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Accounting for body mass effects in the estimation of field
metabolic rates from body acceleration
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ABSTRACT
Dynamic body acceleration (DBA), measured through animal-attached
tags, has emerged as a powerful method for estimating field metabolic
rates of free-ranging individuals. Following respirometry to calibrate
oxygen consumption rate (ṀO2) with DBA under controlled conditions,
predictive models can be applied to DBA data collected from free-
ranging individuals. However, laboratory calibrations are generally
performed on a relatively narrow size range of animals, which may
introduce biases if predictive models are applied to differently sized
individuals in the field. Here, we tested the mass dependence of the
ṀO2–DBA relationship to develop an experimental framework for the
estimation of field metabolic rates when organisms differ in size. We
performed respirometry experiments with individuals spanning one
order of magnitude in body mass (1.74–17.15 kg) and used a two-
stage modelling process to assess the intraspecific scale dependence
of the ṀO2

–DBA relationship and incorporate such dependencies into
the coefficients of ṀO2

predictive models. The final predictive model
showed scale dependence; the slope of the ṀO2

–DBA relationship was
strongly allometric (M1.55), whereas the intercept term scaled closer to
isometry (M1.08). Using bootstrapping and simulations, we evaluated
the performance of this coefficient-corrected model against commonly
used methods of accounting for mass effects on the ṀO2

–DBA
relationship and found the lowest error and bias in the coefficient-
corrected approach. The strong scale dependence of the ṀO2

–DBA
relationship indicates that caution must be exercised when models
developed using one size class are applied to individuals of different
sizes.

KEY WORDS: Lemon shark, Negaprion brevirostris, Oxygen
consumption rate, Biologging, Ecophysiology, Elasmobranch,
Respirometry

INTRODUCTION
Estimating the metabolic rates of animals in the laboratory is a
well-established practice using either direct or indirect calorimetry;

however, estimating field metabolic rate (FMR) is more
challenging. Commonly used methods to estimate FMR include
measuring CO2 production via doubly labelled water (DLW;
Speakman, 1997), and measuring heart rate ( fH) or dynamic body
acceleration (DBA) as a proxy for oxygen consumption rate (ṀO2

).
Of these, the DBA technique has come to the fore because of its wide
taxonomic applicability, high temporal resolution (in contrast to
DLW; Butler et al., 2004) and the logistical simplicity of attaching
acceleration data-loggers, as opposed to the invasive surgery required
for implantation of heart-rate loggers (Green et al., 2009). Of course,
the DBA technique does have its own limitations, such as difficulties
measuring the effects of digestion on energy use (reviewed inWilson
et al., 2020; but see Gleiss et al., 2011). Nonetheless, before using
DBA to predict FMR, laboratory calibrations are necessary to
establish predictive models that relate DBA to ṀO2

(Gleiss et al.,
2011;Wilson et al., 2006). Such calibrations have been conducted for
numerous vertebrate and invertebrate species and show that a linear
relationship between ṀO2

and DBA holds across all taxa, where the
intercept constitutes the baseline (i.e. basal or standard)metabolic rate
(BMR) and the slope indicates how ṀO2

changes with activity
(Wilson et al., 2020). After appropriate calibrations, predictive
models can then be applied to field-measured DBA data to predict the
FMR of free-ranging animals.

To discern the utility of any given FMR estimation method, it is
necessary to test its sensitivity to factors that are expected to influence
ṀO2

and to incorporate appropriate corrections into estimations. For
instance, temperature and body size are considered themost important
factors that influence metabolism, among other factors (e.g. age,
sexual maturity, specific dynamic action), with both displaying
positive exponential effects on ṀO2

in ectotherms (Clarke and
Johnston, 1999; Gillooly et al., 2001). As temperature is easily
manipulated under laboratory conditions, the temperature dependence
of the ṀO2

–DBA relationship has been tested by numerous studies. As
such, it is known that the intercept of the ṀO2

–DBA relationship
changes with temperature according to a van’t Hoff or Arrhenius
relationship, while the slope is unaffected (e.g. Lear et al., 2017;
Lyons et al., 2013). Accordingly, temperature variation can be
accounted for by incorporating a temperature-dependent intercept
term into predictive ṀO2

models. Although the level of temperature
dependence varies between species, this type of correction has proven
to be effective across ectothermic taxa, including fish (Lear et al.,
2017, 2020; Wright et al., 2014), reptiles (Enstipp et al., 2011),
crustaceans (Lyons et al., 2013) and molluscs (Robson et al., 2016).

Unlike temperature, it is unknown how body size affects the
ṀO2

–DBA relationship, owing to ethical and logistical difficulties
associated with conducting respirometry experiments on large
individuals (Whitney et al., 2018). Consequently, calibration
experiments have often been limited to individuals spanning
relatively narrow ranges in body sizes, which do not fully
represent the size range of individuals likely to be encounteredReceived 24 July 2020; Accepted 21 January 2021
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when conducting tagging studies in the field (e.g. Lear et al., 2020;
Watanabe et al., 2019). However, it is likely important that body
mass effects are incorporated into estimations of ṀO2

, given the
well-established allometric scaling patterns of BMR (da Silva et al.,
2006; Kleiber, 1932). Defined by a power law:

BMR ¼ aMb; ð1Þ

the BMR of organisms increases positively with body mass (M ) at
a rate defined by a species-specific scaling coefficient (a) and
exponent (b) (White et al., 2007). Thus, given that the intercept of
the ṀO2

–DBA relationship is representative of BMR, it is expected
that the ṀO2

–DBA intercept should scale allometrically with body
mass.
While there is a reasonably well-defined hypothesis for the

allometry of BMR, the kinematics that define animal movement and
acceleration, and therefore govern the slope of the ṀO2

–DBA
relationship, adhere to a different set of allometric laws. For
example, physiological forces that govern variations in BMR could
relate to factors such as fractal oxygen-transport networks or body
surface area to volume ratios, which control the supply of metabolic
substrates, and scale at allometric rates near 0.75 (West et al., 1997)
and 0.67 (Kozłowski et al., 2003; West and Brown, 2005),
respectively. In contrast, DBA is a product of body kinematics,
such as stride frequency and amplitude, which scale at allometric
rates of approximately −0.33 (Bale et al., 2014) and 0.33 (Videler,
1993), respectively. Furthermore, the fact that active metabolism
(i.e. routine and maximummetabolic rate) has been found to scale at
a different rate than BMR in all taxa (Bishop, 1999; Killen et al.,
2007) suggests that the slope of the ṀO2

–DBA relationship, which is
representative of energy expenditure due to activity, follows a
fundamentally different allometric relationship than BMR.
Nonetheless, current methods account for the effects of body
mass by applying either isometric (Bouyoucos et al., 2017;
O2 kg−1, e.g. Payne et al., 2011) or allometric (O2 kg−b, e.g.
Enstipp et al., 2011; Lear et al., 2020) mass corrections to
ṀO2

estimates, where b is a species-specific BMR scaling
exponent. Alternatively, some studies have accounted for effects
of mass by simply including body size as a continuous covariate
(with no interactions) when modelling the influence of DBA on
ṀO2

(e.g. Brownscombe et al., 2017). The former approach assumes
an identical ṀO2

–DBA slope and intercept mass scaling, whereas the
latter approach assumes no effect of mass on the ṀO2

–DBA slope.
However, if the ṀO2

–DBA slope was to scale allometrically at a
different rate than BMR, it is likely that these methods introduce
significant bias into ṀO2

estimates.
The present study set out to test the effect of mass on both the

slope and intercept of the intraspecific ṀO2
–DBA relationship and

to assess the accuracy of different approaches for incorporating mass
effects into ṀO2

predictive models for a species. To do this, we
conducted respirometry experiments on individuals spanning one
order of magnitude in body mass (1.74–17.15 kg), using lemon
sharks (Negaprion brevirostris) as a model species. We then used a
two-stage modelling process to test for independent mass scaling of
the intercept and slope of the ṀO2

–DBA relationship. We
incorporated the established mass-scaling effects into the
coefficients of ṀO2

predictive models and compared this model
against other commonly usedmodelling approaches through a series
of simulations that allowed assessment of the biases and error
associated with each model.

MATERIALS AND METHODS
Capture and maintenance
Respirometry experiments were conducted on two groups of lemon
sharks [Negaprion brevirostris (Poey 1868)]. The first group
consisted of individuals <3 kg in mass [n=16, 69.5–86.0 cm total
length (TL)], captured off Florida, USA, and housed atMoteMarine
Laboratory (MML) in Sarasota, FL, USA, for the duration of
experiments. Further capture and maintenance details for MML
individuals are provided in Lear et al. (2017). The second group
consisted of individuals >3 kg in mass (n=5, 107.0–154.0 cm TL),
captured and housed in semi-captive pens off South Bimini,
Bahamas, near Bimini Biological Field Station (BBFS), where they
were subjected to natural environmental conditions (e.g.
temperature, light and salinity). All sharks were fasted for at least
48 h prior to experiments to ensure a post-absorptive state and allow
recovery from capture stress.

Research was conducted under permits from the Bahamas
Department of Marine Resources (MA&MR/FIS/178), Murdoch
University Animal Ethics (RW3119/19) and Mote Marine Laboratory
Institutional Animal Care and Use Committee (09-09-NW1).

Respirometry trial protocol
For MML sharks, respirometry was conducted between 2015 and
2016 as part of a separate study (Lear et al., 2017). A closed,
annular, static respirometry system was constructed from a modified
2.45 m diameter fibreglass holding tank, as described in Whitney
et al. (2016). Sharks were acclimated to the system for 12 h prior to
trials. Trials began near 100% air saturation and were run until
dissolved oxygen (DO) levels reached 80% air saturation. DO (% air
saturation and mg l−1) and water temperature (°C) were measured by
a handheld multiparameter meter (Pro Plus, Yellow Springs
Instruments, Yellow Springs, OH, USA) and recorded by
researchers every 5 min throughout trials. To assess background
respiration, a blank respirometer was measured for 4 h following
each set of trials. For full details of the MML trial protocol, see Lear
et al. (2017).

BBFS trials were conducted using a field-based respirometry
system, similar to Byrnes et al. (2020). Two closed, annular, static
respirometry systems were constructed from modified polyvinyl-
lined metal-frame pools (Bestway Corp., London, UK), which were
erected on a levelled section of beach on South Bimini, Bahamas. A
2.44 m diameter pool was used for sharks <110 cm TL, whereas a
3.66 m diameter pool was used for sharks >110 cm TL. Sharks were
hand-netted from pens, measured and weighed, and transferred into
the system 8 h prior to trials to allow them to acclimate. Trials began
with air saturation between 80 and 110% andwere run until saturation
decreased by 20 percentage points or reached 70% saturation,
whichever occurred first. Throughout trials, DO (% air saturation and
mg l−1) and water temperature (°C) were measured and recorded by a
multiparameter meter (HI98196, Hanna Instruments, RI, USA) every
30 s. To assess background respiration, a blank respirometer was
measured for at least 90 min immediately following the final trial for
each shark.

Throughout all MML and BBFS trials, sharks were equipped
with a Cefas G6a+ acceleration data logger (Cefas Inc., Lowestoft,
UK), mounted through the base of the first dorsal fin as per Lear
et al. (2017), which continuously recorded triaxial acceleration at
25 Hz (range: 2 g, resolution: 12-bit).

Body acceleration and oxygen consumption rate estimation
Vectorial dynamic body acceleration (VeDBA), a measurement of
physical activity, was calculated from acceleration data recorded
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during respirometry. VeDBAwas chosen as the acceleration metric
for modelling instead of the commonly used overall dynamic body
acceleration to allow predictive models to be applied to data
collected by acceleration transmitters (see www.innovasea.com/
fish-tacking/ for various applications), which process acceleration
onboard as VeDBA. Additionally, VeDBA produces more robust
estimations of activity when tag orientation may differ between
applications, such as external mounting of loggers versus internal
implantation of transmitters (Qasem et al., 2012).
To match the sampling frequency of acceleration transmitters,

which record long-term field data at 5 Hz, raw acceleration datawere
down-sampled by decimation from 25 to 5 Hz, which has been
shown to be a sufficient sampling frequency for estimating oxygen
consumption rates of fishes (Brownscombe et al., 2018). As per the
algorithm used by acceleration transmitters (e.g. Vemco V13AP,
Innovasea Systems Inc., Nova Scotia, Canada), gravitational
acceleration was estimated by calculating a 4 s running mean.
Gravitational acceleration was then subtracted from the raw
acceleration, for each axis, to derive DBA. VeDBA was calculated
as the vectorial sum of these DBA derivations:

VeDBA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAXt

� GXt
Þ2 þ ðAYt � GYt Þ2 þ ðAZt � GZt Þ2

q
; ð2Þ

where AXt
, AYt

and AZt
are the raw acceleration values and GXt

,
GYt

and GZt
are the gravitational acceleration values observed for

each axis at time t. Acceleration data were processed using Igor Pro
(Version 7.08; Wavemetrics, Lake Oswego, OR, USA) and the
Ethographer extension (Sakamoto et al., 2009).
Dynamic acceleration data were visually examined to identify

intervals where sharks maintained consistent resting (i.e. inactive)
or swimming (i.e. active) behaviour for 15–20 min during trials.
Higher sampling frequencies of DO used during BBFS than MML
trials allowed for shorter calibration intervals to be used for BBFS
trials. Therefore, intervals of at least 20 min were used for MML
sharks (Lear et al., 2017), whereas intervals of 15 min were used for
BBFS sharks to increase the number of individual estimates of
oxygen consumption rate for BBFS trials. Mean water temperature,
VeDBA and whole-animal oxygen consumption rate (ṀO2whole;
mg O2 h−1) were calculated for each interval. ṀO2whole was
calculated using the following equation from measurements of
DO within respirometers:

_MO2whole ¼ ðRtotal � Rbackground þ dÞ � 60 � Vr �M

p

� �
; ð3Þ

where Rtotal is the rate of decline of DO during the calibration
interval (mg O2 l−1 min−1; estimated using linear regression),
Rbackground is the rate of background respiration (mg O2 l

−1 min−1),
d is the diffusion rate of oxygen into the system
(0.0002 mg O2

−1 l−1 min−1; Byrnes et al., 2020), Vr is the
respirometer volume (l), M is the mass of the shark (kg) and p is
the density of the shark (kg l−1). All sharks were assumed to have a
density of 1.0556 kg l−1, the average density reported for adult
N. brevirostris in Florida (Baldridge, 1970).
To remove variation in oxygen consumption rates due to

temperature, all ṀO2whole estimations were temperature corrected
to 29.5°C, the mean water temperature of MML trials, using:

_MO2whole;29:5 ¼ _MO2whole;a � Qð29:5�TaÞ=10
10 ; ð4Þ

where ṀO2whole,29.5 is the ṀO2whole calculated at 29.5°C, ṀO2whole,a

is the measured ṀO2whole, Ta is the temperature at which ṀO2whole,a

was measured, and Q10 is the temperature scaling factor for lemon

sharks. A Q10 of 2.96 was used to correct ṀO2whole,a during inactive
intervals, and a Q10 of 1.69 was used to correct ṀO2whole,a during
active intervals (Lear et al., 2017).

Pre-modelling data processing
Prior to building predictive models, VeDBA estimates were corrected
for measurement error (i.e. acceleration irrespective of body
movement), to ensure that the model intercept represented SMR of
sharks. As previously mentioned, the intercept of the ṀO2

–DBA
relationship represents zero movement (i.e. maintenance metabolic
rate; Wilson et al., 2020); however, owing to factors causing
measurement error (e.g. sensor noise, water movement; Gleiss et al.,
2010; Whitney et al., 2010), ṀO2

observations during rest tend to be
greater than 0g. To account for this error, many studies have
interpolated to zero movement to estimate SMR (e.g. Lear et al.,
2017; Wright et al., 2014); however, such an interpolation likely
underestimates SMR. Therefore, to account for measurement error, we
rescaled all observations by subtracting the overall mean VeDBA of
inactive intervals. Note that while baselining VeDBA in this manner
may result in some minorly negative values, this correction was
necessary to ensure the intercept was representative of SMR of sharks.

Owing to sharks frequently switching between inactive and active
behaviours in MML trials, some sharks only provided one to two
ṀO2whole observations, precluding the ability to produce a reliable
linear fit for each individual body mass (Table 1). To achieve a
necessary number of ṀO2whole estimations for regressions,
MML sharks were grouped into 0.4 kg mass classes (1.60–1.9 _9,
2.00–2.3 _9, 2.40–2.7 _9 and 2.80–3.1 _9 kg). The midrange of a class
was used as the mass for all sharks within the class during
modelling. The BBFS sharks, in contrast, showed a greater range of
activity within individual trials and had a larger range in body size,
and were therefore kept as individuals rather than grouped into mass
classes. We note that this grouping of individuals into mass classes
precluded inclusion of ID as a random effect in models, which may
have resulted in some degree of pseudoreplication in models, where
there are multiple data points per shark.

Testing effect of mass on ṀO2–DBA relationship
To determine the effect of mass on the intercept and slope of the
ṀO2

–DBA relationship, we conducted a two-stage modelling
approach. First, we estimated the relationship between ṀO2whole

and VeDBA for each mass class of sharks (Fig. 1), described by the
linear regression equation:

_MO2whole ¼ bi þ bsðVeDBAÞ; ð5Þ

where βi represents the intercept coefficient of the regression and βs
represents the slope coefficient of the regression. To do this, we used
a linear mixed-effects model (lme4 package; https://CRAN.
R-project.org/package=lme4), which included VeDBA, mass
class, and an interaction between VeDBA and mass class as
potential covariates to explain variation in ṀO2whole. Importantly,
mass class was included as a categorical variable, which resulted in
the mixed-effects model fitting a separate regression for each mass
class. The MuMIn package (https://CRAN.R-project.org/
package=MuMIn) was used to build models using every
combination of explanatory variables and model fit was compared
based on Akaike’s information criterion (AIC), with decreases in
AIC ≥2 considered as improvements in fit (Zuur et al., 2009).
Models were fitted with a Gaussian error structure, and model
assumptions were checked based on visual examination of residual
plots (not shown).
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Second, the effects of mass on the intercept (βi) and slope (βs) of
these regressions were examined, under the assumption that the
intercept and slope scale allometrically according to a power
function, similar to Eqn 1. Given that logarithmic linear functions
are the linear equivalent of power functions, we examined the effect
of mass on the intercept and slope of regressions using general linear
models, following the form of natural logarithmic functions:

lnðbiÞ ¼ lnðciÞ þ di � lnðMÞ; ð6Þ
lnðbsÞ ¼ lnðcsÞ þ ds � lnðMÞ; ð7Þ

where M is the mass (kg), ci and di are, respectively, the intercept
and slope of the natural logarithm function describing the effect of
mass on βi, and cs and ds are, respectively, the intercept and slope of
the natural logarithm function describing the effect of mass on βs
(Fig. 1). For this analysis, a separate βi and βs were extracted from
the linear mixed-effects model (Eqn 5) for each mass class, and used
to estimate ci, di, cs and ds. To compare the effect of mass on βi and
βs, we estimated 95% confidence intervals for di and ds using the
‘confint’ function in R. If confidence intervals did not overlap, the
effects of mass on di and ds were considered to be statistically
different (Schenker and Gentleman, 2001).
To establish a single ṀO2whole predictive equation that could be

applied across all mass classes, these natural logarithm functions
were then exponentiated to allometric power functions:

bi ¼ ciM
di ; ð8Þ

bs ¼ csM
ds ; ð9Þ

describing the effect of mass on the ṀO2whole–VeDBA regression
intercept (Eqn 8) and slope (Eqn 9). Eqns 8 and 9 were then

substituted into Eqn 4, yielding a final predictive equation:

_MO2whole ¼ ciM
di þ csM

dsðVeDBAÞ: ð10Þ

As this equation incorporates mass effects into both the intercept
and slope regression coefficients, it will hereafter be referred to as
the ‘coefficient-corrected approach’.

Other modelling approaches
To compare the accuracy of the coefficient-corrected approach, with
other approaches used throughout the literature, we fit additional
predictive equations based on methods commonly used throughout
literature (see ‘Response-corrected approach’ and ‘Intercept-
corrected approach’ subsections below). As previously mentioned,
two other modelling approaches have been used to incorporate mass
effects into ṀO2

predictive equations. The more commonly applied
approach uses mass-specific ṀO2

(mg O2 kg
−b h−1) when modelling

the ṀO2
–DBA relationship, rather than modelling ṀO2whole

(mg O2 h
−1) (e.g. Enstipp et al., 2011; Lear et al., 2017). By using

mass-specific ṀO2
, these methods incorporate mass effects into the

response variable of predictive equations, as opposed to directly
incorporating mass effects into the coefficients of predictive models.
Accordingly, this approach will henceforth be referred to as
‘response-corrected approach’. The second modelling approach
directly models ṀO2whole as a function of body mass by including
mass as a covariate within model formulations. However, unlike the
coefficient-corrected approach here, previous applications have not
considered interactive effects between mass and other covariates (e.g.
Brownscombe et al., 2017), and therefore only incorporated an effect
of mass on the intercept of the ṀO2

–DBA regression. Accordingly,
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this approach will henceforth be referred to as the ‘intercept-corrected
approach’.

Response-corrected approach
Two models were fitted using the response-corrected approach. For
the first model, ṀO2whole estimates were isometrically corrected by
dividing ṀO2whole by animal mass in kg (M ), resulting in mass-
specific ṀO2

in mg O2 kg
−1 h−1. For the second model, ṀO2whole

estimates were allometrically corrected by dividing ṀO2whole by
animal mass in kg raised to an allometric BMR scaling exponent
(Mb), resulting in mass-specific ṀO2

in mg O2 kg
−b h−1. For this

study, an allometric exponent of 0.86 was used, a value widely
regarded as the universal elasmobranch SMR mass-scaling
exponent (Sims, 2000). Models were fitted using the glm function
in R, assuming a Gaussian error structure, with mass class included
as a continuous covariate. Mass was not considered as a categorical
variable for these models, as these methods are based on the most
common modelling approaches used in calibrations of DBA data for
predicting FMR of animals and were used for comparison with the
coefficient-corrected approach. These two response-corrected
models will hereafter be referred to as the ‘isometric response-
corrected model’ and the ‘allometric response-corrected model’.
To allow comparison with models that estimate ṀO2whole, mass-

specific estimates from the isometric response-corrected model and
allometric response-corrected model were corrected post hoc to
ṀO2whole by multiplying estimates by M and M0.86, respectively.

Intercept-corrected approach
A single model was fitted using the intercept-corrected approach. To
do so, we used a linear mixed-effects model (lme4 package), which
included VeDBA andmass class as continuous covariates to explain
variation in ṀO2whole. It is important to note that treating mass as a
continuous covariate assumes mass has an isometric effect on the
intercept of the modelling relationship, which may not accurately
represent the species’ specific BMR allometric scaling rate.
Therefore, treating mass class as a categorical variable may
produce a more accurate estimation of ṀO2whole. However,
treatment of mass as a categorical variable was not considered
here because this approach was strictly based on the approaches of
previous calibration studies and was used only for comparison with
the coefficient-corrected approach.

Model validation and error comparison
We used a bootstrap validation technique to estimate prediction
error of each modelling approach. In this technique, we
bootstrapped 1000 datasets of VeDBA and ṀO2whole observations
(n=124 per dataset) from all available respirometry data, and fitted
new predictive models for each data set. A coefficient-corrected
model, an isometric response-corrected model, an allometric
response-corrected model and an intercept-corrected model were
fitted to each bootstrapped dataset, as per the modelling processes
above, and each model was used to predict ṀO2whole for each
observation of VeDBA in the corresponding dataset. The root mean
square (RMS):

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ð _MO2whole;observed � _MO2whole;predictedÞ

2

Nobs

s
; ð11Þ

and coefficient of variation (COV):

COV ¼ RMS� 100
_MO2whole;observed

; ð12Þ

were calculated for each bootstrapped model and averaged across all
1000 bootstrapped models to estimate the prediction error of each
modelling approach. In Eqns 11 and 12, _MO2whole;observed and
_MO2whole;predicted are the observed and predicted _MO2whole values, and
Nobs is the number of observations. In addition, the marginal R2 was
extracted from each bootstrapped model and the overall mean was
used as another quantification of model performance.

To assess prediction error in more detail, we examined how
prediction error changed as a function of body mass and activity
level by repeatedly simulating a day in the life of 100 sharks per
mass class, similar to Green et al. (2009). A sample size of 100
sharks per mass class was used to reduce likelihood of type II errors.
In these simulations, bootstrapping was used to simulate an
observation every 15 min over a 24-h period for each shark,
resulting in 96 observations per shark. Respirometry data were split
into two resampling pools, separating inactive (intervals where
sharks rested) and active (i.e. intervals where sharks swam) data.
Simulated observations were drawn at random with replacement
(i.e. bootstrapped) from these resampling data pools. Inactive
simulated observations were created by bootstrapping from the
inactive data pool, whereas active simulated observations were
created by bootstrapping from the active data pool. ṀO2whole was
predicted for all simulated observations based on the predictive
equations from each of the modelling approaches, and the mean RMS
(Eqn 11) and mean COV (Eqn 12) of each model were calculated
individually for all body mass classes. This process was repeated for
each shark, varying the amount of time sharks spent active between 0
and 100%, increasing by one percentage point for each successive
iteration. The 12.5 and 14.65 kgmass classes were excluded from the
simulation, as inactive and active data were not both available to
bootstrap simulated datasets for these classes (Table 1).

All statistical analysis was carried out in R v3.6.3 (https://www.
r-project.org/).

RESULTS
Sample size
A total of 43 respirometry trials (mean±s.d.=1.95±0.88 per
individual fish; mean duration=21.14±10.77 min; all means are
presented ±s.d. unless otherwise indicated) were conducted on 21
individuals, ranging in body mass from 1.74 to 17.15 kg
(mean=4.81±4.55 kg; Table 1). Once grouped by mass, a total of
10 individual mass classes were retained (Table 1). From these
trials, 129 ṀO2whole estimations (mean per class=12.90±10.23) were
obtained for calibrations. However, five ṀO2whole observations from
Bimini sharks were deemed as biologically impossible because they
were twice as high as other estimates with similar VeDBA.While it is
unclear what caused such erroneous values, these may have been
associated with short power outages, unnoticed by personnel, causing
insufficient water flow over the DO probe. Nonetheless, these
observations were removed from analysis, leaving 124 observations
(mean per class=12.40±10.21), including 37 inactive (mean per
class=3.70±5.85) and 87 active observations (mean per class=8.70
±8.66) (Table 1). From these 124 observations, ṀO2whole ranged from
286.57 to 6493.68 mg O2 h−1 (Table 1). After correction for
acceleration sensor noise (0.018g; representing a mean 14.7% of
active interval VeDBA), VeDBA ranged from −0.014 to 0.172g
(Fig. 3). Water temperature during calibration intervals ranged from
27.32 to 31.42°C (mean=29.52±0.81°C) (Table 1).

Coefficient-corrected model
There was a strong positive correlation between VeDBA and
ṀO2whole, with both the slope and intercept displaying significant
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allometry (Fig. 3). The final linear model included VeDBA and an
effect of mass class on both the slope and intercept terms (Table 2).
From this model, a total of nine slopes and intercepts were
estimated, which were used to assess the allometry of the ṀO2whole–
VeDBA relationship. The 12.5 kg mass class was excluded from
this scaling assessment because all ṀO2

observations for this class
occurred over a small range of DBAvalues, which resulted in a negative
linear relationship (Fig. S1). The intercept of the ṀO2whole–VeDBA
regressions increased with an allometric exponent of 1.08 (CI=0.88–
1.28, t=12.60, P<0.01, R2=0.96; Fig. 2B), whereas the slope increased
at a significantly steeper rate of 1.55 (CI=1.31–1.78, t=15.71, P<0.01,
R2=0.97; Fig. 2A), yielding a final predictive equation of:

_MO2whole ¼ ð154:51 �M1:08Þ þ ðð433:87 �M1:55Þ � VeDBAÞ; ð13Þ

where M is individual wet body mass in kg.
The final predictive model explained 97.91% of the variance

(marginal R2) in ṀO2whole. Overall, the model tended to overestimate
ṀO2whole, with a mean error (COV) of 19.54% (RMS=329.99 mg
O2 h−1). When only considering active data, the model had lower error
(COV=17.07%, RMS=376.41 mg O2 h

−1) than when only considering
inactive data (COV=31.65%, RMS=78.34 mg O2 h

−1).

Response-corrected models
VeDBA had a significant influence on both isometrically corrected
mass-specific ṀO2

(t=16.01, P<0.001, R2=0.68) and allometrically
corrected mass-specific ṀO2

(t=13.81, P<0.001, R2=0.61). The
resulting predictive equations were:

_MO2
¼ 169:73þ ð1441:37 � VeDBAÞ; ð14Þ

for the isometric response-corrected model and:

_MO2
¼ 197:01þ ð2115:54 � VeDBAÞ; ð15Þ

for the allometric response-corrected model. The isometric
response-corrected model had a mean error of 24.23% (RMS=

589.78 mg O2 h−1), whereas the allometric response-corrected
model had a mean error of 31.77% (RMS=589.78 mg O2 h

−1).

Intercept-corrected model
VeDBA (t=15.345, P<0.001) and mass (t=15.345, P<0.001) had
significant positive influences on ṀO2whole and explained 81.11% of
variance (marginal R2). The resulting predictive equation was:

_MO2
¼ �636:83þ ð5669:43 � VeDBAÞ þ ð357:97 �MÞ; ð16Þ

whereM is individual body mass in kg. Overall, the intercept-corrected
model had a mean error of 22.47% (RMS=461.89 mg O2 h−1).
Notably, the model tended to have substantially greater error for lower
activity levels than higher activity levels across all body sizes (Fig. 3).
When only considering active data, the model had lower error
(COV=16.67%, RMS=461.11 mg O2 h−1) than when only
considering inactive data (COV=85.12%, RMS=464.33 mg O2 h

−1).

Model error comparison
All models predicted similar ṀO2whole for individuals near the
midrange of masses; however, there was greater variation in model
estimates for the larger and smaller masses (Fig. 4). For sharks
smaller than 7.65 kg, the intercept-corrected model produced the
lowest ṀO2whole estimates at lower activity levels; however, this
shifted as activity level increased, with the coefficient-corrected
model producing the lowest estimates when animals were active
more than 35% of the time. In contrast, for sharks larger than
7.65 kg, the intercept-corrected model produced the highest
ṀO2whole estimates across all activity levels and the allometric
response-corrected model produced the lowest ṀO2whole estimates
(Fig. 4, Fig. S2).

Overall, the coefficient-corrected model consistently had the
lowest error across all body sizes and activity levels. The models
with the highest error varied by body mass, with the intercept-
corrected model generally having the highest error for smaller body
sizes and the allometric response-corrected model having the
highest error for larger body sizes (Fig. 4). The simulation revealed
systematic mass biases in the isometric response-corrected model,
the allometric response-corrected model and the intercept-corrected
model. Estimation error of the response-corrected models tended to
increase with increased body mass. In contrast, estimation error of
the intercept-corrected model tended to decrease with body mass
(Fig. 4, Fig. S2). However, no mass-associated bias was present in
the estimates of the coefficient-corrected model (Fig. 4, Fig. S2).
Differences in COV between models were smallest for the middle
mass classes but varied more widely between models as a function
of activity at the lower and higher masses (Fig. 4). At lower masses,
the difference between model COV increased with increased time
spent active, whereas the difference between model COV at larger
masses was relatively consistent (Fig. 4). Overall, model COV
tended to decrease with increased time spent active, particularly in
the coefficient-corrected model (Fig. 4).

DISCUSSION
Despite the prominent influence that body size exerts on many
aspects of animal biomechanics and physiology, no study has
assessed the allometric dependence of the relationship between
ṀO2

and DBA and its effect on the accuracy of ṀO2
predictive

equations. By individually assessing the scaling of the ṀO2whole–
VeDBA slope and intercept, we validated that DBA per unit
metabolism is scale dependent, and this dependency varies from
that of BMR. As such, we found that directly accounting for
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and regressed against the natural log of body mass. Linear regression
equations (slope regression: t=15.7, P<0.01; intercept regression: t=12.60,
P<0.01) and associated correlation coefficient (R2) and slope confidence
intervals (CI) are displayed for each scaling relationship.
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different body-mass scaling effects within model slope and
intercept coefficients produces substantially more accurate
estimates of oxygen consumption rates than other commonly
applied modelling approaches. While all models performed
similarly for individuals near the mean mass of calibrated
animals, more commonly applied intercept-corrected and
response-corrected approaches appeared to have substantial mass-
and activity-associated biases that were not present within the
coefficient-corrected approach. As a result, the coefficient-corrected
approach consistently had the lowest prediction error across all body
sizes (Fig. 4). Additionally, as activity levels of animals increased,
the disparity in estimation error between the coefficient-corrected
and response-corrected models tended to increase, whereas the
disparity in estimation error between coefficient-corrected and
intercept-corrected models tended to decrease. However, the
covariate-corrected approach demonstrated the smallest activity
bias, and again outperformed other modelling approaches across
activity levels.
The differences in estimation error between modelling approaches

could have large implications when calibrated predictive equations
are applied to predict energy expenditure of animals in the wild. For
example, for a 17.15 kg lemon shark that is active 50% of the time,

the difference between the daily energy expenditure estimated by the
isometric response-corrected model and coefficient-corrected model
would be 17,114.83 mg O2 day−1. This difference converts to
232.591 kJ day−1 (Jobling, 1995), approximately one yellow fin
mojarra (Gerres cinereus), the primary prey of juvenile lemon sharks
in Bimini (Pettitt-Wade et al., 2011), or a 25% increase in the daily
energetic requirements. This difference would be proportionally even
larger for smaller body sizes, where the disparity between model
estimation error was greater. As a result, with such improvements
over other modelling approaches for incorporating mass effects into
ṀO2

estimations, we strongly recommend the coefficient-corrected
approach for establishing ṀO2

predictive equations across different
body sizes.

Although the coefficient-corrected approach provided more
robust estimates of energy expenditure than currently used
approaches, several opportunities for improvement remain.
Foremost, although conducted pre hoc in this study, an ideal full
model should incorporate a temperature correction factor in the
intercept term. Additionally, more balanced sampling across
activity levels and mass classes would allow for a mechanistic
examination of error accumulation, which may help to identify and
incorporate further correction factors into models. Of course,
conducting respirometry experiments over a range of body sizes
presents logistical and ethical complexities that may limit sample
size, as was the case in this study. However, in respirometers with
small system to animal volume ratios, which facilitate rapid
respiration measurement response times (Clark et al., 2013),
calibration interval durations could be decreased to facilitate
larger sample sizes per trial. Additionally, when ethically viable,
animals could be left in the respirometer for longer acclimation
periods or more trials, potentially facilitating greater variability in
behaviours as animals become more comfortable with the
system. While more calibration intervals within trials may also
increase variability of sampled activity levels, using forced activity
protocols (e.g. swim tunnels or treadmills) may ensure that
observations are obtained across all activity levels, although it is
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Fig. 4. Simulation showing the effect of different modelling techniques when accounting for body mass in ṀO2whole estimations across a range of
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Table 2. Model selection table for the coefficient-corrected linear
mixed-effects model

Model Covariates d.f. logLik AIC ΔAIC

1 VeDBA×Mass+Mass 21 −847.2 1736.5 0
2 VeDBA+Mass 12 −908.3 1840.5 104.07
3 Mass 11 −932.3 1886.6 150.1
4 VeDBA 3 −1075 2156.9 420.43
5 Intercept 2 −1097 2198.5 462.02

This model was for the first stage of the modelling approach, used to explore
the relationship between ṀO2whole and VeDBA. × indicates an interaction
between terms. Models are ranked based on Akaike’s information criterion
(AIC) values. Degrees of freedom (d.f.) and log-likelihood (logLik) are shown
for each model.
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of note that such protocols may introduce other bias through
alteration of natural gaits in many species (Lear et al., 2019;
Whitney et al., 2018).
As the mechanics and external forces defining the ṀO2

–DBA
relationship depend on numerous factors such as body form
(Alexander, 2005; Bale et al., 2014), locomotory type (Alexander,
2005; Schmidt-Nielsen, 1972) and viscosity of the environmental
medium (Schmidt-Nielsen, 1972; Wieser and Kaufmann, 1998),
ṀO2

–DBA slope and intercept scaling exponents will inevitably
vary between taxa. However, when corrected for body mass, the
ṀO2

–DBA relationship may be similar across geometrically similar
species, potentially allowing for common equations to be
established for estimating energy expenditure from DBA (Gleiss
et al., 2011). In fact, Halsey et al. (2009) andMiwa et al. (2015) both
established common predictive equations for estimating the energy
expenditure across a range of species, although the accuracy of
estimations using these interspecifically derived equations was not
assessed. Nonetheless, the establishment of common ṀO2

predictive
equations suggests that fundamental laws of biomechanics and
physics may constrain the ratio of the ṀO2

–DBA slope to intercept
scaling exponents to universal values. Further calibration
experiments conducted with various taxa will determine the
scatter in intraspecific scaling exponents and may help to identify
such biomechanical and physical laws governing the ṀO2

–DBA
relationship.
In circumstances in which respiration measurements cannot be

acquired from a range of body masses (e.g. facility or animal
availability limitations), and thus response-corrected models or
intercept-corrected models must be extrapolated, the biases of such
models must be carefully considered. Foremost, bias drastically
increased with increasing difference in body mass between the
median mass of individuals in the calibration experiments and
individuals for which respiration rate was being estimated. Thus, to
minimize estimation error, caution must be exercised when
extrapolating equations to animals with substantially different
body masses than those used in calibration experiments.
Additionally, models demonstrated large activity bias, where the
estimation error drastically changed as a function of increased
activity, particularly for smaller body masses. However, the
direction of the bias was opposite between models, where
estimation error of the intercept-corrected model decreased with
increased activity and estimation error of response-corrected models
tended to increase with activity. This activity bias may partially be a
product of the relatively larger spread of ṀO2

and VeDBA
measurements during active calibration intervals compared with
inactive intervals. Using forced activity protocols to ensure more
balanced sampling of different activity levels throughout calibration
experiments would help to elucidate the source of this error.
Nevertheless, this activity level associated bias indicates that as
animals become more active, post hoc corrections based on
isometric or allometric BMR scaling rates introduce increased
error. In contrast, estimation error of the intercept-corrected model
decreased as animals became more active, and estimates for larger
body sizes had similar error as the coefficient-corrected approach at
particularly high (>75%) activity levels. However, the rapid and
nonlinear decrease in estimation error with increased activity could
result in large and unpredictable variation in estimates with small
changes in activity. Thus, it is imperative to independently account
for separate scaling rates of the ṀO2

–DBA slope and intercept when
estimating respiration of highly active species, especially for smaller
body sizes, where a small change in activity may represent a
relatively larger change in overall energy requirements.

We found that isometric mass-specific corrections produced more
accurate estimates than using a universal allometric correction of
M0.86. However, the higher performance of the isometric correction
was likely a product of the BMR scaling rate of lemon sharks in this
study being closer to isometry. In species with lower BMR scaling
exponents, such as mammals (White and Seymour, 2003), it is
likely that a lower nonproportional allometric mass-correction
would perform better. However, the intercept-corrected model,
which included an isometric effect on the intercept only,
outperformed the allometric response-corrected model at lower
body sizes, indicating that additional factors led to the greater
performance of the isometric response-corrected model. The higher
performance of the isometric correction, alternatively, may also be
due to the observed scaling rate of the ṀO2

–DBA slope falling closer
to the isometric exponent than the universal BMR allometric
exponent. Nevertheless, the coefficient-corrected approach
circumnavigates such issues by separately identifying slope and
intercept scaling rates and outperforms commonly applied
response-corrected and intercept-corrected modelling approaches.
Given that we confirmed that DBA per unit oxygen (i.e. regression
slope) scales allometrically at a different rate to that of BMR, where
possible it is essential to use the coefficient-corrected approach
when establishing ṀO2

–DBA predictive models.
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