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Effects of wave-driven water flow on the fast-start escape
response of juvenile coral reef damselfishes
Dominique G. Roche*,‡

ABSTRACT
Fish often evade predators with a fast-start escape response. Studies
typically examine this behaviour in still water despite water motion
being an inherent feature of aquatic ecosystems. In shallow habitats,
waves create complex flows that likely influence escape performance,
particularly in small fishes with low absolute swimming speeds
relative to environmental flows. I examined how wave-driven water
flow affects the behaviour and kinematics of escape responses in
juveniles of three coral reef damselfishes (Pomacentridae) with
different body morphologies. Tropical damselfishes have similar fin
and body shapes during early development, with the exception of
body depth, a trait deemed important for postural control and stability.
Wave-driven flow increased response latency in two of the three
species tested: fish with a fusiform body responded 2.9 times slower
in wave-driven flow than in still water, whereas this differencewas less
pronounced in fish with an intermediate body depth (1.9 times slower
response) and absent in fish with a laterally compressed body. The
effect of wave-driven flow on swimming performance (cumulative
escape distance and turning rate) was variable and depended on the
timing and trajectory of escape responses in relation to the wave
phase. Given intense predation pressure on juvenile coral reef fishes
during settlement, interspecific differences in how wave-driven flow
affects their ability to escape predators could influence the distribution
and abundance of species across spatial and temporal scales.

KEY WORDS: Body morphology, Complex flow, Swimming
performance, Postural disturbance, Predator–prey interactions,
Turbulence

INTRODUCTION
Avoiding and fleeing from predators is one of the most important
tasks faced by animals (Ydenberg and Dill, 1986). Therefore,
behaviour and locomotion are fundamental to the survival of mobile
organisms during predator–prey encounters (Howland, 1974;
Domenici et al., 2007; Higham, 2007). Fast-start escape responses
are the primary behaviour used by fishes to evade predators
(Domenici and Blake, 1997; Domenici, 2011). These rapid
accelerations are particularly important for juvenile coral reef fishes
(Fisher and Leis, 2010), as predation is a key factor influencing their
survival (Almany, 2003; Almany and Webster, 2006; Holmes and
McCormick, 2009). Predation on reef fishes is greatest during and

shortly after larvae metamorphose from a planktonic to a demersal
life stage as they settle on the reef (Steele and Forrester, 2002;
Almany andWebster, 2006). Owing to their small size, newly settled
coral reef fishes are targeted by many generalist and piscivorous
predators (Stewart and Jones, 2001; Holmes and McCormick, 2010).
Estimates suggest that over 50% of juveniles, across a range of
taxonomically diverse species, can be eaten within 48 h of settlement
(Almany and Webster, 2006). Consequently, environmental factors
that affect performance during escape responses by juveniles might
have a substantial influence on the recruitment of coral reef fishes to
adult populations (Rice et al., 1997; Fisher and Leis, 2010).

Many environmental parameters fluctuate dramatically in aquatic
systems (Abrahams et al., 2007). Recent studies have examined the
effect of temperature, dissolved oxygen, turbidity, light and pH on fish
escape performance (reviewed in Domenici et al., 2007; Wilson et al.,
2010). However, the importance of water motion has been largely
overlooked (Higham et al., 2015; but see Anwar et al., 2016; Diamond
et al., 2016). This oversight is surprising, given that water flow is a
ubiquitous and highly variable physical property of aquatic ecosystems
(Denny, 1988; Webb et al., 2010). In shallow marine habitats, wave-
drivenwatermotion is an important stressor for both sessile andmobile
organisms (Denny, 2006; Denny and Gaylord, 2010; Webb et al.,
2010). On coral reefs, for example, complex water flow from waves
influences the ability of adult fishes to swim and occupy shallow,
windward habitats, which leads to strong patterns of community
structuring based on a species’ ability to withstand ambient flow
conditions (Bellwood and Wainwright, 2001; Bellwood et al., 2002).

Wave-driven water motion is characterized by unsteadiness (changes
in flow velocity) and turbulence (vortices) as the water flow interacts
with the reef structure (Liao, 2007; Webb et al., 2010). These complex
flows can be energetically demanding (e.g. Roche et al., 2014; Maia
et al., 2015; Schakmann et al., 2020) or beneficial (Taguchi and Liao,
2011; van der Hoop et al., 2018) for fishes, and can have destabilizing
effects on important behaviours, including those associated with
predator–prey interactions (Webb, 2002; Webb et al., 2010). Currently,
the extent towhichwave-drivenwater flowaffects fish escape responses
is unknown. Such biophysical interactions could be of considerable
ecological importance for coral reef fishes, given the importance of
predation in shaping their distribution and abundance. In addition, wave
intensity and frequency are increasing in ocean basins worldwide as a
result of climate change (Young et al., 2011; Rhein et al., 2013), with
impacts anticipated on key processes in marine communities (Harley
et al., 2006; Byrnes et al., 2011), including predator–prey interactions
(Domenici and Seebacher, 2020). Basic knowledge of how waves
influence the behaviour and unsteady swimming performance of fishes
is essential to improve our understanding and ability to predict how
environmental change will affect fish communities; for example, by
altering energetic demands and the outcome of predator–prey
encounters (Higham et al., 2015; Killen et al., 2016).

Here, I examined whether complex, wave-driven water flow affects
behavioural and kinematic components of escape responses in post-Received 4 August 2020; Accepted 8 February 2021
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settlement juvenile coral reef fishes in the family Pomacentridae. The
damselfishes are a species-rich, morphologically diverse group, and
are widely distributed throughout temperate and tropical waters
around the world (Allen, 1991; Cooper et al., 2009). Many are small
(<5 cm total length) and important prey items for predatory coral reef
fishes (Kingsford, 1992; Beukers-Stewart and Jones, 2004). The
Pomacentridae are characterized by broad differences in body depth,
a trait known to influence fast-start behaviours (Domenici et al.,
2007) and also linked to differences in the sustained swimming
performance of juvenile coral reef fishes (Fisher et al., 2005; Fisher
and Hogan, 2007). A deep, laterally compressed body is thought to
improve fast-start swimming performance and postural control
(Domenici and Blake, 1997; Eidietis et al., 2002; Domenici et al.,
2008). Additionally, although suboptimal from a hydrodynamic/
energetic perspective, owing to increased pressure and frictional drag,
lateral compression has the advantage of allowing a greater expansion
of the dorsal and anal fins (Webb, 2004, 2006), which also helps
reduce rolling (Weihs, 2002; but see Webb, 2004).
I studied three damselfish species and examined whether effects

of wave-driven water flow on escape responses varied among
species with different body morphologies. I predicted greater
negative effects of wave-driven flow on the response latency and
escape kinematics of species with a more fusiform than laterally
compressed body owing to the increased rolling stability conferred
by lateral compression.

MATERIALS AND METHODS
Animals and experimental set-up
Early post-settlement juvenile fishes were collected while SCUBA
diving in March 2012, using Aqui-S solution and hand nets on reefs
adjacent to the Lizard Island Research Station on the Northern Great
Barrier Reef, Australia (14°40′S; 145°28′E). I caught
Neopomacentrus azysron (Bleeker 1877), Chromis viridis Cuvier
1830 and Dascyllus reticulatus (Richardson 1846) (family
Pomacentridae); based on their body size, these fishes were less
than 2 weeks post-settlement (Kerrigan, 1996; Fisher et al., 2005).
These species co-occur on the reef but differ in their bodymorphology
(Fig. 1). The fineness ratio (FR) is a measure of how elongate a fish is
relative to its transverse sectional diameter (measured as the average of
the maximum body width and maximum body depth) (Fisher and
Hogan, 2007; Langerhans and Reznick, 2010): N. azysron has a
shallow, fusiform body [standard length (SL)=12.7±0.5 mm,
FR=4.23±0.12; means±s.d.], C. viridis has a body of intermediate
depth (SL=12.4±1.0 mm, FR=3.52±0.13), and D. reticulatus has a
deep, laterally compressed body (SL=12.6±0.9 mm, FR=2.67±0.11).
These differences are apparent in juveniles andmaintained throughout
adulthood. Beyond body shape, pectoral fins are also important for
stability (Drucker and Lauder, 2003; Lauder and Drucker, 2004;
Webb, 2004). However, pectoral fin shape is similar in juvenile
damselfishes, differentiating only later in development (Fulton and
Bellwood, 2002). Additionally, pectoral fins are small and transparent
in juvenile reef fishes, whichmakes them impossible to view onwhole
photographs and difficult to dissect and pin (Fisher andHogan, 2007).
As such, pectoral fin shape was not considered in this study.
Captured fishes were placed in holding aquaria (40×29×18 cm;

L×W×H) with seawater pumped directly from the reef. The water
temperature was 29±1°C (mean±actual variation) and fishes were
exposed to a natural photoperiod of 12 h for at least 3 days prior to
the experiments. Fishes were fed once a day with commercial pellets
(INVENRD 2/4, Primo Aquaculture, Australia) and were not fed on
the morning of the experiments. Animals were returned to their site
of capture at the end of the study.

Experiments were conducted in two rectangular acrylic tanks
(70×60×35 cm; L×W×H) (Fig. 2). Water depth was maintained at
12 cm. Owing to their small size and to facilitate filming, individual
fish were placed in a fine nylon mesh enclosure (large net breeder,
Aqua One, Australia; 26.5×15×15.5 cm; 1 mm stretched mesh) at the
centre of the experimental tanks. Four programmable pumps (Vortech
MP10wES, EcoTech Marine, USA) were positioned at the back of
each tank and wirelessly synchronized to generate complex flow
approximating the orbital flow created by waves (see ‘Flow
visualization’ section). Under still water conditions (water velocity
<0.2 cm s−1), the pumps remained on, but the propellers were removed
to control for any effects of noise and/or vibrations from the pumps.
A mirror was inclined at 45 deg below the aquarium to film escape
responses and avoid image distortion from surface water movements
(see Domenici and Blake, 1991). Floodlighting was provided by three
150 W spotlights, 70 cm above the water level. The experimental tank
was continuously supplied with recirculating seawater, which kept the
water temperature constant (29.0±0.7°C, mean±actual variation).

Animal collections and experiments were approved by the Great
Barrier Reef Marine Park Authority (permit G11/34462.1) and the
Australian National University (ANU) Animal Experimentation
Ethics Committee (protocol A2011_21), and conformed to the
relevant regulatory standards.

Experimental protocol
Prior to each fast-start trial, a test fish was transferred to the mesh
enclosure in an experimental tank and left undisturbed for 30 min.
Escape responses were induced by mechano-acoustic stimulation

N. azysron

C. viridis

D. reticulatus

FR=4.23

FR=3.52

FR=2.67

Fig. 1. Experimental species: Neopomacentrus azysron, Chromis viridis
and Dascyllus reticulatus. Indo-Pacific damselfishes (Pomacentridae)
with different body plans: N. azysron (fusiform body), C. viridis (intermediate
body depth) and D. reticulatus (laterally compressed body). FR, fineness
ratio. Scale bar: 10 mm.
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(Dadda et al., 2010; Marras et al., 2011) (Movie 1). A 50 ml
cylindrical container filled with lead weights was released by an
electromagnet 45 cm above the water surface. The stimulus fell
inside the mesh enclosure containing the test fish, 1 cm from the
mesh wall (Fig. 2). To avoid visual stimulation prior to contact with
the water, the stimulus fell inside a PVC tube (11 cm diameter)
positioned 1 cm above the water surface (Lefrançois et al., 2005).
The stimulus was attached by a string to the stand holding the
electromagnet to prevent it from hitting the bottom of the tank. The
exact time of stimulus contact with the water surface could be
observed in the mirror below the tank (see Marras et al., 2011). Fish
moved around freely in the mesh enclosure and were stimulated
when in mid-water, at the centre of the mesh enclosure, to avoid wall
effects. The camera’s field of view excluded sections of the mesh
enclosure within 1 cm from the walls. The distance of the fish’s
body (centre of mass) and angle relative to the stimulus were
controlled for in the statistical analyses.
Escape responses were recorded at 420 Hz by a camera (Casio

Exilim EX-FH100, Casio Computer Co., Tokyo, Japan) mounted
on a tripod in front of the aquarium, facing the mirror. Typically,
fast-start trials are conducted in shallow water to limit vertical
displacement and facilitate kinematic measurements of fish
movements in two dimensions (e.g. Langerhans, 2009). Here, a
minimum water depth was necessary to create wave-driven flow. I
used a second camera (Casio Exilim EX-FH100) to film through the
aquarium front wall. If the fish moved a vertical distance greater
than its body depth, the trial was excluded from the analyses.
This distance was chosen to minimize measurement errors of
displacement in the horizontal plane. Few trials (<2%) were
excluded for this reason.
Fourteen fish were tested per species in each of the two flow

conditions in a full factorial design. Individual fish were tested at
least three times with a rest period of 30 min between trials (see
Jornod and Roche, 2015). More than three trials were run (with a
maximum of five) when fish made sudden movements before the
stimulus hit the water surface, covered a vertical distance greater
than their body depth, or exited the camera’s field of view at the
onset of stage 3 of the escape response (see ‘Measurements of
escape performance’ section). For 12 of the 84 fish tested, only two
trials could be obtained for analysis. Immediately following
experiments, individual fish were sedated by submersion in a cool

(5°C) water bath for 3 s and then photographed on wetted,
plasticized gridded paper. Photographs were analysed in ImageJ
v.1.45 to measure size and FR. FR is calculated by dividing body
length by the average of the maximum body width and maximum
body depth (Bainbridge, 1960). I used SL as body length because an
accurate measure of total length could not be obtained from
photographs for 13 N. azysron. SL was measured from the tip of the
snout to the narrowest point of the caudal peduncle. I used a value of
1.9 mm for the maximum body depth of all fishes because the body
width of the juvenile damselfishes I examined was similar (1.8–
2.0 mm) and difficult to measure accurately without handling and
harming these small animals.

Flow visualization
I used particle image velocimetry (PIV) to characterize the flow
conditions in the wave-driven flow treatment (Fig. 3). Flow velocity
and vorticity were estimated by filming neutrally buoyant particles
(Fluorescent Green Polyethylene Microspheres 1.025 g cm−3,
63–75 µm, Cospheric, Santa Barbara, CA, USA) at 30 Hz in high
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A Fig. 2. Experimental setup for evaluating the
escape responses of three species of
Pomacentridae and particle image velocimetry
(PIV). (A) Four programmable pumps (Vortech
MP10wES, EcoTechMarine, USA) on the back wall
of the experimental tank created wave-driven flow
that travelled back and forth in the aquarium at a
frequency of 0.85±0.01 Hz (mean±s.d.). Juvenile
fish were placed in a mesh enclosure at the centre
of the tank and startled with a remotely operated
mechano-acoustic stimulus. (B,C) PIV analysis
showing flow velocity (black arrows) in the mesh
enclosure in wave-driven flow conditions during flow
direction change (B) and at the wave crest (C).
The colour map represents the magnitude of flow
velocity in m s−1. White vectors are values
interpolated by the software owing to spurious or
missing data points. Scale bars: 0.20 m s−1. For
frame sequences of velocity vector and vorticity
fields, see Movie 2.
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Fig. 3. Excursion distance of a passive particle and three species of
Pomacentridae in wave-driven flow. Red circles are individual data points
(N=14 for each group); black dots are means; error bars are 1 s.e.m. Box plots
show the median and interquartile range (IQR); whiskers are 1.5 times the IQR.
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definition with a Casio Exilim EX-FH100 camera. Microspheres
were illuminated using a NOVAlaser X100 laser pointer
(NOVAlasers, Toronto, Canada; power output 100 mW at
532 nm) fitted with a collimating lens to create a light sheet 2 mm
thick (Ryerson and Schwenk, 2012). The light sheet intersected the
mesh enclosure in mid-water, 6 cm above the tank bottom. No fish
was present at the time of recording. Image sequences were pre-
processed in the video editor Avidemux v.2.5.4 (http://avidemux.
sourceforge.net) to maximize the contrast between the particles and
the black background, and then imported into PIVlab v.1.32 (https://
pivlab.blogspot.com.com.au/). PIVlab estimates the probable shift
of particles by cross-correlation between the same interrogation
areas in image pairs. Vector maps and velocity or vorticity fields were
generated using a 256×256 pixel interrogation area and a 128 pixel
step (i.e. the vertical and horizontal distance between the centre of
the interrogation areas). The wave frequency was 0.85±
0.01 Hz, and the absolute flow velocity in the experimental arena
ranged between 0.5±0.4 and 17.5±2.5 cm s−1 (means±s.d.) (Fig. S1,
Movie 2). Wave height was consistent and ranged between 6.2 and
7.1 cm.

Measurements of escape performance
Fast-start escape responses typically consist of a unilateral
contraction of the axial musculature (stage 1), which bends the
body into a ‘C’ shape, and a subsequent contralateral contraction,
resulting in a half tail beat (stage 2) (Domenici and Blake,
1997; Eaton et al., 2001). Escape sequences were analysed using
the software ImageJ v1.45 and the plugin MtrackJ (https://
imagescience.org/meijering/software/mtrackj/). All kinematic
measurements are in the environmental frame of reference (i.e.
movement relative to the ground) as flow visualizations were carried
out without fish in the experimental arena. The two-dimensional x–y
coordinates of the fish’s centre of mass (CoM) were plotted every
2.4 ms, starting 12 ms before and ending 48 ms after the onset of the
stimulus (25 frames in total). The CoM was estimated on four fish
per species using frozen specimens; a needle was inserted along the
body midline until the point of balance was identified (Domenici
et al., 2004). As fish were too small to mark their CoM directly on
the body, the CoM was visually determined at a fixed distance from
the tip of the snout during video analysis. Measurement error on
displacement data from visually estimating the CoM was assessed
by digitizing videos from five fish, two times each (Langerhans,
2009). This error was <4% for all videos tested. Seven escape
performance variables were measured following Lefrançois and
Domenici (2006): responsiveness (the percentage of fish that
performed an escape response when stimulated); response latency
(the time between the moment when the stimulus contacted the
water and the first head movement of the fish); cumulative distance
travelled (Desc); maximum escape speed (Umax); maximum
acceleration (Amax); stage 1 turning angle (the angle between the

straight line joining the tip of the head and the CoM at the onset and
end of stage 1); and stage 1 turning rate (stage 1 turning angle
divided by stage 1 duration). Distance–time variables (Desc, Umax,
Amax) were evaluated within a fixed time period of 24 ms from the
first head movement, corresponding to the mean duration of stages 1
and 2 for all three species. Measuring distance–time variables
within a fixed time period avoids performance biases related to
differences in the duration of escape responses (Domenici, 2011).
A five-point quadratic polynomial regression (Lanczos, 1956) was
used to obtain smoothed values of speed and acceleration, the first
and second derivatives of distance (Walker, 1998; Lefrançois and
Domenici, 2006).

Statistical analysis
I compared body size (SL) among the three damselfish species with
a general linear model (LM) containing three predictors: species,
water flow condition and their interaction. I used a simple LM (one-
way ANOVA) to examine differences in the excursion distance of a
passive particle and the three fish species in wave-driven water flow.
Model assumptions were assessed graphically with diagnostic plots.

I used three general linear mixed-effects models (LMMs) to
examine how species and water flow condition (still versus wave-
driven) affected three measures of escape performance: response
latency (ms), Desc (mm) and turning rate (deg ms−1). Standard
length, body angle relative to the stimulus (the angle between the
straight line connecting the snout to the CoM of the fish and the
tangent to the perimeter of the stimulus) and distance to the stimulus
were scaled (i.e. divided by their s.d.) and included as covariates in
each model; an interaction term was included between species and
flow condition. The identity of fish was specified as a random factor
to account for repeated measurements on individuals. Response
latency was log-transformed to normalize model residuals.
Differences in Umax and Amax were not tested to reduce the
number of statistical tests (and hence the probability of spurious
results), and because Umax and Amax are less reliable measures of
distance–time performance than Desc (Domenici and Blake, 1997).
Values of Umax and Amax for each species and flow treatment are
indicated in Table 1. I used the function ‘lmer’ (https://cran.
r-project.org/web/packages/lme4/index.html) to specify eachmodel
as response.variable∼scale(SL)+scale(sin(angle.stim))+scale (dist.
stim)+species*flow+(1|individual). I calculated the adjusted
repeatability (Radj) of response latency, Desc and turning rate in
still water with the function ‘rptR’ (https://cran.r-project.org/
web/packages/rptR/index.html), specifying species, standard
length, body angle relative to the stimulus and distance to the
stimulus as fixed predictors.

For fishes in wave-driven flow, I examined how the timing of
escape responses in relation to the wave phase affectedDesc using an
LMM specified as Desc∼scale(sin(angle.stim))+scale (dist.stim)+
scale(SL)+species*wave.phase+(1|individual). The factor ‘wave

Table 1. Descriptive statistics: escape responses of three species of Pomacentridae in still water and wave-driven flow

Variable

N. azysron C. viridis D. reticulatus

Still Wave-driven Still Wave-driven Still Wave-driven

Latency (ms) 9.9±5.4 28.3±28.0 10.1±4.7 19.6±8.6 14.7±8.0 17.1±7.8
Desc (mm) 14.9±3.7 15.9±4.20 11.6±2.6 11.6±3.4 13.9±2.5 14.5±2.4
Umax (cm s−1) 88.1±22.2 92.5±28.0 74.7±16.8 76.7±24.0 83.4±14.6 92.0±18.2
Amax (m s−2) 67.8±17.1 65.9±22.8 47.8±10.7 52.6±22.9 55.4±10.6 61.6±16.8
Turning rate (deg ms−1) 11.8±2.8 11.2±3.14 9.3±2.4 9.6±2.5 9.9±2.4 11.1±2.8

Measures of escape performance (means±s.d.) for three species of damselfish (Pomacentridae) with different body morphologies: response latency (latency),
escape distance (Desc), maximum swimming speed (Umax), maximum acceleration (Amax) and turning rate.
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phase’ was used to distinguish whether fish escaped against the
wave path (315–45 deg), perpendicular to the wave path (46–
134 deg or 226–314 deg), during a wave trough (water flow speed
<5 cm s−1, escape in any direction) or in the direction of the wave
path (135–225 deg). The direction of the escape response relative to
the wave path was measured as the angle between the straight line
connecting the fish’s CoMat the start of stage 1 and the end of stage 2,
and the straight line parallel to the wave path.
The assumptions of mixed-effects models were checked with

residual diagnostics using DHARMa (https://CRAN.R-project.org/
package=DHARMa). Analyses were done in R v3.6.3 (http://www.
R-project.org/).

RESULTS
Individuals of all three species in both flow conditions were similar
in size (LM: F2,78=0.30, P=0.742, η2=0.007) (Fig. S2). All three
species moved less (i.e. had a shorter excursion distance) than a
passive particle in the wave-driven flow treatment (LM:
F3,52=60.64, P<0.001, η

2=0.778). Excursion distance was similar
for all three species, with the exception of D. reticulatus (laterally

compressed body), which was displaced 26% less than N. azysron
(fusiform body) (Fig. 1, Table S1).

Responsiveness was high in all three species, with fishes responding
to the stimulus in 100%of cases in still water and 94%of cases inwave-
driven flow. However, fish were slower to respond to the stimulus in
wave-driven flow than in still water for two of three species (Tables 1
and 2). Neopomacentrus azysron (fusiform body) and C. viridis
(intermediate body depth) were 2.86 and 1.94 times slower,
respectively, at responding to the stimulus in wave-driven flow than
in still water. Response latency for D. reticulatus (laterally compressed
body) was similar in both flow treatments (Tables 1 and 3, Fig. 4A,B).
In still water, response latency [Radj=0.49 (0.35–0.61)] and Desc

[Radj=0.47 (0.27–0.65)] were moderately repeatable across all three
species, whereas turning ratewas not [Radj=0.17 (0.00–0.40)] (Fig. S3).

On average, wave-driven flow did not affect escape kinematics:
differences in Desc and turning rate between flow treatments were
less than 7% and 12.5%, respectively, for all three species (Tables 1
and 2, Fig. 4C–F). Neopomacentrus azysron (fusiform body) and
D. reticulatus (laterally compressed body) escaped farther than
C. viridis (intermediate body depth) irrespective of flow conditions
(Tables 1 and 3). Neopomacentrus azysron exhibited an overall
higher turning rate than C. viridis, but not D. reticulatus. Chromis
viridis and D. reticulatus had similar turning rates (Tables 1 and 3).

When considering the timing of a fish’s escape response in
relation to the wave phase, all species covered a greaterDesc and had
a faster turning rate when escaping with the water flow rather than
perpendicular to or against the water flow (LMM: flow χ2(3)=35.7,
P<0.001; interaction flow*species, P=0.174) (Fig. 6).

Results were qualitatively similar whether I considered all trials
per individuals or only an individual’s best performance across trials
(Table S2), as is sometimes done in studies of fast-start swimming
performance.

DISCUSSION
Several biotic and abiotic factors are known to influence the fast-
start escape response of fishes, including fin and body morphology,
muscle composition, temperature, hypoxia, turbidity and pollutants,
among others (Domenici, 2010a; Wilson et al., 2010). Here, I
document differences in escape response among species and water
flow conditions.

Interspecific differences in escape performance
There is a dearth of information on the fast-start escape performance
of early-stage coral reef fishes (but see Allan et al., 2014;
McCormick and Allan, 2017; Allan et al., 2020). Studies over the
past two decades have shown that pre- and post-settlement coral reef

Table 2. Inferential statistics: escape responses of three species of
Pomacentridae in still water and wave-driven flow

Variable Predictor χ2 d.f. P R2
m R2

c

Latency Sin(angle) 2.65 1 0.103 0.277 0.499
Distance 1.09 1 0.297
Body size 0.43 1 0.513
Species 6.12 2 0.047
Flow 32.83 1 <0.001
Species×flow 8.93 2 0.012

Desc Sin(angle) 2.34 1 0.126 0.233 0.665
Distance 0.26 1 0.611
Body size 3.82 1 0.051
Species 7.76 2 0.021
Flow 1.20 1 0.273
Species×flow 0.71 2 0.700

Turning rate Sin(angle) 0.12 1 0.726 0.108 0.203
Distance 0.08 1 0.778
Body size 0.002 1 0.989
Species 14.99 2 <0.001
Flow 0.83 1 0.362
Species×flow 4.15 2 0.129

Effects of body angle, distance to stimulus, body size, species and water flow
condition on three measures of escape performance. Escape performance
was measured as response latency, escape distance (Desc) and turning rate in
three species of damselfish (Pomacentridae) with different bodymorphologies.
R2
m, marginal R-squared; R2

c, conditional R-squared. Statistically significant
P-values are indicated in bold.

Table 3. Group comparisons of escape performance of three species of Pomacentridae

Variable Comparison t d.f. P Effect size (95% CI)

Latency N. azysron: still vs wave-driven −5.73 76.8 <0.001 −1.96 (−2.71, −1.22)
C. viridis: still vs wave-driven −4.42 76.0 <0.001 −1.51 (−2.22, −0.79)
D. reticulatus: still vs wave-driven −1.55 79.7 0.125 −0.54 (−1.23, 0.16)

Desc N. azysron vs C. viridis 4.68 83.3 <0.001 1.64 (0.90, 2.38)
N. azysron vs D. reticulatus 1.56 80.1 0.270 0.53 (−0.15, 1.22)
C. viridis vs D. reticulatus −3.17 83.1 0.006 −1.11 (−1.82, −0.39)

Turning rate N. azysron vs C. viridis 4.10 85.7 <0.001 0.81 (0.40, 1.22)
N. azysron vs D. reticulatus 2.10 80.3 0.097 0.40 (0.02, 0.78)
C. viridis vs D. reticulatus −2.11 84.5 0.095 −0.41 (−0.81, −0.02)

Post hoc comparisons and effect sizes for response latency, escape distance (Desc) and turning rate in three species of damselfish (Pomacentridae) with different
body morphologies. Because wave-driven water flow had no overall effect on Desc and turning rate (see Table 2), interspecific comparisons are presented for
these two variables. Statistically significant P-values are indicated in bold.
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fish larvae can achieve high sustained swimming speeds of 30–50
body lengths s−1, indicating that these larvae are not passive
organisms adrift in the plankton (e.g. Stobutzki and Bellwood,
1994; Leis and Carson-Ewart, 1997; Fisher et al., 2005; Nilsson
et al., 2007). The three species tested here achieved high maximum
fast-start swimming speeds, occasionally exceeding 100 cm s−1

(85 SL s−1; Table 1). In relative terms, these values are almost twice
the maximum burst speeds reached by temperate species at similar
sizes, including salmonids (fig. 11.5 in Fisher and Leis, 2010). Fast-
start escape responses influence the ability of juvenile coral reef
fishes to avoid predation and are therefore directly relevant to their
ecology (Fisher and Leis, 2010). The impressive locomotor
performance of small pomacentrids is perhaps not surprising,
given that wild and laboratory measures place them among the
fastest-swimming coral reef fish larvae (Leis and Carson-Ewart,
1997; Nilsson et al., 2007).

Escape distance (Desc) differed consistently among species in still
water and wave-driven flow: N. azysron (fusiform body) and
D. reticulatus (laterally compressed body) exhibited similar
performances and escaped farther in a fixed amount of time than
C. viridis (intermediate body depth), irrespective of flow conditions
(Tables 1 and 2, Fig. 4D). Evidence suggests that differences in fast-
start swimming performance result from different, and sometimes
opposing, morphological features (Domenici, 2003; Walker, 2004;
Langerhans and Reznick, 2010). On one hand, traits such as a
shallow, elongated body, a small head and large dorsal and anal fins
(such as in pike, Esox lucius) are associated with high burst
swimming speeds (Webb, 1984; Domenici, 2003; Langerhans et al.,
2004). On the other hand, a deep, laterally compressed body has
also been shown to enhance burst swimming performance by
allowing a lateral profile that increases the mass of water accelerated
by body movements (Weihs, 1973; Domenici and Blake, 1991). For
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example, the deep body of crucian carp (Carassius carassius)
induced in the presence of predators led to higher burst swimming
performance (escape distance, speed, acceleration and turning rate)
than that of shallow body morphs found in predator-free habitats
(Domenici et al., 2008). These two contrasting profiles roughly
correspond to those of the two pomacentrids that escaped the
farthest and were at the opposite ends of the body plan spectrum I
examined. Turning rate, a measure of agility, mirrored the pattern
observed for Desc, although differences in performance between
D. reticulatus and C. viridis were less pronounced for turning rate
(11.1%) than escape distance (19.3%) (Table 3, Fig. 4D,F). This
result was unexpected, as lateral compression has previously been
reported to improve agility (Domenici et al., 2008).
Response latency to the threatening stimulus in still water was

distinctly higher for D. reticulatus than for the other two species
(47% difference; Table 1, Fig. 4A). The deep, laterally compressed
body of D. reticulatus is a trait frequently associated with reduced
vulnerability to gape-limited predators (e.g. Pseudochromidae,
Labridae), which are abundant on coral reefs (Rice et al., 1997;
Holmes and McCormick, 2010; Domenici, 2011). It is possible that
selection pressure for rapid responses in juvenile D. reticulatus is
less than in the other two species, which have shallower, more
fusiform body plans, making the latter vulnerable to a greater range
of piscivorous predators.

Effects of wave-driven flow on escape performance
Reef fishes routinely experience a range of flow velocities and
vorticity in the wild, depending on weather conditions, reef
exposure to waves, microhabitat and depth below the surface. For
example, Johansen (2014) recorded flow velocities ranging between
0 and 82 cm s−1 on reefs of different depths and wave exposure at
Lizard Island, where test fishes were collected. The wave-driven
flow treatment in the current study was representative of water flow
speeds routinely experienced by fishes under winds of 15 knots and
intermediate wave heights on semi-exposed reefs at Lizard Island
(D.G.R., unpublished data; Fulton and Bellwood, 2005). The
maximum flow velocity was 66% of the critical swimming speed
(26.3 cm s−1) achieved by congeneric juvenile pomacentrids after
settlement on the reef (Stobutzki and Bellwood, 1994).
Responsiveness to the stimulus was high for all three species in

both flow conditions, and similar to values reported in another
juvenile damselfish exposed to the same type of stimulus used here
(>97% responsiveness; Allan et al., 2014). This indicates that wave-
driven flow of the magnitude examined in the present study
(Fig. S1) did not impede the ability of the test fishes to sense the
stimulus. Fishes detect approaching predators by sensing water flow
through the lateral line (Stewart et al., 2013), and it has been
suggested that environmental flows might impede perception
(Higham et al., 2015; Diamond et al., 2016). However, fishes also
rely on other senses to perceive threats, such as hearing, vision and
smell. It is likely that the mechanosensory, auditory and visual
nature of the stimulus and its large size relative to the test fishes
produced a signal strong enough to elicit a response even when
dampened by wave-driven flow (see Domenici, 2010a). Supporting
this interpretation is the indication that a fish’s distance (range: 3.0–
14.8 cm) and body angle (range: 14.4–179.6 deg) relative to the
stimulus had little influence on behavioural and kinematic measures
of escape performance (Table 2).
On average, escape kinematics (Desc, turning rate) were similar in

still water and wave-driven flow within species (Table 1, Fig. 4C–F).
This pattern is a consequence of the large variation in escape
performance by fishes in wave-driven flow, which was driven by

variation in the timing of the stimulus (and hence the escape
response) relative to the wave phase (Table S3, Fig. 6). Irrespective of
bodymorphology, fish escaping with the flow achieved a greaterDesc

and faster turning rate than fish escaping perpendicular to or against
the flow as well as during a wave trough (Fig. 6). Because maximum
muscle power output is unaffected by flow conditions, these patterns
support the prediction that differences in fast-start swimming
performance between flow conditions should equal differences in
water flow velocity. Indeed, maximum flow speedswere∼20% of the
maximum escape speeds achieved by fishes (Table 1, Fig. S1), and
fish escaping in the direction of the water flow achieved a Desc that
was, on average, 20.3% greater than that achieved in still water
(Table S3). These results both concur and contrast with those of
studies on fish escape responses in steady flow: Anwar et al. (2016)
found a preference for downstream escapes by bluegill sunfish
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(Lepomis macrochirus), resulting in a greater escape distance and
speed than escapes in still water or upstream flow (flow speeds:
9.4 cm s−1 and 23.1 cm s−1); conversely, Diamond et al. (2016)
found no evidence that flow speed influenced peak escape velocity in
the Hawaiian stream goby (Sicyopterus stimpsoni) (flow speeds:
15 cm s−1 and 30 cm s−1).
Speed (Desc) and agility (turning rate) are important locomotor

determinants of escape responses (Walker et al., 2005); however,
escape success also largely depends on behavioural components,
namely the responsiveness and response latency of prey to an
attacking predator (Domenici, 2010b; Domenici and Hale, 2019).
For example, Fuiman et al. (2006) observed that the responsiveness
of red drum larvae (Sciaenops ocellatus) to a stimulus was the main
predictor of survival during a predator–prey encounter and
explained 86% of the variation in survivorship. Similarly,
zebrafish (Danio rerio) larvae are over three times more likely to
evade predation if they initiate their escape before instead of after
adult conspecifics open their mouth to prey on them (Stewart et al.,
2013). I found that wave-driven water flow increased the response
latency of some species but not all (Fig. 5). Neopomacentrus
azysron (fusiform body) and C. viridis (intermediate body depth)
were 2.86 and 1.94 times slower, respectively, in responding to the
stimulus in wave-driven flow than in still water. By contrast, the
response latency of D. reticulatus (laterally compressed body) was
unaffected (Table 1, Fig. 4B).
Slower responses to the stimulus in wave-driven flow could be

caused by two main factors: first, the destabilizing effect of water
motion and the added challenge of maintaining an upright posture

and adequate orientation relative to the flow; and second, the
challenges of perceiving a threat owing to added noise in complex
flow versus still water. All else being equal, a more laterally
compressed body should improve resistance to rolling disturbances
(Eidietis et al., 2002; Weihs, 2002). A deep body plan should also
improve mechanoreception by allowing the placement of the lateral
line away from moving body parts (i.e. pectoral fins), a trait that has
been posited to decrease self-generated noise and increase the
signal-to-noise ratio (Dijkgraaf, 1963; Coombs and Braun, 2003).
These two considerations might explain why the longer response
latency in wave-driven flow was inversely related to body depth in
the three species I examined. Notably, D. reticulatus tended to
orient more directly into the flow and was less displaced by water
motion (i.e. had a shorter excursion distance) than the fusiform-
shaped N. azysron (Fig. 7), although no such difference was
apparent with C. viridis, which has an intermediate body depth
(Fig. 3, Table S1). Given that reactivity to potential threats (i.e.
responsiveness, response latency) is a key determinant of escape
success, even moderate flow, such as the one tested here, might
increase predation risk for juvenile fishes that are more vulnerable to
postural disturbances.

Fast starts in fishes are typically controlled by the Mauthner cells,
a pair of large reticulospinal neurons that receive various sensory
inputs, such as visual and mechano-acoustic signals (Eaton et al.,
2001). High-speed neural transmission and processing via these
cells allows for rapid responses to imminent threats within 5–20 ms.
Interestingly, N. azysron (fusiform body) exhibited much greater
variation in escape latency in wave-driven flow than the other two
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species tested (Fig. 5B). The strong positive skew in the distribution
of its response latency (Fig. 5A) suggests that some escape
responses in wave-driven flow were not Mauthner cell mediated.
Other pathways, through different reticulospinal cells, can control
escape responses but have longer latencies (Domenici, 2010a;
Domenici and Hale, 2019). Slower responses are generally
associated with lower performance (e.g. slower turning rates), and
are observed both in healthy fish and in fish with an ablated
Mauthner system (Domenici, 2011; Hecker et al., 2020). In wave-
driven flow, postural disturbances from waves and associated
stability control issues seemingly led to some non-Mauthner cell
escapes, with longer latencies (>40 ms), in at least one species.

Conclusion
Hydrodynamic stability is advantageous for fishes moving in high-
energy coral reef environments characterized by turbulence and rapid
changes in flow velocity (Bartol et al., 2003). I found variable effects of
wave-driven water flow on the escape response of juvenile damselfishes
with different body morphologies, increasing the response latency of
species with a more fusiform body profile. Juvenile reef fishes are
highly sensitive to environmental variables (Leis and McCormick,
2002), and negative effects on their settlement and survival patterns can
have important consequences for adult populations (Munday et al.,
2008). Wave intensity and frequency is increasing across ocean basins
worldwide as winds and severe weather events become more frequent
with climate change (Webster et al., 2005; Rhein et al., 2013). Strong
winds and waves coinciding with juvenile recruitment pulses could
affect not only larval dispersal (e.g. Burgess et al., 2007), but also
predator–prey interactions and the survivorship of post-settlement
juveniles. Many damselfishes recruit seasonally (Russell et al., 1977;
Williams, 1983) and are initially limited by habitat as they settle on the
reef (Sale, 1978). Once the recruitment pulse is over, post-settlement
mortality becomes important because juveniles that are predated on can
no longer be replaced even if habitat becomes available. Given the
present findings, future studies should examine whether relationships
exist between wave intensity, predation rates and recruitment patterns in
the wild, as well as differences in the effect of wave-driven flow on
predators and prey owing to size differences (see Abrahams et al., 2007;
Domenici et al., 2019).
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