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The Murphy number: how pitch moment of inertia dictates
quadrupedal walking and running energetics
Delyle T. Polet*

ABSTRACT
Many quadrupedal mammals transition from a four-beat walk to a two-
beat run (e.g. trot), but some transition to a four-beat run (e.g. amble).
Recent analysis shows that a two-beat run minimizes work only for
animals with a small pitch moment of inertia (MOI), though empirical
MOI were not reported. It was also unclear whether MOI affects
gait energetics at slow speeds. Here, I show that a particular
normalization of the pitch moment of inertia (the Murphy number) has
opposite effects on walking and running energetics. During walking,
simultaneous forelimb and hindlimb contacts dampen pitching
energy, favouring a four-beat gait that can distribute expensive
transfer of support. However, the required pitching of a four-beat walk
becomes more expensive as Murphy number increases. Using
trajectory optimization of a simple model, I show that both the walking
and slow running strategies used by dogs, horses, giraffes and
elephants can be explained by work optimization under their specific
Murphy numbers. Rotational dynamics have been largely ignored in
quadrupedal locomotion, but appear to be a central factor in gait
selection.

KEY WORDS: Giraffe, Computational modelling, Gait, Optimization,
Locomotion, Mammal

INTRODUCTION
Despite their incredible morphological diversity, cursorial
quadrupedal mammals typically use stereotyped gaits. As speed
increases, mammals commonly transition from a four-beat walk at
slow speeds to a two-beat trot or pace (where beats are distinct contact
events). We see the 4→2 pattern across disparate families, such as
equids (horses; Barrey, 1999), canids (dogs; Jayes and Alexander,
1978), bovids (sheep and gazelle; Jayes and Alexander, 1978; Leach
and Cymbaluk, 1986; Pennycuick, 1975), camelids (dromedaries;
Dagg, 1974) and antilocaprids (Dagg and Vos, 1968).
This pattern appears surprising from an energetic perspective.

A simple accounting of energetic cost in gait is to consider only
positivework as costly, and to approximate leg contacts as collisions
acting on the centre of mass (COM; Ruina et al., 2005). While there
are other sources of metabolic cost, e.g. from isometric force
(Kushmerick and Paul, 1977) or rapid changes in force (Doke and
Kuo, 2007), the collisional, work-centric perspective explains many
phenomena in locomotion, including the pre-heelstrike pushoff in
bipedal walking (Kuo, 2002), the smooth trajectory of gibbon
brachiation (Bertram et al., 1999), why individuals use a flatter

running gait in reduced gravity (Polet et al., 2018), and the leg
sequence in transverse galloping (Ruina et al., 2005).

The point–mass collisional perspective posits that frequent,
evenly spaced collisions are better than infrequent, irregular
collisions for a given speed and stride length. To optimize work,
a quadruped should use as many contacts as possible during a stride;
a pronk costs twice as much as a trot, which costs twice as much as a
four-beat tölt (Fig. 1; see Appendix 1 for a simple derivation).

Why, then, do so many mammals trot? It is unlikely that a slow,
four-beat running mode is physically impossible for trotters, when
‘gaited’ horses have been bred to exhibit such gaits. Notable
examples are the tölt of the Icelandic horse (Biknevicius et al.,
2004), the amble of the American saddlebred horse, and the running
walk of the Tennessee walking horse (Hildebrand, 1965). Given the
few morphological differences between gaited and non-gaited
breeds, it seems less likely that natural populations are physically
constrained from performing a four-beat run, and more likely that
they reject it (whether through behavioural, developmental or
evolutionary mechanisms; e.g. Andersson et al., 2012).

In a recent article, Usherwood (2020) resolved the paradox by
considering the energy of pitching the body. Assuming ground-
contact forces are axial to the leg, then foot contact in a four-beat gait
induces pitching, but a two-beat gait can avoid it. The question,
then, is when do the energetics of pitching outweigh the energetics
of COM translation? When pitching energetics dominate, trotting
should minimize cost (positive work), and when translation
dominates, tölting should.

Usherwood (2020) showed that the ratio of translational to
rotational kinetic energy is related to the dimensionless group:

Î ¼ I

mL2
; ð1Þ

originally defined by Murphy (1984; cited in Lee and Meek, 2005)
with relation to the stability of bounding. In this equation,m is body
mass, I is body pitch moment of inertia (MOI) about the COM, and
L is half the shoulder–hip distance. This dimensionless MOI (called
hereafter the ‘Murphy number’ for expediency and in honour of its
discoverer), is exactly the ratio of the change in translational to
rotational kinetic energy imparted to a free object by a generating
impulse perpendicular to L (Appendix 3). For Î<1, more rotational
energy is imparted than translational, and the opposite is true for Î>1
(Fig. 2).

For short stride times, tölting work is related to trotting work by
(Appendix 2):

Wt€olt � Wtrot

2
ð1þ Î

�1Þ: ð2Þ

Eqn 2 is insightful. For large Murphy numbers, the point–mass
analysis is justified; no energy goes into pitching, and a tölt is
cheaper. For very small Murphy numbers, the rotational term
dominates, all the energy goes into pitching, and a trot is cheaper.Received 5 May 2020; Accepted 5 January 2021
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But when Î=1, the cost of tölting and trotting is equal. In general, a
four-beat run is work-optimal when Î>1, but when Î<1, a two-beat
run is optimal.
This insight might point to why some mammals deviate from a

two-beat run at moderate speeds. Elephants and many primates use a
four-beat amble at a slow run (Ren and Hutchinson, 2008; Schmitt
et al., 2006); giraffes and ring-tailed lemurs transition directly from a
walk to a canter (Dagg and Vos, 1968; O’Neill, 2012). Î>1 implies
either that a significant portion of an organism’s mass lies outside its
torso or that some mass is positioned a large distance away from the
COM (relative to hip–shoulder length). It seems plausible that the
large heads of elephants, the long and/or massive tails of some
primates, and the long necks of giraffes might push their Murphy
numbers beyond unity, but this was not tested by Usherwood (2020).
While rotational dynamics and the Murphy number would seem

to rectify the two-beat running paradox, it raises another question:
why is quadrupedal walking typically four-beat? Amammal using a
four-beat walk exhibits pitching of the back (Griffin et al., 2004;
Loscher, 2015). If these rotational energies are large, should the
same arguments for the trotting–tölting tradeoff not apply?
Four-beat walking benefits from distributed contacts interspersed

with passive vaulting phases, where the system dynamics in stance
resemble a four-bar linkage (Usherwood et al., 2007). To maintain
passive vaulting, a pitching torso is necessary, and the pitching direction
must be reversed on each transfer of support. This means angular
momentum must be absorbed and resupplied with every step. (It is
possible that the braking impulse freely transfers some of the rotational
energy into translation, though for simplicity this is assumed small.)

The orientation of the body at transfer of support is predetermined by
the geometry of the four-bar linkage, which is independent of the
body’s mass or MOI. Likewise, if step length and speed are
predetermined, then the time between hindlimb and forelimb transfer
of support is independent of MOI. As the average rotational speed is
independent of MOI, pitching energy should be proportional to MOI –
not inversely proportional, as in running (Fig. 2).

We would therefore expect the Murphy number to have the
opposite effect on the energetics of walking as compared with
running. At large Î , a two-beat walk should be favoured to avoid
costly pitching at the expense of larger COM collisions. At low Î,
the work-minimizing strategy should be to distribute contacts in a
four-beat walk, but switch to a pitch-free two-beat run at higher
speeds – the common 4→2 pattern.

However, mammals that avoid two-beat running typically do not
avoid four-beat walking; the walking gaits of elephants, giraffes and
ambling primates appear to be four-beat (Ren and Hutchinson,
2008; Basu et al., 2019a; Schmitt et al., 2006; Young et al., 2007). It
is possible that their gait transition patterns are explained by subtle
dynamical effects overlooked by these heuristic arguments.

In this paper, I examine the energetics consequences of changing
Murphy number and speed through trajectory optimization of a
simple quadrupedal model with a work-based cost function. I also
use published data to test the hypothesis that Murphy number is a
predictor of differences in gait choice between quadrupedal
mammals. Finally, using the results of the model, I highlight
interesting consequences of Murphy number on optimal ground
reaction forces, and why point–mass dynamics are insufficient to
explain quadrupedal walking.

MATERIALS AND METHODS
Computational modelling and optimization
The quadrupedal model is planar and based on the methodology of
Polet and Bertram (2019). Legs are massless prismatic actuators;
limbs cannot generate torque about their respective attachment
points to the torso. For simplicity, limb lengths are equal to inter-
limb spacing (2L), and the COM is located halfway between the
forelimbs and hindlimbs.

There are a few noticeable differences between the present
simulation methodology and that of Polet and Bertram (2019). First,
the analysis is constrained to symmetrical gaits. Optimal gaits are
computed using trajectory optimization (direct collocation) over the
half stride cycle. A full stride cycle can be generated by repeating the
solution in the second half of the cycle, while swapping actuation

List of symbols and abbreviations
(·)− value before applied impulse
(·)+ value after applied impulse
COM centre of mass
D stride length
D′ non-dimensional stride length (D/LH)
Erot rotational kinetic energy
Etrans translational kinetic energy
g gravitational acceleration
GRF ground reaction force
I pitch moment of inertia
Î Murphy number ≡I/(mL2)
L half shoulder-hip distance
LH hindlimb length
m body mass
m′F mass bias toward forelimbs
MOI moment of inertia
n number of contacts in a stride
~P impulse at limb
~PR reaction impulse
PNtot normalized negative power
Ptot instantaneous net actuator power
t time (s)
T stride time
T̂ non-dimensional stride time [T√(g/L)]
T′ non-dimensional stride time [T√(g/LH)]
Tc time between successive contacts
U mean horizontal speed
U′ non-dimensional mean horizontal speed [U/√(gLH)]
V vertical component of COM velocity at touchdown
Wstride positive work in a stride
Wtölt positive work for tölting over one stride
Wtrot positive work for trotting over one stride
α torso angle to horizontal at touchdown
ω mean rotational speed

T

Wpronk =
mg2T2

mg2T2

mg2T2

8

Wtrot = 16

Wtölt = 32

Fig. 1. Comparison of work done for three gaits with the same stride
period T but different numbers of contact events. Compared with a one-
beat pronk, a two-beat trot can cut positive work (W ) in half, while a four-beat
tölt can cut positive work to a quarter of the cost. This argument only considers
translational energy of the centre of mass (COM) in a collisional point-mass
model, similar to Ruina et al. (2005). m, mass; g, acceleration due to gravity.
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between left and right limbs. As the body is fully symmetrical about
the torso centre, torso pitch angle can be as high or low as ±π, and I
do not impose a limb excursion angle constraint. Some bipedal
solutions emerged as locally optimal on occasion. These were
eliminated from the analysis post hoc.
Following Polet and Bertram (2019), the present model uses an

objective combining limb work with a penalty proportional to the
integral of force–rate squared and complementarity violation terms.
The force–rate penalty is a computational regularization term to
smooth otherwise impulsive work-minimizing solutions. It was not
chosen to fit empirical data; rather, it was chosen to be as small as
possible while still achieving practical computational times. Its
normalized penalty coefficient is 3×10−5, 100 times smaller than
the value used in Polet and Bertram (2019). Because of the
impulsivity of the solutions, and their approximation via smooth
piecewise functions, forces often exhibited fluctuations about zero
before and after contact events. To mitigate this, outputs that
converged on a solution were subject to an additional mesh
refinement step, which interpolated additional collocation points
midway between existing points. This refined mesh served as the
input guess for an additional round of optimization.
Like the model of Polet and Bertram (2019), the present trajectory

optimization setup uses complementarity constraints to allow the
optimizer to determine the stepping sequence. Optimizations were
carried out with hp-adaptive quadrature in GPOPS-II (v.2.3;
Patterson and Rao, 2014) and the NLP solver SNOPT (v.7.5; Gill
et al., 2005, 2015).
A non-dimensional stride length and mean horizontal speed were

defined as D′=D/LH and U′=U/√(gLH), respectively, where LH is
hindlimb length (equal to 2L in the model). These correspond to a
common normalization seen in the literature (Alexander and Jayes,
1983). The prime superscript (·)′ and the hat diacritic cð�Þ denote
variables normalized by hindlimb length or half inter-limb spacing,
respectively.
D′ was determined from U′ through an empirical relationship for

walking cursorial mammals (Alexander and Jayes, 1983):

D0 ¼ 2:4ðU 0Þ0:68: ð3Þ

Had stride length not been specified as a function of speed, the
optimizer would have chosen minimal stride lengths to minimize
work (in the absence of a swing cost or step-frequency penalty; Kuo,
2001). Grid points were selected between 0.25≤Î≤10 and 1.5≤T′≤4.
The latter represents the lowest and highest stride times observed by
Alexander and Jayes (1983) among cursorial mammals. T′=D′/U′
was used as the target input to the model, as it determines running
energetics more directly than speed (Appendix 2).

An initial search took place at grid points on T′=0.25 intervals,
and Î=0.25, 0.5, 0.75, 1, 1.25, 2, 5 and 10. Afterwards, grid points
were added close to identified transition zones between gaits. Fifty
initial guesses were used for each T′>2.5 condition, while 100 initial
guesses were used for T′≤2.5. Convergence was difficult at the
slowest speeds (T′=4), and several outliers were identified as
isolated gaits of a certain number of beats surrounded by solutions
with a different number of beats. To these solutions, another 50
guesses were added to better converge to the optimal solution. Initial
guesses were formed by selecting from a uniform random
distribution across each decision variable’s range at 16 uniformly
spaced grid points.

For a given parameter combination, the lowest-cost solutions
were selected among all local minima discovered. The beat number
was determined post hoc by looking at peak negative power during
the stride. Defining a beat as peak negative power is consistent with
the collisional gait perspective, which points to mechanisms of
energy loss and approximates them as impulsive events (Ruina
et al., 2005; Bertram and Hasaneini, 2013). Setting normalized
(negative) power as:

PNtotðtÞ ¼ �PtotðtÞ
maxð�PtotðtÞÞ ; ð4Þ

where Ptot is instantaneous net power from all actuators and t is
time, the number of beats was the number of local maxima in
PNtotðtÞ . 0:3. If two maxima were less than 0.03T apart, the
greater maximum among them was counted as a single beat. This
method eliminated some noise while selecting only the largest
events of energy loss as a ‘beat’. Though it is somewhat arbitrary,

⃗P
L

⃗P

Î<1 Î=1 Î>1

⃗P

Isometric

⃗PR

⃗P ⃗P⃗P

Erot increasing

Erot decreasing

A

B

Fig. 2. Heuristics showing why Murphy
number has opposite effects on walking and
running energetics. An impulse ~P is generated
at the hindlimbs and produces an equal change in
COM velocity (blue arrow) and translational
kinetic energy (Etrans) across all cases. (A) In four-
beat running, as Murphy number (̂I) increases
(left to right), the angular velocity (purple arrow)
and rotational energy (Erot) decrease. When Î<1,
Erot>Etrans and a two-beat gait should be
favoured. (B) In four-beat walking, the impulse
from hindlimb transfer of support generates a
reaction impulse at the forelimbs (~PR) for Î<1, as
in this condition the induced forelimb velocity
change is downward (red arrow). Because of this,
the angular velocity in a four-beat walk does not
change as Murphy number increases. However,
the rotational energy increases proportionally
with the moment of inertia (MOI). A two-beat gait
should be favoured for some Î>1whenErot>Etrans.
For Î>1, the impulse ~P causes a positive change
in forelimb vertical velocity. However, if forces are
not instantaneous, the forelimb can compensate
by reducing its applied force, maintaining a
constant pitch rate. L, half shoulder–hip distance.
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the shape of gait ‘zones’ is fairly robust to changes in tolerance (see
Appendix 4 and Fig. S1 for results using other tolerances).
Limb contact for a given limb was defined as its ground reaction

force (GRF) >0.01mg. Walking was defined as having a duty factor
>0.50 in at least one pair of limbs (fore or hind), and running as all
other cases. Although this distinction aligns with Hildebrand’s use
of the terms ‘walk’ and ‘run’ for symmetrical gaits (Hildebrand,
1965), there are examples in nature of ‘grounded running’where the
COM bounces as in a run, but duty factors exceed 0.5 (Usherwood
et al., 2008; Ren and Hutchinson, 2008).

Calculation of empirical moments of inertia
Pitch MOIs about the COM during standing were derived from
values reported in the literature (Table 1). Alexander (1980)
measured whole-body MOI for an Alsatian dog directly and
reported the normalized value along with body mass. The reference
length (not reported by the author) was derived from fig. 12 in Jayes
and Alexander (1978), which Alexander (1980) used as a reference.
Whole-body MOI for the Dutch warmblood was calculated from
Buchner et al. (1997) using fig. 1 from that study as a guide for limb
and head orientation.
For the elephant and giraffe, no direct MOI measurements are

available, but some studies report estimates using 3D models. Ren
and Hutchinson (2008) provide measured masses and estimated
MOI for elephants. The shoulder–hip length was calculated by
scaling their reported limb lengths to fig. 1 in Ren et al. (2008).
Estimated MOI was also derived for a horse and giraffe from
Henderson and Naish (2010). Shoulder and hip locations were
estimated by comparing their fig. 1 with skeletal drawings or
mounts. COM position was assumed to lie along the shoulder–hip
line, and its bias towards the forelimbs (m′F in Polet and Bertram,
2019) was determined from calculations using Buchner et al. (1997)
for the horse (m′F=0.50) and ground reaction forces from Basu et al.
(2019a) for the giraffe (m′F=0.65). The horse MOI was used to
ground-truth the estimation method of Henderson and Naish (2010),
and yielded Î=0.80, similar to the empirical value of 0.82 (Table 1).

RESULTS
Fig. 3A shows optimal gaits at parameter combinations of Î and U′.
Optimal gaits generally fall into four large regions. At high Î , four-
beat runs and two-beat walks are optimal. At low Î, the reverse is
true. While the cutoff between two- and four-beat runs is
approximately Î≈1, as predicted by Eqn 2, the transition Î for
four-beat to two-beat walking increases from about Î=1.2 at the
highest walking speeds to Î=2.3 at the slowest speeds examined.
The zone where a two-beat walk is optimal forms a wedge in the
upper-left corner of the plot, with the transition speed from two-beat
walk to four-beat run increasing as Murphy number decreases.
A quadrupedal robot with Î≈0.6 (Xi et al., 2016) is predicted to

transition directly from a four-beat walk to two-beat run. Horses and
dogs exhibit Î≈0.8, and are likewise predicted to use a four-beat
walk and two beat run. Elephants have Î very close to 1. Here, a

four-beat gait approximately optimizes work regardless of speed,
except at 0.8<U′<1.1 and 4.3. The giraffe has the most extreme
Murphy number of all the mammals investigated here. The
optimizer predicts three gaits as speed increases: a four-beat walk
for U′<0.26, a two-beat walk for 0.26<U′<0.70, and a four-beat run
when U′>0.70.

Fig. 3B–E shows GRF for four walking solutions atU′=0.31 (see
also Movie 1). During transfer of support of the forelimbs (red),
hindlimb stance forces increase when Î=0.75 (black arrow),
decrease when Î=1.5 and do not change at all when Î=1. Two-
beat walking exhibits no such response (Fig. 3E), as both hindlimbs
and forelimbs transfer support simultaneously.

At the most extreme Murphy number investigated here (̂I=10),
three ‘flavours’ of four-beat runs emerge (Fig. 3F–H; see also
Movie 2). When U′=0.50, the optimal solution is to vault over a
hindlimb in single stance (represented by the double-hump GRF),
transfer to single stance on a forelimb, and repeat the pattern. When
U′=0.88, a hybrid pattern is optimal, with vaulting in hind and bouncing
in fore (the bouncing pattern indicated by the single-hump GRF).
At higher speeds, alternating single-stance bouncing phases are optimal.

DISCUSSION
Four-beat walking was optimal at low Î , while four-beat running
was optimal at high Î (Fig. 3A), supporting the hypothesis that
Murphy number has opposite effects on which gaits minimize
positive work in walking and running. In both walking and running,
there is a tradeoff between distributing collisions between multiple
contacts (favouring four-beat gaits) and avoiding work to pitch the
body (favouring two-beat gaits). During running, the possible
energetic losses from pitching decrease as Murphy number
increases, while in walking, these losses increase with Murphy
number (Fig. 2).

At Murphy numbers typical of dogs and horses (Î≈0.8), the
tradeoff means it is optimal to use a four-beat walk and two-beat run,
as these animals generally do. Indeed, even a quadrupedal robot
with a small Murphy number finds the same 4→2 beat transition to
be optimal (Xi et al., 2016).

For Murphy numbers close to 1, corresponding to elephants, the
tradeoff seems to favour a four-beat gait regardless of speed. The only
exceptions are 0.8<U′<1.1 and 4.3, where a two-beat run is predicted.
In reality, elephants only use four-beat gaits, and it is difficult to
distinguish their transition from walking to running (Ren and
Hutchinson, 2008). Anecdotally, elephants can run as fast as U′≈3.5
for short distances (Andrews, 1937; cited in Howell, 1965), while
self-selected speeds from U′=0.9 to 1 are rare and involve relatively
high variability in limb phase (Hutchinson et al., 2006). The two-beat
gaits predicted in this model for Î=1 are at or near speeds elephants
tend to avoid. For speeds more commonly used by elephants, four-
beat gaits are correctly predicted.

The giraffe has the most extreme Murphy number by far of all the
mammals investigated here. It also has unusual gait patterns,
exhibiting only the walk, canter and gallop, with no intermediate

Table 1. Morphological parameters for several mammalian species used in this study

Species (breed) I (kg m2) L (m) m (kg) Î MOI measurement method Primary source

Canis lupus domesticus (Alsatian) 2.02 0.31 25 0.84 Direct Alexander (1980)
Equus ferus caballus (Thoroughbred) 142 0.68 383 0.80 Indirect (3D model) Henderson and Naish (2010)
Equus ferus caballus (Dutch warmblood) 229 0.73 525 0.82 Direct (Segmented) Buchner et al. (1997)
Loxodonta africana 2005 0.84 2831 0.99 Indirect (3D model) Ren and Hutchinson (2008)
Giraffa camelopardalis 1778 0.81 1611 1.66 Indirect (3D model) Henderson and Naish (2010)

I, pitch moment of inertia; L, half shoulder–hip distance; m, body mass; Î, Murphy number; MOI, moment of inertia.
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trot (Innis, 1958; Dagg and Vos, 1968; Pennycuick, 1975).
The optimization predicts a sensible walk–run transition point of
U′≈0.70, which is close to the slowest running speed observed in
giraffes (U′≈0.8) by Basu et al. (2019b).
However, Fig. 3A predicts that giraffes should have two distinct

walking gaits: a four-beat walk at slow speeds (U′<0.26) and a two-
beat walk at higher speeds (0.26<U′<0.70). Walking giraffes exhibit
a mean hindlimb–forelimb phase offset of 0.14 (range 0.09–0.2:
Loscher, 2015; Basu et al., 2019a), above the 0.0625 limit for a pace
given by Hildebrand (1965). These observations of a four-beat gait
are for an extremely slow normalized speed (0.14<U′<0.30), closely
matching the region where the work-minimizing model predicts a
four-beat walk (Fig. 3A). Is there any evidence of giraffes using a
two-beat walk at intermediate speeds?
The walk of the giraffe has been described in two-beat terms,

including ‘rack-like’ (Innis, 1958) or as a pace (Dagg, 1960). However,
without quantifying the phase relationship or speed at which these

observations were made, it is not clear whether these represent the
same gait quantified as four-beat in other studies (Basu et al., 2019a;
Loscher, 2015). It seems difficult to elicit walking speeds above
U′=0.3 for giraffes in captivity (Christian et al., 1999; Basu et al.,
2019a). Indeed, Innis (1958) reports that wild adult giraffes seem to use
only twomodes: a ‘leisurely’walk or a fast run. This leaves a large gap
(0.3<U′<0.8)where giraffe gait has not been quantified, approximately
where Fig. 3A anticipates a transition to a two-beat walk.

We should not place too much weight on the model’s exact
quantitative predictions in this case. Giraffes occupy a region of Î–U′
space where subtle changes in MOI can have profound changes on
4→2 walk transition speed. Added to the fact that Î is highly sensitive
to L (a 5% change in L can lead to a 10% change in Î), the predicted
four-beat to two-beat walk transition could vary substantially with
measurement error. The two-beat walk to four-beat run transition
speed, however, is less sensitive to choice of Î under this work-centric
optimization model.
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four-beat runs and two-beat walks are optimal. At low Î, the reverse is true. Dogs and horses have Î<1, and exhibit a four-beat walk and two-beat run, as
predicted. Likewise, a robot with low Î finds a 4→2 beat transition to be energetically optimal (Xi et al., 2016). For Î=1, corresponding to elephants, a four-beat gait
optimizes work regardless of whether walking or running, except for small regions at intermediate and extreme speeds. Giraffes have themost extreme Î examined
here and do not use a two-beat run (Innis, 1958). Despite their large Î, a four-beat walk remains optimal at slow speeds. (B–H) Limb-axial ground reaction
force (GRF) for a number of optimal solutions (animated in Movies 1 and 2). A half-cycle is shown in each case; the solution is repeated during the second
half-cycle, but mirrored in the sagittal plane. (B–D) Transfer of support in one pair of limbs during four-beat walking induces a vertical reaction force at the other
pair. (B) When Î<1, the vaulting limb exhibits an increase in GRF (arrows) to cancel the negative reaction force andmaintain its length. (C) At Î=1, the vaulting limb
does not exhibit a change in force. (D) At Î>1, the vaulting limb sees a reduction in midstance force. (E) At slow speeds and high Î, a two-beat walk is optimal.
(F) As speed increases with Î=10, a four-beat ‘running’ solution emerges, with single limb vaulting swapping between forelimbs and hindlimbs. (G) At higher
speeds, the optimal gait is a hybrid between vaulting in the rear and bouncing in the front, reminiscent of the slow tölt (Biknevicius et al., 2004). (H) At still higher
speeds, a typical fast tölt pattern emerges.
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While the model correctly predicts the absence of a two-beat run,
giraffes do not use the predicted symmetrical four-beat run either,
instead opting for a three-beat canter or four-beat gallop. While the
present symmetrically constrained model could not reproduce these
asymmetrical gaits, a collision-based analysis predicts that a canter
should be optimal at intermediate running speeds for a long-limbed
animal with a high Murphy number, such as a giraffe (Usherwood,
2020).

Changes in walking strategy with Murphy number and speed
An interesting effect in walking can be observed as Murphy number
increases. During transfer of support on one set of limbs (e.g. the
hind pair), the leg at the opposite end of the body (e.g. forelimbs)
will exhibit increased reaction force if Î<1 and decreased reaction
force if Î>1 (Fig. 3B–D). Why does this occur?
An impulse at the hindlimbs simultaneously causes the body to

translate upwards and pitch down. Depending on how much the
impulse causes rotation versus translation, the net effect at the
instant of the impulse may be to push the forelimbs up or down. For
Î<1, an impulse at the hips causes the shoulders to descend; at Î>1,
the same impulse causes the shoulders to ascend; and at Î=1 the
shoulders remain (momentarily) stationary (Fig. 2).
During walking, it is advantageous for the vaulting limb to

maintain its length; a change in length while providing axial force
implies that the limb is performing work. The strategy, then, is for
the vaulting limb to cancel the force it feels from the limbs
undergoing transfer of support. For Î<1, double-stance contact
induces a downward force on the vaulting limb, which can respond
by increasing its applied force to maintain its length and perform no
work (Fig. 3B).
For Î>1, double-stance induces an upward force on the vaulting

limb. The vaulting limb therefore responds by reducing its applied
force, maintaining its length (Fig. 3D). At some large Î , this strategy
will fail; the vertical joint reaction force induced on the vaulting
limb exceeds its upward GRF (∼0.5mg). This constraint does not
seem to govern the transition to two-beat walking, however. Î=1.5
and U′=0.3 is near the border between four-beat and two-beat
walking (Fig. 3A), yet the vaulting limb only reduces its applied
force by 0.2mg (Fig. 3D).
The transition from two-beat walking to four-beat running occurs

at lower speeds as the Murphy number increases (Fig. 3A). The
four-beat ‘running’ solution at U′=0.5 and Î=10 demonstrates why
(Fig. 3F; see also Movie 2). The solution is to perform a single-limb
vault over forelimbs, then hindlimbs, and repeat this pattern. This
solution is feasible because the Murphy number is so extreme that
the body barely pitches during single stance, even though it is
supported only at one end.
As we increaseMurphy number, we approach the limit where any

pitching can be effectively ignored. In this limit, we expect all gaits
to be four-beat; it is analogous to a point mass biped with half the
stride length. At slow speeds, a point mass biped should use a
vaulting walk to minimize work (Srinivasan and Ruina, 2006). With
an extra set of legs, it can reduce contact losses by taking twice as
many steps per stride (similar to the solution observed in Fig. 3F). At
intermediate speeds, a point-mass biped should use a hybrid gait: a
pendular run with single-leg contacts (Srinivasan and Ruina, 2006);
again, adding two legs means we simply halve the stride length. The
simulation discovers a similar hybrid gait (Fig. 3G) – reminiscent of
the slow tölt (Biknevicius et al., 2004). The same logic applies to
impulsive running, the minimal-work high-speed gait for a point-
mass biped, resulting in a familiar fast tölt (Fig. 3H). The extreme
case of Î=10 has sufficient pitching energies that a two-beat walking

gait is optimal at slow speeds (Fig. 3E); as we further increase Î , we
expect the four-beat transition speed to decrease.

Conclusions
Contact forces axial to a quadruped’s legs pitch its body, unless
compensated by a counter-torque. The Murphy number
parameterizes the tendency of these contacts to pitch the body
versus accelerate the COM. Large Murphy numbers result in less
energy going into pitching versus translation by single limb contact.
As a result, four-beat running is favoured to minimize positivework,
because it reduces the collisional cost of changing COM
momentum. At lower Murphy numbers, the opposite is true, and
more oscillation of the COM is worth the price to avoid costly
pitching. Two-beat and four-beat running are equally favoured close
to Î=1, matching an analysis by Usherwood (2020).

However, Murphy number has the opposite effect on walking
energetics, due to the geometric constraints of four-beat walking
and the ability of the vaulting limb to counteract some of the effects
felt by transfer of support at the opposite pair of limbs. Altogether,
the work-based model correctly predicts the walking and slow
running gaits selected by dogs, non-gaited horses, elephants and a
quadrupedal robot. It also correctly predicts that giraffes should use
a slow four-beat gait and avoid trotting at high speeds. It does not
(nor can it) predict a canter as the slow-running gait of choice for
giraffes, and predicts that giraffes should use a two-beat walking gait
at intermediate to fast walking speeds (for which there are currently
no data).

Point-mass collisional dynamics predict that all quadrupedal gaits
should be four-beat with alternating single stance contact. It is only
by considering pitching dynamics that other gaits emerge as work-
optimal solutions. Except for some specialized gaits – trotting,
cantering and possibly transverse galloping (Ruina et al., 2005) –
the net torque about the COM is appreciable and energetically
costly. Furthermore, these non-pitching gaits may be commonly
used precisely because pitching would otherwise be extremely
costly. Pitching may be so important energetically, that the best
solution is often to render it absent.

APPENDIX 1
Collisionalworkof one-, two- and four-beat running in a point-
mass model
When an animal is modelled as a simple point mass in running with
inelastic strut-like legs (Fig. 1; see also Ruina et al., 2005), the
vertical landing speed of the COM (V ) is lost at contact. Lost energy
must be resupplied by positive work, at a cost proportional tomV2/2
with every foot contact. How many contacts should a quadruped
use? The time between contacts is given by ballistics as Tc=2V/g.
Given a stride period T, the touchdown speed then depends on the
number of contacts n during a stride as nTc=T (assuming contacts of
infinitesimal duration). The touchdown speed is thus V=gT/(2n); we
can therefore sum across all contacts to get the positive work
required in a stride:

Wstride ¼ n
m

2

gT

2n

� �2

ðA1Þ

¼ mg2T2

8n
: ðA2Þ

As total positive work in the stride is inversely proportional to n, the
quadruped should use as many contacts as possible. What is the
relative cost of a two-beat running gait (e.g. trot) versus a four-beat
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running gait (e.g. tölt)? From Eqn A2:

Wtrot ¼ mðgTÞ2
16

; ðA3Þ

Wt€olt ¼ mðgTÞ2
32

¼ Wtrot=2: ðA4Þ

This is the central paradox from the point-mass collisional
perspective. Because of the additional contacts, a four-beat gait
should always be cheaper than a two-beat gait, but the latter is often
preferred.

APPENDIX 2
Analytical derivation of four-beat versus two-beat running
work in a distributed mass model
The recent article by Usherwood (2020) gives considerable insight
into the energetics of quadrupedal running. It relied on an
assumption that the body remains horizontal, i.e. that time
between contacts is infinitesimally short. However, the rotation
imparted by an impulse at the hindlimbs can perhaps be mitigated
bymaking contact when the body is at an angle to the horizontal. Do
Usherwood’s (2020) claims hold when finite pitching is
considered?
First, we assume that at any given contact, all kinetic energy due to

vertical translation is lost immediately and passively, and that the
actuation is impulsive and perfectly pseudoelastic (that is, it
resupplies exactly the lost energy back into the system, following
Ruina et al., 2005). The energetic cost is exactly the resupplied
energy, or the positive work of the actuators. We also assume that all
actuation is vertical; this is consistent with work-minimizing running
gaits on point-mass systems, where any fore–aft actuation needlessly
decelerates and then reaccelerates the COM (Ruina et al., 2005).
Consequently, the horizontal velocity is immaterial, and the only
kinematic parameter to provide is the stride period T.
We want to know the angular velocity of pitching (ω) due to the

impulsive limb contact. We give our quadruped a pitchMOI of I and
an even mass distribution between the forelimbs and hindlimbs,
with a hind-to-fore distance of 2L. Contact occurs at a pitch angle α
and, because of the symmetry of our organism, we can set an equal
and opposite contact angle for the next limb contact (Fig. A1).
Therefore, the time between contacts must satisfy:

T

4
¼ 2a

v
¼ 2Vt€olt

g
: ðA5Þ

Note that in this section, I use trotting and tölting to refer to
generalized symmetrical two- and four-beat running gaits,
respectively.
With the introduction of the unknown α, we must introduce one

more equation to solve for α and ω. The impulse equations provide
this. A vertical impulse P at the forelimbs creates a change in linear
momentum of P=m(V+−V−), where (·)− and (·)+ denote a variable
before and after the impulse is applied, respectively. With the
assumption that all kinetic energy is lost at contact, we can set V−=0.
We have also defined V+=Vtölt, and so:

P ¼ mVt€olt: ðA6Þ
This same impulse generates a change in angular momentum. The
component perpendicular to the body axis is Pcosα, and so the
change in angular momentum is LPcosα=I(ω+−ω−). Again, with
the assumption that all kinetic energy is lost at contact, and by

defining ω≡ω+, we have:

LPcosa ¼ Iv: ðA7Þ
Solving for P in Eqns A6 and A7 and equating, we get:

v ¼ mVt€oltLcosa

I
: ðA8Þ

We insert Eqn A8 into Eqn A5 to get a constraint on α:

a

cosa
¼ mLT 2g

I64
: ðA9Þ

If we define two non-dimensional parameters Î≡I/mL2 and
T̂≡T√(g/L), then Eqn A9 simplifies to:

64a

cosa
¼ T̂

2

Î
: ðA10Þ

T̂ is normalized stride period and Î is the Murphy number. Eqn A10
tells us that as Î→∞, α→0 for a given T̂ ; in other words, a very large
moment of inertia will involve no pitching of the body, as we would
expect. For a given finite Î , a short stride period (T̂→0) also results
in α→0; in other words, we can use the small angle approximation if
we assume T̂ is sufficiently short, as we might expect in a fast
running gait.

As a tölt requires four steps per cycle, with kinetic energy being
lost in each step, the positive work due to translational and kinetic
energy is:

Wt€olt ¼ 4ðmV 2
t€olt=2þ Iv2=2Þ: ðA11Þ

We use Eqn A5 to find Vt€olt in terms of T and Eqn A8 for ω in terms
of Vt€olt and α. Inserting these values into Eqn A11, we get:

Wt€olt ¼ mðgTÞ2
32

þ ðmLgTcosaÞ2
32I

: ðA12Þ

The first term is due to translation and depends only on the stride
time (given gravity and mass). The second term is due to energy
going into rotation, and now depends on stride time and the
relative values of I, m and L. Recognizing the first term as

W+
tölt = W+

trot/2 ⋅ (1+cos2(α) mL2/I)

m,I

L

Î ≡ I/(mL2)

Translation Rotation

⃗Vtölt

T/2

−
⃗P ⃗P

− ⃗Vtölt

A

B C

α

ω

Fig. A1. A collisional model of tölting that includes pitching. (A) Vertical
contacts generate impulse P that induces the body to pitch at angular speed ω.
(B) The model is defined with contact pitch angle α, body mass m, pitch
moment of inertia I and half-support spacing L. (C) An analysis of the
energetics yields two terms; one associated with translational kinetic energy,
and related to Fig. 1, and another associated with rotational kinetic energy in
which the Murphy number (̂I) appears.
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Eqn A4, we can simplify to:

Wt€olt ¼ Wtrot

2
ð1þ Î

�1
cos2aÞ: ðA13Þ

Using the small angle approximation ( justified from Eqn A10 for
a short stride period), the equation simplifies to:

Wt€olt � Wtrot

2
ð1þ Î

�1Þ; ðA14Þ

which is Eqn 2. It tells us that leg contacts in four-beat running at
small Murphy numbers generate large rotational energy that must
be absorbed at the next contact. Trotting has the advantage of
eliminating pitching completely, but at the cost of fewer leg
contacts.
Fig. A2 shows log10(Wtrot/Wtölt) over a range of stride times and

moments of inertia. The changeover at Î=1 holds for T̂&3. As T̂
continues to increase, tölting remains optimal over trotting for some
Murphy numbers <1, until about T̂=6, where tölting is always
optimal regardless of Murphy number.
For large stride times, costs due to vertical velocity

discontinuities become extremely expensive, while the body’s
rotational velocity is relatively low; both these factors favour tölting.
While running at such large stride times is not common (the slowest
stride times in walking mammals are at T̂≈6; Alexander and Jayes,
1983), this analysis illustrates that other factors come into play at
slow speeds that may make a pitching gait more favourable at small
Î . As shown in the Results, here a four-beat walk is optimal.

APPENDIX 3
The relationship between the Murphy number and kinetic
energy
Assume that an impulsive force, applied to a body at rest at a
distance L from the COM, has a component that is perpendicular to
the moment arm. This component results in a translational velocity
of the COM V and rotational velocity ω. We would like to know the
ratio between the translational and rotational kinetic energy

imparted to the body:

Etrans

Erot
¼ mV 2

Iv2
: ðA15Þ

Eqn A8 applies with Vt€olt=V and α=0. Substituting into Eqn A15:

Etrans

Erot
¼ mV 2I2

Im2L2V 2
ðA16Þ

¼ I

mL2
; Î : ðA17Þ

Therefore, the Murphy number is exactly the ratio of the
translational to rotational kinetic energy imparted by the component
of the impulsive force perpendicular to the moment arm.

APPENDIX 4
Sensitivity analysis for gait detection tolerances
To detect beats, two tolerances were set: minimum peak height (set
at 0.3 times maximum negative power) and minimum distance
between peaks (set at 0.03T ). Fig. S1 shows how different
tolerances affect the shape of gait zones. Only slow speeds –
especially at low Î – are greatly affected by changes in tolerances.
One solution at Î=1.1 and U′=0.9 is also affected. At slow speeds,
some solutions exhibited multiple peaks in negative work in short
succession at transfer of support. With low tolerances, these peaks
are counted as unique beats, leading to six- and eight-beat walks.
The majority of the parameter space is unaffected by changes in
tolerance.

Interpolation scheme for gait zones
Because simulations were time intensive, I inferred beat number for
missing solutions from surrounding solutions at combinations of Î
and U′. However, standard interpolation schemes generally assume
continuous numerical data, whereas the data here are discrete (for
example, a 1.5-beat gait has no meaning here, nor does a three-beat
cycle for a symmetrical solution). Instead, I used an interpolation
scheme based on data points immediately surrounding the missing
data. The algorithm was as follows. (1) For a missing point, find its
immediate surrounding values. (2) If all surrounding values are
equal to each other (x), with some possibly missing, then replace the
current missing point with x. Otherwise, leave the point as missing
and move on to step 1 for the next missing point. (3) Once steps 1
and 2 have iterated over the initial set of missing points, find all
remaining missing points. For each of the remaining missing points,
find its immediate surrounding values. (4) If all surrounding values
are equal to each other (x), with the exception of up to one point,
then fill the missing point with x.

This algorithm fills in missing data by matching them to the
discrete gaits of their neighbours. All missing data points
completely enclosed by a certain gait type would match that gait
type, while missing data at gait transition zones would not be filled
unless surrounded overwhelmingly by one gait type. I do not claim
that this algorithm is a good general-purpose data-filling tool. The
reader can judge from Fig. 3 whether it filled data satisfactorily for
this study.

For minimum peak distance=0.03 and minimum peak
height=0.3, simulations were completed to fill the entire space at
a satisfactory resolution, without any missing points. For the
tolerance sensitivity analysis (Fig. S1), the algorithm could not
discern some solutions at gait transitions, and those data points
remain blank.

1

0.2

0.4

0.6

0.8Î ≡
 I/

m
L2

1

1.2

1.4

1.6

1.8

2 3 4 5 6 7
–1

–0.5

0.5

lo
g 1

0(
W

tro
t /

W
tö

lt)

1

0

T ≡ T √g/L

Fig. A2. log10 of the ratio between trotting and tölting work compared
across a range of combinations of normalized stride time (T̂ ) and Murphy
number (̂I). Note here that an increase in stride time (left to right) normally
results in a speed decrease in organisms. Above 0 (red), tölting is less
expensive; below 0 (blue) trotting is less expensive. As stride period increases,
tölting is optimal even for Î less than 1, because costs due to vertical velocity
discontinuities become extremely expensive, while the body’s rotational
velocity is relatively low.
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Schritt vierfüßiger Lauftiere. Berlin, Germany: Dr. rer. Nat. Freie Universität Berlin.

Murphy, K. N. (1984). Trotting and Bounding in a Simple Planar Model. PhD thesis,
Carnegie-Mellon University, Pittsburgh, PA, USA.

O’Neill, M. C. (2012). Gait-specific metabolic costs and preferred speeds in ring-
tailed lemurs (Lemur catta), with implications for the scaling of locomotor costs.
Am. J. Phys. Anthropol. 149, 356-364. doi:10.1002/ajpa.22132

Patterson, M. A. and Rao, A. V. (2014). GPOPS-II: A MATLAB software for solving
multiple-phase optimal control problems using hp-adaptive gaussian quadrature
collocation methods and sparse nonlinear programming. ACM Trans. Math.
Softw. 41, 1-37. doi:10.1145/2558904

Pennycuick, C. J. (1975). On the running of the gnu (Connochaetes taurinus) and
other animals. J. Exp. Biol. 63, 775-799.

Polet, D. T. and Bertram, J. E. A. (2019). An inelastic quadrupedal model discovers
four-beat walking, two-beat running, and pseudo-elastic actuation as energetically
optimal. PLoS Comput. Biol. 15, e1007444. doi:10.1371/journal.pcbi.1007444

Polet, D. T., Schroeder, R. T. and Bertram, J. E. A. (2018). Reducing gravity takes
the bounce out of running. J. Exp. Biol. 221, jeb162024. doi:10.1242/jeb.162024

Ren, L. and Hutchinson, J. R. (2008). The three-dimensional locomotor dynamics
of African (Loxodonta africana) and Asian (Elephas maximus) elephants reveal a
smooth gait transition at moderate speed. J. R. Soc. Interface 5, 195-211. doi:10.
1098/rsif.2007.1095

Ren, L., Butler, M., Miller, C., Paxton, H., Schwerda, D., Fischer, M. S. and
Hutchinson, J. R. (2008). The movements of limb segments and joints during
locomotion in African and Asian elephants. J. Exp. Biol. 211, 2735-2751. doi:10.
1242/jeb.018820

Ruina, A., Bertram, J. E. A. and Srinivasan, M. (2005). A collisional model of the
energetic cost of support work qualitatively explains leg sequencing in walking and
galloping, pseudo-elastic leg behavior in running and the walk-to-run transition.
J. Theor. Biol. 237, 170-192. doi:10.1016/j.jtbi.2005.04.004

Schmitt, D., Cartmill, M., Griffin, T. M., Hanna, J. B. and Lemelin, P. (2006).
Adaptive value of ambling gaits in primates and other mammals. J. Exp. Biol. 209,
2042-2049. doi:10.1242/jeb.02235

Srinivasan, M. and Ruina, A. (2006). Computer optimization of a minimal biped
model discovers walking and running. Nature 439, 72-75. doi:10.1038/
nature04113

Usherwood, J. R. (2020). An extension to the collisional model of the energetic cost
of support qualitatively explains trotting and the trot-canter transition. J. Exp. Zool.
Part A: Ecol. Integr. Physiol. 333, 9-19. doi:10.1002/jez.2268

Usherwood, J. R., Williams, S. B. and Wilson, A. M. (2007). Mechanics of dog
walking compared with a passive, stiff-limbed, 4-bar linkage model, and their
collisional implications. J. Exp. Biol. 210, 533-540. doi:10.1242/jeb.02647

Usherwood, J. R., Szymanek, K. L. and Daley, M. A. (2008). Compass gait
mechanics account for top walking speeds in ducks and humans. J. Exp. Biol.
211, 3744-3749. doi:10.1242/jeb.023416

Xi, W., Yesilevskiy, Y. and Remy, C. D. (2016). Selecting gaits for economical
locomotion of legged robots. Int. J. Robot. Res. 35, 1140-1154. doi:10.1177/
0278364915612572

Young, J. W., Patel, B. A. and Stevens, N. J. (2007). Body mass distribution and
gait mechanics in fat-tailed dwarf lemurs (Cheirogaleus medius) and patas
monkeys (Erythrocebus patas). J. Hum. Evol. 53, 26-40. doi:10.1016/j.jhevol.
2007.01.005

9

RESEARCH ARTICLE Journal of Experimental Biology (2021) 224, jeb228296. doi:10.1242/jeb.228296

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

https://doi.org/10.5281/zenodo.4292640
https://doi.org/10.5281/zenodo.4292640
https://doi.org/10.5281/zenodo.4292640
https://jeb.biologists.org/lookup/doi/10.1242/jeb.228296.supplemental
https://jeb.biologists.org/lookup/doi/10.1242/jeb.228296.supplemental
https://doi.org/10.1111/j.1469-7998.1980.tb04222.x
https://doi.org/10.1111/j.1469-7998.1980.tb04222.x
https://doi.org/10.1111/j.1469-7998.1983.tb04266.x
https://doi.org/10.1111/j.1469-7998.1983.tb04266.x
https://doi.org/10.1111/j.1469-7998.1983.tb04266.x
https://doi.org/10.1038/nature11399
https://doi.org/10.1038/nature11399
https://doi.org/10.1038/nature11399
https://doi.org/10.1038/nature11399
https://doi.org/10.2307/3239174
https://doi.org/10.1053/tvjl.1998.0297
https://doi.org/10.1053/tvjl.1998.0297
https://doi.org/10.1242/jeb.159277
https://doi.org/10.1242/jeb.159277
https://doi.org/10.1242/jeb.159277
https://doi.org/10.7717/peerj.6312
https://doi.org/10.7717/peerj.6312
https://doi.org/10.7717/peerj.6312
https://doi.org/10.1242/jeb.078543
https://doi.org/10.1242/jeb.078543
https://doi.org/10.1242/jeb.078543
https://doi.org/10.2746/0425164044848190
https://doi.org/10.2746/0425164044848190
https://doi.org/10.2746/0425164044848190
https://doi.org/10.1016/S0021-9290(97)00005-5
https://doi.org/10.1016/S0021-9290(97)00005-5
https://doi.org/10.1016/S0021-9290(97)00005-5
https://doi.org/10.1002/mmng.1999.4860020105
https://doi.org/10.1002/mmng.1999.4860020105
https://doi.org/10.1002/mmng.1999.4860020105
https://doi.org/10.1002/mmng.1999.4860020105
https://doi.org/10.2307/1376381
https://doi.org/10.2307/1376381
https://doi.org/10.1111/j.1469-7998.1974.tb03144.x
https://doi.org/10.1111/j.1469-7998.1974.tb03144.x
https://doi.org/10.1111/j.1469-7998.1968.tb03065.x
https://doi.org/10.1111/j.1469-7998.1968.tb03065.x
https://doi.org/10.1242/jeb.02782
https://doi.org/10.1242/jeb.02782
https://doi.org/10.1242/jeb.02782
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1242/jeb.01177
https://doi.org/10.1242/jeb.01177
https://doi.org/10.1242/jeb.01177
https://doi.org/10.1016/j.jtbi.2010.04.007
https://doi.org/10.1016/j.jtbi.2010.04.007
https://doi.org/10.1016/j.jtbi.2010.04.007
https://doi.org/10.1126/science.150.3697.701
https://doi.org/10.1126/science.150.3697.701
https://doi.org/10.1242/jeb.02443
https://doi.org/10.1242/jeb.02443
https://doi.org/10.1242/jeb.02443
https://doi.org/10.1242/jeb.02443
https://doi.org/10.1111/j.1096-3642.1958.tb00687.x
https://doi.org/10.1111/j.1096-3642.1958.tb00687.x
https://doi.org/10.1111/j.1096-3642.1958.tb00687.x
https://doi.org/10.1111/j.1469-7998.1978.tb03334.x
https://doi.org/10.1111/j.1469-7998.1978.tb03334.x
https://doi.org/10.1111/j.1469-7998.1978.tb03334.x
https://doi.org/10.1115/1.1372322
https://doi.org/10.1115/1.1372322
https://doi.org/10.1115/1.1427703
https://doi.org/10.1115/1.1427703
https://doi.org/10.1113/jphysiol.1977.sp011811
https://doi.org/10.1113/jphysiol.1977.sp011811
https://doi.org/10.1113/jphysiol.1977.sp011811
https://doi.org/10.1098/rspb.2004.3014
https://doi.org/10.1098/rspb.2004.3014
https://doi.org/10.1098/rspb.2004.3014
https://doi.org/10.1002/ajpa.22132
https://doi.org/10.1002/ajpa.22132
https://doi.org/10.1002/ajpa.22132
https://doi.org/10.1145/2558904
https://doi.org/10.1145/2558904
https://doi.org/10.1145/2558904
https://doi.org/10.1145/2558904
https://doi.org/10.1371/journal.pcbi.1007444
https://doi.org/10.1371/journal.pcbi.1007444
https://doi.org/10.1371/journal.pcbi.1007444
https://doi.org/10.1242/jeb.162024
https://doi.org/10.1242/jeb.162024
https://doi.org/10.1098/rsif.2007.1095
https://doi.org/10.1098/rsif.2007.1095
https://doi.org/10.1098/rsif.2007.1095
https://doi.org/10.1098/rsif.2007.1095
https://doi.org/10.1242/jeb.018820
https://doi.org/10.1242/jeb.018820
https://doi.org/10.1242/jeb.018820
https://doi.org/10.1242/jeb.018820
https://doi.org/10.1016/j.jtbi.2005.04.004
https://doi.org/10.1016/j.jtbi.2005.04.004
https://doi.org/10.1016/j.jtbi.2005.04.004
https://doi.org/10.1016/j.jtbi.2005.04.004
https://doi.org/10.1242/jeb.02235
https://doi.org/10.1242/jeb.02235
https://doi.org/10.1242/jeb.02235
https://doi.org/10.1038/nature04113
https://doi.org/10.1038/nature04113
https://doi.org/10.1038/nature04113
https://doi.org/10.1002/jez.2268
https://doi.org/10.1002/jez.2268
https://doi.org/10.1002/jez.2268
https://doi.org/10.1242/jeb.02647
https://doi.org/10.1242/jeb.02647
https://doi.org/10.1242/jeb.02647
https://doi.org/10.1242/jeb.023416
https://doi.org/10.1242/jeb.023416
https://doi.org/10.1242/jeb.023416
https://doi.org/10.1177/0278364915612572
https://doi.org/10.1177/0278364915612572
https://doi.org/10.1177/0278364915612572
https://doi.org/10.1016/j.jhevol.2007.01.005
https://doi.org/10.1016/j.jhevol.2007.01.005
https://doi.org/10.1016/j.jhevol.2007.01.005
https://doi.org/10.1016/j.jhevol.2007.01.005

