the same orexigenic effect during hibernation due to
decreased stimulation of intracellular signaling pathways. Consistent
with this hypothesis, intracerebroventricular administration of an
AMPK activator to yellow-bellied marmots in IBA results in a
robust increase in feeding behavior, indicating that activation of
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hypothalamic AMPK is sufficient to restore hunger (Florant et al.,
2010).

How might the effects of hunger cues change with season? One
potential mechanism involves tanycytes, which are a subset of radial
glial cells that help to maintain the blood—hypothalamus barrier.
Among other regions, tanycytes line the third ventricle of the brain,
where they can regulate the passage of hormones, including ghrelin,
from the circulation into the brain to regulate the activity of Agrp*
neurons in the arcuate nucleus (Bolborea et al., 2020). Tanycytic
function is influenced by seasonal changes and metabolic status,
making these cells prime candidates for investigating the neural
mechanism of seasonal anorexia in hibernators (Langlet et al., 2013;
Lewis and Ebling, 2017). For example, in non-hibernators,
tanycytes have been shown to modulate the blood-hypothalamus
barrier in response to fasting (Langlet et al., 2013), which could
influence the ability of hormones like ghrelin or leptin to reach
Agrp* neurons. Tanycyte protein expression and morphology are
seasonally regulated in arctic ground squirrels and Siberian
hamsters (Barrett et al., 2006; Frare and Drew, 2021; Herwig
et al., 2009; Nilaweera et al., 2011), supporting a role for tanycytes
in hibernation anorexia. Another, non-mutually exclusive
possibility is that hunger hormone receptors are differentially
expressed across the hibernation cycle. For example, hypothalamic
expression of the leptin receptor is upregulated in the period of
reduced appetite preceding hibernation (Schwartz et al., 2015; Mohr
et al., 2020). The question of whether these molecular changes are
necessary and sufficient to maintain hibernation anorexia remains to
be answered.

Thirst

Whereas most mammals cannot last for more than a few days in a
state of dehydration, hibernators routinely abstain from drinking
water for up to 8 months. When offered water during IBA, thirteen-
lined ground squirrels demonstrate a near-complete aversion,
revealing that thirst is powerfully inhibited during hibernation
(Feng et al., 2019).

Water ingestion is coordinated by an endocrine circuit involving
the central nervous and renal systems. Dehydration results in
elevated blood osmolality, reduced renal perfusion or both. The
kidneys’ juxtaglomerular apparatus responds by activating the
renin—angiotensin—aldosterone system, increasing circulating levels
of angiotensin II and aldosterone (Boron and Boulpaep, 2016).
These hormones activate neurons in subcortical brain regions that
sense dehydration and coordinate a drinking and water-conserving
response. In particular, angiotensin I and high osmolality are
directly sensed by neurons in the lamina terminalis, a collection of
hypothalamic and subcortical brain regions that include the
subfornical organ and median preoptic nucleus (Fig. 2).
Activation of lamina terminalis neurons promotes water drinking
behavior and the release of vasopressin from the posterior pituitary
gland (Augustine et al., 2018; Zimmerman et al., 2016).

Hibernators may have multiple strategies for preventing water
loss and inhibiting thirst during the winter. Although long-term
water deprivation usually results in elevated blood electrolyte
concentration, torpid thirteen-lined ground squirrels exhibit a
significant drop in blood osmolality (Feng et al., 2019; Zimny
et al.,, 1984). A similar phenomenon has been reported in other
hibernators, including marmots and prairie dogs (Zatzman and
South, 1981; Hamilton and Pfeiffer, 1977). Such a reduction in
blood osmolality would be expected to serve as a thirst-suppressing
signal to both the kidney and the brain. Plasma renin activity,
aldosterone and vasopressin levels are low during torpor, implying

that neither the juxtaglomerular apparatus nor thirst neurons are
activated (Feng et al., 2019; Kastner et al., 1978). In other words,
hypoosmolar blood may inhibit thirst in torpor, but this remains to
be experimentally tested.

Blood osmolality recovers to active-like levels during IBA, yet
unlike active animals, which drink water at some frequency, IBA
squirrels abstain from drinking, suggesting that the link between
dehydration and thirst is broken in hibernation (Feng et al., 2019).
Plasma renin activity and aldosterone levels begin to rise towards
the end of the torpor bout, indicating that the kidneys remain
sensitive to the squirrel’s dehydrated state, albeit less so than in
active animals (Kastner et al., 1978). If this is the case, angiotensin 11
levels would be expected to rise along with renin and aldosterone
levels, which remains to be shown. Because IBA squirrels do not
drink water despite the sharp increase in osmolarity and renal
hormones during the torpor-IBA transition, it is possible that the
suppression of thirst is enforced by lamina terminalis neurons.
Acute hyperosmotic stimuli, such as the intraperitoneal injection of
sodium chloride or mannitol, partially restore thirst, suggesting that
the suppression is reversible and the thirst neural circuit can detect
and respond to large changes in osmolarity during hibernation
(Fengetal., 2019). Additionally, it is important to note that squirrels
preparing for hibernation — in ‘prehibernation torpor’ — also exhibit
reduced thirst, but still drink significantly more than IBA squirrels.
Furthermore, squirrels in prehibernation torpor have lower blood
osmolality than IBA squirrels, which would be expected to inhibit
thirst (Feng et al., 2019). This suggests that both seasonality and
hibernation status contribute to drinking behavior in the thirteen-
lined ground squirrel. The exact mechanism by which thirst
inhibition emerges remains to be explored, but it is tempting to
speculate that lamina terminalis neurons could play a pivotal role in
this process.

Thermogenesis

Hibernators are heterothermic during the autumn and winter,
meaning that their body temperature is highly variable, and some
species achieve a body temperature that is not much higher than
ambient levels. By contrast, non-hibernating mammals have a
constant body temperature set point, deviations from which engage
physiological and behavioral responses. A decrease in body
temperature triggers shivering and non-shivering brown adipose
tissue thermogenesis, vasoconstriction and heat-seeking behavior
(Boron and Boulpaep, 2016). Temperature changes are jointly
sensed by the peripheral and central nervous systems. Specialized
somatosensory neurons from dorsal root ganglia (DRG) and
trigeminal ganglia innervate the integumentary system, where
they directly sense environmental temperature. Somatosensory
neurons that express the TRPMS ion channel are activated by
cooling, whereas those that express TRPV1 sense heat (Bautista
et al.,, 2007; Caterina et al., 1997). Heat- and cold-sensitive
somatosensory neurons connect to a multisynaptic circuit in the
CNS that delivers temperature information to the preoptic area
(POA) of the hypothalamus. Separate subsets of POA neurons are
dedicated to sensing increases and decreases in brain temperature
(Feketa et al., 2020; Tan and Knight, 2018). POA neurons receiving
information about the external and internal temperatures will then
trigger the thermoregulatory responses described above.

Because hibernators experience decreases in both body and
brain temperature, they must suppress the drive for thermogenesis
in both of these regions. In thirteen-lined ground squirrels,
thermoregulatory responses are almost completely abolished
during torpor. Although brown adipose tissue (BAT) and brain
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cortex temperature are both slightly higher than environmental
temperature, the greatest difference is only around 1°C, reflecting a
near-complete suppression of the cold defense response (Laursen
et al., 2015). Interestingly, cortex temperature is slightly, but
significantly, higher than BAT temperature (Laursen et al., 2015),
supporting the notion that brain and body temperature set points may
not be defended by the same mechanism. It is possible that
thermoregulatory suppression comes in part from impaired
thermosensation arising from the peripheral nervous system (PNS).
Thirteen-lined ground squirrels and Syrian hamsters exhibit
remarkable tolerance for the sensation of cold when compared
with mice (Matos-Cruz et al., 2017). This cold tolerance is observed
not only at the behavioral, but also the cellular level: squirrel DRG
neurons are less sensitive to colder temperatures than mouse DRG
neurons (Matos-Cruz et al., 2017). Furthermore, both squirrels and
hamsters express a cold-insensitive ortholog of TRPMS that likely
partially contributes to both cellular and behavioral cold tolerance
(Matos-Cruz et al., 2017) (Fig. 3).

In non-hibernators, hypothalamic cooling is sufficient to
trigger a thermoregulatory response (Satinoff, 1964). By contrast,
hibernators exhibit extremely low brain and body temperatures in
torpor, suggesting that thermoregulatory suppression is supported
by the CNS in addition to the PNS mechanism described above.
Research in thirteen-lined ground squirrels has provided some
insight into the role of the CNS in this process. Compared with
mice, squirrels have fewer intrinsically cold-sensitive POA neurons
(Feketa et al., 2020). Although the molecular basis of cold
sensitivity in POA neurons remains unclear, it was suggested that
it is partially mediated by CNGA3, a non-selective excitatory cyclic
nucleotide gated ion channel present in POA neurons of mice and
squirrels. The activity of mouse CNGA3 is robustly potentiated by
cooling; however, no such potentiation is observed in the squirrel
ortholog (Feketa et al., 2020). Thus, CNS cold sensors permit
thermoregulatory suppression during torpor in a manner analogous
to the PNS mechanism (Fig. 3). It is worth noting that in rats, which
do not hibernate, silencing output from POA neurons can trigger a
unique state known as thermoregulatory inversion, in which cold
exposure facilitates a decrease in body temperature instead of an

Brain at 4°C

Non-hibernator

Hibernator

increase (Tupone et al., 2017). As such, thermoregulatory inversion
appears to mimic some features of hibernation; however, the extent
to which these phenomena overlap remains to be determined. In
summary, it is likely that hibernators possess an impaired ability
to sense the decreases in brain and body temperature that would
normally trigger a thermogenic response, thereby enabling
heterothermy.

Brainstem control of homeostasis

Brainstem nuclei promote other forms of homeostasis by
coordinating autonomic responses. These include robust
cardiovascular and pulmonary reflexes, which must be quelled
during the hibernation season to prevent premature emergence.
During entry into torpor, for example, blood pressure and heart
rate drop concomitantly (Chatfield and Lyman, 1950; Lyman and
O’Brien, 1961; Horwitz et al., 2013). This phenomenon is
indicative of dramatic changes to autonomic processes designed
to compensate for blood pressure fluctuations with adjustments to
heart rate (Zeng et al., 2018). Significant insights have been made
into the molecular mechanisms protecting hibernators from
ischemia, reperfusion and hypoxia (Dave et al., 2012), but
considerably less is known about how the nervous system permits
these conditions in the first place.

Cardiovascular function

The autonomic nervous system (ANS) regulates blood pressure and
heart rate to maintain precise control over cardiovascular function
(Boron and Boulpaep, 2016). In the case of a drop in blood pressure,
mechanosensitive baroreceptor neurons sense a decrease in arterial
stretch, resulting in a lower firing frequency. These neurons project
via the glossopharyngeal nerve to the brainstem. A reduction in
firing rate indirectly engages an increase in sympathetic tone.
Sympathetic efferents deliver norepinephrine to the cardiovascular
system, promoting vasoconstriction, tachycardia and increased
contractility of cardiac muscle, and resulting in a near-instantaneous
elevation in blood pressure. Parasympathetic efferents, which rely
on acetylcholine to slow cardiovascular function, are concurrently
inhibited (Boron and Boulpaep, 2016).

Fig. 3. Thermoregulatory responses to cold. Hibernators
express cold-insensitive orthologs of TRPM8 in dorsal root ganglion
(DRG) neurons and CNGAZ3 in preoptic area (POA) hypothalamic
neurons. Additionally, there are fewer cold-sensitive neurons in the
POA of hibernators versus non-hibernators. Thus, DRG and POA
neurons from hibernators cannot respond as strongly to cold
exposure. Neuronal response to cold is represented in light blue;
insensitivity to cold in black.

Preoptic area
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In stark contrast to non-hibernators, animals entering torpor
exhibit a simultaneous, precipitous drop in heart rate and blood
pressure that precedes the decrease in body temperature (Chatfield
and Lyman, 1950; Horwitz et al., 2013; Lyman and O’Brien, 1961).
In Gould’s long-eared bats, heart rate and metabolic rate are
positively correlated in daily torpor, but in a manner that is distinct
from their euthermic conspecifics (Currie et al., 2014). This finding
supports the notion that the cardiovascular system behaves
differently during periods of heterothermy. Torpor continues for
days or weeks with remarkably subdued cardiac function, indicating
that the ANS is permissive of this state. The baroreceptor reflex is
almost completely suppressed in torpid Syrian hamsters and
remains so until late into the ensuing IBA (Horwitz et al., 2013).
However, during entry into torpor, the sensitivity of the
baroreceptor reflex remains high, suggesting that it plays an active
role in the initiation process, perhaps by adjusting the set point for
BP (Horwitz et al., 2013). The mechanisms underlying changes to
the baroreceptor reflex in hibernation are not known. One possibility
is the alteration of baroreceptor sensitivity, e.g. via changes in the
function of Piezo1 and Piezo2, mechanically gated ion channels that
can detect arterial stretch (Huo et al., 2021; Min et al., 2019; Zeng
et al.,, 2018). Another is the alteration in baroreceptor signaling.
Baroreceptor neurons in the carotid artery synapse onto ‘second-
order’ neurons residing in the nucleus of the solitary tract (NTS)
(Sekizawa et al., 2009) (Fig. 2). One group reported that NTS
neurons exhibited different electrophysiological properties in
euthermic versus torpid Syrian hamsters (Sekizawa et al., 2013).
Although neurons from both states had similar resting membrane
potentials, NMDA-induced currents were smaller in torpid neurons
at membrane voltages lower than —30 mV. Furthermore, NMDA
receptor-independent inputs from first-order baroreceptor neurons
from hibernating hamsters resulted in excitatory postsynaptic
currents (EPSCs) that decayed more quickly when compared with
EPSCs in neurons from euthermic hamsters. These changes suggest
a difference in signaling between baroreceptors and second-order
neurons in NTS across the hibernation cycle.

The baroreceptor reflex engages the parasympathetic (PSNS) and
sympathetic nervous (SNS) systems to maintain bidirectional
control over heart rate, and there is pharmacological evidence that
both systems may be greatly altered during hibernation. PSNS
blockade with veratramine, atropine or via vagotomy does not
trigger the expected increase in heart rate in torpid thirteen-lined tree
squirrels, indicating that the PSNS is almost completely suppressed
(Lyman and O’Brien, 1963; Milsom et al., 1999). Supporting this,
the SNS agonist norepinephrine elicits hypertension and
compensatory bradycardia in active ground squirrels, whereas the
same treatment during torpor paradoxically triggers tachycardia
(Lyman and O’Brien, 1961). Since the PSNS is responsible for
slowing the heart rate, this result serves as indirect evidence of its
suppression while the SN'S remains partly intact. However, although
torpid ground squirrels are still responsive to SNS antagonists in a 3-
adrenergic receptor-dependent manner, SNS activity is likely to be
greatly suppressed compared with levels in an active animal because
heart rate and blood pressure are so low (Milsom et al., 2001).

Pulmonary function

The respiratory system serves to maintain the appropriate levels of
blood oxygenation and blood acidity. Deviations from these set
points are sensed by peripheral chemoreceptors, which fire action
potentials in response to hypoxia, hypercarbia and low pH (Boron
and Boulpaep, 2016). This information is conveyed by several cranial
nerves to respiratory neurons in the medulla oblongata, including

neurons of the Botzinger and pre-Bétzinger complexes, and rostral
division of the ventral respiratory group (Fig. 2). There, a sensory
subpopulation receives input from the peripheral chemoreceptors and
projects to premotor and motor populations, which coordinate an
appropriate breathing response (Boron and Boulpaep, 2016). Of note,
a specialized set of premotor neurons is also involved in the
modulation of arousal states in mice (Yackle et al., 2017).

Within torpor, hibernators may breathe as infrequently as once
per minute, suggesting that the respiratory system is radically altered
(McArthur and Milsom, 1991). In golden-mantled ground squirrels,
this is in part a passive consequence accompanying the reduction in
respiratory drive, since metabolic rate is suppressed and blood pH
becomes slightly elevated in several species (Kim and Milsom,
2019), but evidence suggests that the neural control of respiratory
rhythm is also actively modulated. Many hibernators exhibit a
pattern of episodic breathing characterized by clusters of fast, evenly
spaced breaths interspersed with prolonged apneas (McArthur and
Milsom, 1991; Milsom et al., 2001). This is in stark contrast to
euthermic mammals, in which respiratory thythm remains constant.
Whereas euthermic mammals usually alter breath volume and
duration to adjust blood oxygenation and pH, torpid golden-mantled
ground squirrels instead adjust breath frequency and apnea duration
(Milsom et al., 2001).

Neither the physiological significance nor the neural mechanisms
underlying the different breathing patterns are known, but there are
some clues. One study revealed that cooling below 4°C restored
evenly spaced breathing in torpid golden-mantled ground squirrels
(Milsom et al., 1997). The authors posit that the disappearance of
apneas and clustered high-frequency breaths is due to the removal of
inhibitory and excitatory inputs, respectively, leaving only the basic
pattern generated by respiratory neurons. Independently, neither
pharmacological blockade of NMDA receptors nor vagotomy
eliminated episodic breathing. However, combining both approaches
led to evenly spaced breaths and rapid emergence from torpor (Milsom
et al., 1997). Thus, it is possible that some combination of sensory
input from the vagus nerve and glutamatergic input to respiratory
neurons is required for the unusual rhythm observed in torpor. Recent
work has revealed that changes in the expression of GABA 4 receptor
subunits across the hibernation cycle produce functional differences in
respiratory neurons, hinting at the presence of other molecular
mechanisms (Hengen et al., 2009, 2011).

Neuromodulation in hibernation

We have discussed how hibernation is facilitated and reinforced by
significant alterations to brainstem and hypothalamus function. The
process by which these changes come about is not known, but
evidence supports the involvement of several neuromodulators,
including adenosine, endorphins, histamine, thyroid hormone,
endocannabinoids and glutamate (Beckman et al., 1981; Frare
et al., 2021; Jinka et al., 2012, 2011; Mulawa et al., 2018; Sallmen
et al., 1999). By exploring the complex interactions between
neuromodulatory systems in hibernation, the field of hibernation
research may approach its major goal of determining whether it is
possible to induce synthetic torpor in non-hibernators.

Adenosine

Adenosine is known to be important for the neural control of sleep,
and recent work suggests that it may have similar significance for
the induction and maintenance of hibernation (Silvani et al., 2018).
As an essential component of the ATP pathway, this molecule may
serve as a readout of metabolic state (Tupone et al., 2013). In the
context of sleep, adenosine accumulates in the basal forebrain
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throughout the day, activating neurons in the ventrolateral preoptic
area of the hypothalamus (VLPO), which in turn inhibit subcortical
neurotransmission associated with waking behavior (Drew et al.,
2017; Saper et al., 2010). Although it is not known whether a
similar accumulation of adenosine occurs circannually in obligate
hibernators, there is evidence that this neuromodulator is involved in
torpor entry and maintenance. Intracerebroventricular administration
of'an adenosine A1 receptor (A1 AR) antagonist prevents torpor entry
in AGS and induces emergence from hibernation in Syrian hamsters
(Jinka et al., 2011; Tamura et al., 2005). Furthermore, in AGS, the
A1AR agonist N°-cyclohexyladenosine (CHA) promotes torpor
entry (Jinka et al., 2011). The effect is only apparent in the winter,
suggesting that other seasonal changes are required to sensitize the
brain to adenosine.

In the rat, which does not hibernate, intracerebroventricular
CHA delivery in combination with cooling of environmental
temperature significantly lowers body temperature, heart rate and
electroencephalogram amplitude, inhibits thermogenesis and can
also induce a state of thermoregulatory inversion mentioned above
(see ‘Thermogenesis’ section; Tupone et al., 2013, 2017). The
activation of A1 AR™ neurons in the brainstem nucleus of the solitary
tract (NTS) is sufficient to induce this torpor-like state. This
treatment increases blood pressure and parasympathetic tone
(Tupone et al., 2013), suggesting that it does not recapitulate
every feature of hibernation (see ‘Cardiovascular function” section).
Nonetheless, this work highlights AIAR" NTS neurons as
intriguing candidates to study in hibernators. It is also important
to note that other studies in non-hibernators have found that CHA-
induced hypothermia may occur independently of central A1AR
activation (Province et al., 2020). This discrepancy underscores the
need for further investigation of adenosinergic signaling in
hypothermic states, including hibernation.

Endorphins

Evidence suggests that hibernation is promoted by the action of
endogenous opioids, known as endorphins. These neuropeptides are
perhaps most famous for their role in masking pain following
strenuous exercise, but they have been implicated in a wide array of
physiological processes. Their neuromodulatory effect is enacted
through opioid receptors distributed widely throughout the brain
(Bourhim et al., 1997). The activation of mu, kappa and delta opioid
receptors have been associated with changes in appetite, thirst, body
temperature and physical activity similar to those seen across the
hibernation cycle (Bodnar, 2020).

High concentrations of endorphins have been detected in the
brains of hibernators during the winter (Cui et al., 1996; Kramarova
et al., 1983). Additionally, the administration of opioid receptor
antagonists, including naloxone, is known to interfere with
hibernation maintenance in several species (Beckman and Llados-
Eckman, 1985; Kromer, 1980; Margules et al., 1979; Tamura et al.,
2005). The activation of opioid receptors is known to elicit effects
often associated with hibernation, such as analgesia, hypothermia,
bradycardia and slow breathing rate (Ban et al., 2020; Bodnar, 2020;
Cintron-Colon et al., 2019). It is thus tempting to speculate that
endorphinergic signaling is required for hibernation in several
species. However, the field has yet to establish a connection between
the molecular actions of endorphins with the neurophysiological
changes that occur in hibernation.

Conclusion
In the past two centuries, researchers have made great progress
towards understanding the phenomenon of hibernation. Accumulated

evidence strongly suggests that the hypothalamus and brainstem play
an essential role in the process by adjusting homeostatic set points,
and this knowledge highlights several exciting research directions.
Modern neuroscience tools will allow us to clearly define the neural
underpinnings of the hibernation phenotype, drawing us nearer to
unlocking these mechanisms in non-hibernators. Opto- and
chemogenetic manipulations, as well as in vivo calcium imaging
methods, have been successfully applied in non-standard animal
models such as the prairie vole (Amadei et al., 2017; Scribner et al.,
2020) and the zebra finch (Picardo et al., 2016; Singh Alvarado et al.,
2021). Contemporaneous studies have identified discrete
hypothalamic neuronal populations that regulate fasting-induced
torpor in mice (Hrvatin et al., 2020) and a hibernation-like state in rats
(Takahashi et al., 2020). Going forward, it will be essential to
manipulate these discrete neuronal populations, and the other neural
circuits mentioned in this Review, using opto- or chemogenetics in
true hibernators to determine their necessity and sufficiency in this
complex physiological phenomenon. The stage is set for a new era of
research into the neurobiology of hibernation.
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