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ABSTRACT
Snakes are interesting examples of taxa that can overcome energy
metabolism challenges, as many species can endure long periods
without feeding, and their eventual meals are of reasonably large
sizes, thus exhibiting dual extreme adaptations. Consequently,
metabolic rate increases considerably to attend to the energetic
demand of digestion, absorption and protein synthesis. These
animals should be adapted to transition from these two opposite
states of energy fairly quickly, and therefore we investigated
mitochondrial function plasticity in these states. Herein, we
compared liver mitochondrial bioenergetics of the boid snake Boa
constrictor during fasting and after meal intake. We fasted the snakes
for 60 days, and then we fed a subgroup with 30% of their body size
and evaluated their maximum postprandial response. We measured
liver respiration rates from permeabilized tissue and isolated
mitochondria. From isolated mitochondria, we also measured Ca2+

retention capacity and redox status. Mitochondrial respiration rates
were maximized after feeding, reaching an approximately 60%
increase from fasting levels when energized with complex I-linked
substrates. Interestingly, fasting and fed snakes exhibited similar
respiratory control ratios and citrate synthase activity. Furthermore,
we found no differences in Ca2+ retention capacity, indicating no
increase in susceptibility to mitochondrial permeability transition, and
no changes in mitochondrial redox state, although fed animals
exhibited increases in the release of H2O2. Thus, we conclude that
liver mitochondria from B. constrictor snakes increase respiration
rates during the postprandial period and quickly improve the
bioenergetic capacity without compromising redox balance.
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INTRODUCTION
Mitochondria are complex and dynamic organelles present in
eukaryotic cells responsible for energy production and cellular
homeostasis. They play a fundamental role in balancing energetic

homeostasis via intracellular signaling, apoptosis, andmetabolism of
amino acids, lipids, cholesterol, steroids and nucleotides, and their
primary known function of oxidation of energetic substrates and
ATP production (Duchen, 2000). This energy expenditure at the
cellular level needs to be finely tuned to the varying availability of
energy substrates from food resources and energetic demand from
activities to allow better organismal performance. Animals can face
challenges owing to environmental changes (such as seasonal
scarcity of food), behavior or life-history traits, resulting in an
increase in energy expenditure, such as for reproduction and
migration. One basic regulation of energy expenditure depends on
the control of oxidative phosphorylation (OXPHOS), as this process
accounts for most of the whole-animal oxygen consumption and has
a considerable effect on cellular respiration flux (Benard et al.,
2006; Brown et al., 1990; Dejean et al., 2001; Rolfe and Brown,
1997).

Ambush-foraging snakes are commonly used as experimental
model organisms because of their resistance to long periods of food
deprivation and the magnitude of their physiological responses after
feeding on large meals (Andrade et al., 2004; Lignot et al., 2005;
McCue, 2007, 2008; McCue et al., 2012; Secor and Carey, 2016;
Secor and Diamond, 1998, 2000; Starck and Beese, 2001; Wang
and Rindom, 2021). These snakes survive exceptional long periods
of fasting by employing different strategies for energy conservation,
such as reducing metabolic rates, organ mass and activity, and
control of the mobilization of fuel sources (McCue, 2007; McCue
et al., 2012). In contrast, once fed, ambush-foraging snakes exhibit a
remarkably increased metabolism, of comparatively higher
magnitude than other animals (Secor and Diamond, 1998). The
postprandial metabolic increment after meal intake termed specific
dynamic action (SDA) (Kleiber, 1961) may last for several days,
depending on temperature regime, and meal size and quality
(Andrade et al., 2004; Cruz-Neto et al., 1999; Gavira and Andrade,
2013; Secor and Diamond, 1997). Such elevated metabolism after
feeding is mostly, if not fully, fueled by aerobic metabolism. Thus,
studies of the modulation of energy pathways involving oxidation of
substrates ultimately leading to oxygen consumption and ATP
production through the mitochondrial respiratory chain are essential
to understand the regulation of metabolism at a cellular level.

In endothermic vertebrates, research has mainly focused on the
mitochondrial effects of fasting, and studies conducted in mammals
and birds report that food deprivation is accompanied by decreased
mitochondrial respiration rates and increased rates of reactive
oxygen species (ROS) production (Bourguignon et al., 2017;
Dumas et al., 2004;Menezes-Filho et al., 2019; Roussel et al., 2019;
Sorensen et al., 2006). Mitochondria unwittingly generate ROS as a
by-product, and at low levels, ROS serve as redox signaling
molecules, allowing adaptation to changes in environmental
nutrients and the oxidative environment (Schieber and Chandel,
2014; Shadel and Horvath, 2015). However, excess ROS canReceived 6 July 2021; Accepted 1 October 2021
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exhaust the antioxidant system and promote damage to proteins,
lipids and DNA, leading to oxidative stress (Hamanaka and
Chandel, 2010). In species adapted to prolonged fasting,
including mammalian hibernators, there seem to be mechanisms
that allow the mitigation of oxidative stress (Ensminger et al., 2021).
Nevertheless, although a robust body of literature exists for the
physiological effects of fasting and feeding in snakes (McCue,
2008; Secor, 2009), knowledge of the optimization of metabolism at
the subcellular level during periods of fasting or during the
metabolic increment after meal intake is lacking (Butler et al.,
2016).
We hypothesize that snakes will display mitochondrial plasticity,

exhibiting an increase in the capacity for ATP generation during the
postprandial period following the increase in energetic demand of
digestion and absorption. To test this, we investigated the liver
mitochondrial function and redox balance after 60 days of fasting
and during the postprandial period in the ambush-foraging boid
snake Boa constrictor. This neotropical snake feeds infrequently,
surviving periods of fasting longer than 2 months (McCue and
Pollock, 2008). This species can ingest large meals, exhibiting large
increments in aerobic metabolic rate (Andrade et al., 2004; de
Figueiredo et al., 2020; Toledo et al., 2003; da Mota-Araujo et al.,
2021). As the liver plays a vital role in snake’s metabolism,
participating in the oxidation of triglycerides, the synthesis of
cholesterol, lipoprotein and amino acids, and the control of blood
sugar levels, it is relevant to assess the contribution of this organ to
the overall energetic demand after meal intake. In boas, the liver
exhibits increased mass (Secor and Diamond, 2000) and a larger
volume of glycogen granules 2 days post-feeding (da Mota-Araujo
et al., 2021). Thus, we compared mitochondrial liver bioenergetics
of fasted and fed B. constrictor, evaluating mitochondrial
respiration, Ca2+ retention capacity and mitochondrial redox
status, as well as H2O2 release, NAD(P) redox state and aconitase
activity.

MATERIALS AND METHODS
Reagents
We purchased the fluorescent probes Calcium Green™-5N and
Amplex™ UltraRed from Thermo Fisher Scientific (Eugene, OR,
USA) and dissolved them in deionized water and dimethyl sulfoxide
(DMSO), respectively. All other chemicals were obtained from
Sigma-Aldrich (St Louis, MO, USA). Stock solutions of respiratory
substrates and nucleotides were prepared in a 20 mmol l−1 HEPES
solution with the pH adjusted to 7.2 using KOH.

Animals
We obtained juvenile snakes Boa constrictor Linnaeus 1758 (N=9,
body mass=152.0±16.0 g; total length=73.7±3.3 cm, mean±s.d.)
from Centro de Recuperação de Animais Silvestres do Parque
Ecológico do Tietê (CRAS, São Paulo, SP, Brazil). We housed the
animals in individual boxes (56.4×38.5×20.1 cm, length×width×
height) with venting holes in the lid, under natural light and
temperature (25±2°C, mean±s.d.) with free access towater. Initially,
we fed all animals with mice (Mus musculus) to standardize the
beginning of the treatment (with the equivalent of 5% of their body
masses). After, we kept all snakes in a fasting condition for
2 months. Then, we divided the snakes into two groups: fasting
(N=5) and fed (N=4). We fed the snakes of the ‘fed group’with mice
accounting for 30% of their body mass and euthanized them 2 days
after prey ingestion, which is usually when maximum oxygen
consumption (V̇O2,max) is achieved (peak SDA; Secor and Diamond,
2000; de Figueiredo et al., 2020). We performed all measurements

at the Laboratory of Bioenergetics at Universidade Estadual de
Campinas (UNICAMP), Campinas, SP, Brazil. We anesthetized
the snakes with isoflurane and sectioned the medulla after
cessation of reflexes. All experimental procedures were approved
by the Local Committee for Ethics in Animal Experimentation
(CEUA/UNICAMP: 5301-1/2019) and complied with the ARRIVE
guidelines. The Brazilian Institute for Environment (SISBIO;
number 69655-1) authorized the use of B. constrictor.

Permeabilized liver tissue
We rapidly removed a portion of the liver and immersed it in ice-cold
BIOPS buffer [10 mmol l−1 Ca-EGTA buffer (2.77 mmol l−1

CaK2EGTA, 7.23 mmol l−1 K2EGTA, free concentration of
calcium 0.1 mmol l−1), 20 mmol l−1 imidazole, 50 mmol l−1 KCl
4-morpholinoethanesulfonic acid, 0.5 mmol l−1 dithiothreitol,
7 mmol l−1 MgCl2, 5 mmol l−1 ATP, 15 mmol l−1 phosphocreatine,
pH 7.1]. Then, we permeabilized liver samples of 8 to 10 mg tissue in
ice-cold buffer containing saponin (0.5 mg ml−1) for 30 min, and
gently stirred and washed the samples with MIR05 medium
(60 mmol l−1 potassium lactobionate, 1 mmol l−1 MgCl2,
20 mmol l−1 taurine, 10 mmol l−1 KH2PO4, 20 mmol l−1 HEPES,
110 mmol l−1 sucrose, 1 g l−1 BSA, pH 7.1) at 4°C (Busanello et al.,
2017; Kuznetsov et al., 2008). We dried the samples with filter paper
and weighed them before respirometric measurements.

Mitochondrial isolation
We isolated liver mitochondria by tissue homogenization followed
by conventional differential centrifugation (Ronchi et al., 2013).
Briefly, we removed the liver, which we then finely minced and
homogenized in an isolation medium containing 250 mmol l−1

sucrose, 1 mmol l−1 EGTA and 10 mmol l−1 HEPES buffer
(pH 7.2) at 4°C. We centrifuged the homogenate for 10 min at
800 g. Then, we centrifuged the collected supernatant at 7750 g for
10 min. We resuspended the resulting pellet in buffer containing
250 mmol l−1 sucrose, 0.3 mmol l−1 EGTA and 10 mmol l−1

HEPES buffer (pH 7.2) and centrifuged again at 7750 g for
10 min. We resuspended the final pellet containing liver
mitochondria in an EGTA-free buffer at an approximate protein
concentration of 60 mg ml−1, quantified by the Bradford method
using bovine serum albumin (BSA) as standard.

Mitochondrial oxygen consumption
We measured mitochondrial respiration by monitoring the rates of
oxygen consumption using a high-resolution oxygraph (Oroboros
Instruments, Innsbruck, Austria), equipped with a magnetic
stirrer, in a temperature-controlled chamber maintained at 30°C
for permeabilized tissue and 28°C for isolated mitochondria,
according to standard protocols used for ectothermic animals in our
laboratory. We suspended the permeabilized liver tissues in 2 ml of
MIR-05 supplemented with 300 μmol l−1 EGTA and 5 mmol l−1

malate, 10 mmol l−1 pyruvate and 10 mmol l−1 glutamate. After
measuring the basal O2 consumption, respiration linked to
OXPHOS was elicited by the addition of 400 μmol l−1 of
ADP. Then, we added 1 μg ml−1 of oligomycin to cease the
phosphorylation by ATP synthase (state 4o), which reduces
oxygen consumption. Finally, we titrated carbonyl cyanide
4-(trifluoromethoxy) phenylhydrazone (FCCP) until maximal
electron transport system capacity, which occurred at a
concentration of 800 nmol l−1, eliciting maximal respiration rate
( _Vmax).

We suspended the isolated liver mitochondria (0.5 mg ml−1) in
2 ml of standard reaction medium (125 mmol l−1 sucrose,
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65 mmol l−1 KCl, 2 mmol l−1 KH2PO4, 1 mmol l−1 MgCl2,
10 mmol l−1 HEPES buffer, with the pH adjusted to 7.2 with
KOH) supplemented with 200 μmol l−1 EGTA and 1 mmol l−1

malate, 2.5 mmol l−1 pyruvate and 2.5 mmol l−1 glutamate, which
generate NADH and feed electrons at respiratory complex I. We
performed sequential additions of 300 μmol l−1 ADP, 1 μg ml−1

oligomycin and 100 nmol l−1 FCCP. For isolated mitochondria, we
applied an additional protocol for the evaluation of the different
mitochondrial complexes. We measured basal respiration with
complex I-linked substrates (1 mmol l−1 malate, 2.5 mmol l−1

pyruvate and 2.5 mmol l−1 glutamate), followed by the addition
of ADP and FCCP as described above, then we added 1 μmol l−1

rotenone to block complex I followed by the addition of 5 mmol l−1

succinate to stimulate complex II. Because the addition of
1 μmol l−1 antimycin A or 1 μmol l−1 myxothiazol were without
effect on blocking complex III, we discarded the final addition of
1 mmol l−1 N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD)
plus 100 μmol l−1 ascorbate aimed for stimulation of complex IV.

Assessment of mitochondrial Ca2+ retention capacity
We suspended liver mitochondria (0.5 mg ml−1) in a standard
reaction medium supplemented with 10 μmol l−1 EGTA,
0.2 μmol l−1 of a calcium indicator (Calcium Green™-5N) and
respiratory substrates (1 mmol l−1 malate, 2.5 mmol l−1 pyruvate and
2.5 mmol l−1 glutamate). We continuously monitored the
fluorescence in a spectrofluorometer (Hitachi F-4500, Tokyo,
Japan) at 28°C using excitation and emission wavelengths of 506
and 532 nm, respectively, and slit widths of 5 nm. We performed
repeated pulses of CaCl2 additions (60 μmol l−1) after mitochondria
were added to the system. We measured the amount of CaCl2 added
before the start of Ca2+ release bymitochondria into the medium as an
index of the susceptibility to Ca2+-induced mitochondrial
permeability transition (MPT), confirmed by the assessment of
MPT inhibition in the presence of 1 μmol l−1 cyclosporine A (CsA).
We converted the raw fluorescence readings into Ca2+ concentration
levels (expressed as μmol l−1) according to the hyperbolic equation:
[Ca2+]=Kd×[(F−Fmin)/(Fmax−F)], where Kd is the dissociation
constant, F is any given fluorescence, Fmin is the lowest
fluorescence reading after addition of 0.5 mmol l−1 EGTA and Fmax

is the maximal fluorescence obtained after two sequential additions of
1 mmol l−1 CaCl2. We performed these additions of EGTA and Ca2+

at the end of each trace. We experimentally determined a Kd of
26.8 μmol l−1 for the probe Calcium Green™-5N in the incubation
condition, as previously described (Sartori et al., 2021).

Citrate synthase activity
We measured the catalytic activity of the enzyme citrate synthase in
mitochondrial samples monitoring the conversion of oxaloacetate
and acetyl-CoA to citrate and CoA–SH, and by measuring the
formation of the colorimetric product thionitrobenzoic acid (TNB)
at 412 nm and 37°C (Shepherd and Garland, 1969) on a microplate
reader (Power Wave XS-2, Biotek Instruments, Winooski, VT,
USA). We calculated the enzyme activity using the changes in
absorbance after substrate (250 μmol l−1 oxaloacetate) addition to
the assay buffer (10 mmol l−1 Trizma, pH 8.0) containing
50 μmol l−1 acetyl-CoA and 100 μmol l−1 DTNB.

Hydrogen peroxide (H2O2) release
We monitored the H2O2 released by isolated liver mitochondria by
the conversion of Amplex™UltraRed to fluorescent resorufin in the
presence of horseradish peroxidase (HRP). We incubated the
suspensions of mitochondria from fasting and fed snakes

(0.5 mg ml−1) in a reaction medium containing NAD-linked
substrates (1 mmol l−1 malate, 2.5 mmol l−1 pyruvate and
2.5 mmol l−1 glutamate), 10 μmol l−1 Amplex™ UltraRed,
1 U ml−1 HRP and 30 U ml−1 superoxide dismutase (SOD).
Additionally, we added 100 μmol l−1 phenylmethyl sulfonyl
fluoride (PMSF) to inhibit the conversion of Amplex™ UltraRed
by carboxylesterase independent of H2O2 (Miwa et al., 2016). We
monitored the fluorescence over time with a temperature-controlled
spectrofluorometer at 28°C (Hitachi F-4500, Tokyo, Japan) using
excitation and emission wavelengths of 563 and 586 nm,
respectively, and slit widths of 5 nm. For calibration, we added
known amounts of H2O2 to the reaction medium with mitochondrial
samples.

NAD(P) redox state
We suspended the isolated liver mitochondria (0.5 mg ml−1) in a
standard reaction medium supplemented with 200 μM EGTA, and
5 mmol l−1 succinate plus 1 μmol l−1 rotenone, and monitored the
changes in the redox state of NAD(P) in a spectrofluorometer
(Hitachi F-7100) at 28°C, using excitation and emission
wavelengths of 366 and 450 nm, respectively, and slit widths of
5 nm. We used succinate and rotenone as substrates to prevent
oxidation of NADH at complex I. Of note, only the reduced forms of
NAD(P) exhibit a strong endogenous fluorescence signal. The
peroxide-metabolizing system supported by NADPH was
challenged with exogenous tert-butyl hydroperoxide (t-BOOH),
an organic peroxide metabolized through the glutathione
peroxidase/reductase system (Liu and Kehrer, 1996). As a
reference, we added known amounts of NADH to the reaction
medium in the absence of mitochondria.

Aconitase activity
We measured aconitase activity as the increase of fluorescence
owing to the generation of NADPH from the reduction of NADP+

by exogenous isocitrate dehydrogenase (IDH2). For this, the
isocitrate was previously generated by aconitase (Gardner et al.,
1994). Mitochondria (0.05 mg ml−1) were added to 2 ml of medium
(36 mmol l−1 Tris, 1 mmol l−1 sodium citrate, 25 mmol l−1

KH2PO4, 0.6 mmol l−1 MnCl2, 0.05% Triton X-100,
0.2 mmol l−1 NADP+, 0.5 U ml−1 IDH2, pH 7.4) at 37°C. The
fluorescence was monitored over time in a spectrofluorometer
(Hitachi F-7100) operating with slit widths of 5 nm and using 340
and 450 nm as the excitation and emission wavelengths,
respectively. We calculated the specific enzyme activity using a
calibration curve with known amounts of NADPH.

Statistical analyses
We tested for data normality and homoscedasticity using the Shapiro–
Wilk and Barlett’sK-squared tests, respectively, using the R package.
For variables that met the assumptions of parametric tests, we
performed two-tailed unpaired t-tests for independent samples for
comparison between fasted and fed snakes. Whenever data failed the
premises, we compared the groups using Mann–Whitney tests. We
performed all analyses in PrismGraphPad software v. 7.1.We present
the results as individual data and bars representing means and s.e.m.,
assuming a significance level of 0.05.

RESULTS
Oxygen consumption of liver permeabilized tissue and
isolated mitochondria
Wet liver mass did not differ between fasting (3.2±0.2 g) and fed
snakes (3.0±0.2 g). Oxygen levels started at approximately
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220 nmol ml−1 and were reduced to a minimum level of
approximately 150 nmol ml−1 for permeabilized fibers and
100 nmol ml−1 for isolated mitochondria.
Liver permeabilized tissue from fed snakes exhibited 30% higher

_Vmax than fasting snakes (unpaired t-test, P=0.0086; Fig. 1A). Citrate
synthase activity of liver permeabilized tissue did not differ between
the groups (unpaired t-test,P<0.5; Fig. 1B). For isolatedmitochondria,
fed snakes exhibited 40%, 58% and 64% higher respiration rates
supported by complex I-linked substrates at basal, OXPHOS and
state 4o, respectively, compared with fasting snakes (t-test, P≤0.05;
Fig. 2A,B). Mitochondrial _Vmax stimulated with NAD-linked
substrates was 53% higher in the fed group (t-test, P≤0.05), while
mitochondrial _Vmax stimulated with succinate as substrate for complex
II was not different between fasting and fed snakes (t-test, P=0.19;
Fig. 2C). Boa constrictor mitochondria were insensitive to antimycin
A and myxothiazol for blockade of complex III. Mitochondrial
respiratory control ratios and citrate synthase activity did not differ
between groups (Mann–Whitney, P=0.45; Fig. 2D,E).

Assessment of mitochondrial Ca2 retention capacity
Ca2+ retention capacity was evaluated by sequential additions of Ca2+

pulses (Fig. 3A,B) to the medium. Mitochondria of fasting snakes
were able to take and retain 264±67 nmol Ca2+ mg−1 protein, which
was not different from the 465±79 nmol Ca2+ mg−1 protein retained
by fed snakes (t-test, P>0.05; Fig. 3C). With the presence of CsA,
both groups of snakes similarly increased resistance to MPT opening,
1140±35 nmol Ca2+ mg−1 protein in the fasting group versus
900±173 nmol Ca2+ mg−1 protein in the fed group (Mann–
Whitney, P=0.30; Fig. 3C).

Mitochondrial redox status
H2O2 released from liver mitochondria of fed snakes
(76±16 pmol min−1 mg−1 protein) was 2-fold higher than from
fasting snakes (37±3 pmol min−1 mg−1 protein) (Mann–Whitney,
P=0.02; Fig. 4A,B). There was no difference in the NADPH-
dependent capacity to metabolize peroxide in fasting versus fed
snakes (t-test, P=0.16; Fig. 4C,D). We found no changes in aconitase
activity: in fasting animals, the activity was 56±8 mU mg−1 protein
and in fed animals, 68±13 mU mg−1 protein (Fig. 4E,F).

DISCUSSION
The present study revealed that B. constrictor liver mitochondria
exhibited profound energetic changes in response to a meal intake.

After feeding, mitochondrial respiration rates from B. constrictor
were increased in comparison to unfed snakes. Mitochondria are
dynamic structures, undergoing fusion and fission processes, and
changes in number, morphology and distribution, depending on the
developmental, physiological and environmental conditions
(Mishra and Chan, 2016). Notwithstanding, the capacity to shift
liver mitochondrial profiles 2 days after meal intake in boas was
remarkable, bringing attention to the underlying mechanisms and
the potential effects on mitochondria from other tissues directly or
indirectly involved in the digestion and absorption processes.

Respiration rates from liver permeabilized fibers are in agreement
with those from isolated mitochondria. However, in permeabilized
fibers, we only observed significant differences between fasting and
fed boas regarding the maximal respiration rate. That is because the
permeabilized tissues contain higher intraindividual variability
owing to heterogeneity of the subsampled tissue, in contrast to the
more homogeneous suspensions obtained from the isolation
procedure (Kuznetsov et al., 2002). In liver isolated mitochondria,
we observed remarkable increases in respiration rates related to
basal, oxidative phosphorylation (OXPHOS or state 3), and _Vmax

with NAD-linked substrates of fed snakes in comparison to fasted
snakes.

The increases in mitochondrial respiration rates should reflect the
meal size, time spent fasting and the moment of post-feeding
sampling. For example, varying periods of fasting in B. constrictor
did not change the total energetic cost of digestion. However,
it changed the temporal profile of the postprandial response
(de Figueiredo et al., 2020). The increase in mitochondrial
respiration rates seems to be fueled by NAD-linked substrates
because we did not see differences in _Vmax between fasting and fed
snakes when using substrates that feed electrons to complex II.
Indeed, upregulation of genes for respiratory complex I, among
other genes related to OXPHOS, was reported during digestion in
snakes (Duan et al., 2017). Unfortunately, mitochondrial function
studies in snakes are scarce. Interestingly, a recent study found
that low temperature can impact coupling and efficiency in liver
mitochondria of the snakeNatrix natrix, but only when respiration is
driven by succinate as the respiratory substrate (Dubinin et al.,
2019), indicating that different sources of stimulus can impact
mitochondrial function distinctly in snakes.

Other interesting findings were that feeding did not influence the
quantity or quality of isolated mitochondria of fasting and fed B.
constrictor liver because citrate synthase activity and respiratory
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control ratios were maintained similarly. Mitochondria from fasting
boas exhibited lower respiratory rates in all measured states,
following the low resting energetic demand of the species (de
Figueiredo et al., 2020; Stuginski et al., 2018). The capacity to also
exhibit a lower respiration rate after ATP synthase blockade with
oligomycin (state 4o), which can be used as an indirect measurement
of proton leak rate, could also be considered an important
contributing factor towards energy saving in the liver (Brand
et al., 1993). However, measurements of mitochondrial efficiency
(i.e. ATP/O, as the efficiency with which mitochondria convert
oxygen into ATP) should be considered in future studies to better
characterize the energy conservation at fasting states. For example,
in long-fasting birds, the mitochondrial energy efficiency between
ATP production and O2 consumption was increased (Bourguignon
et al., 2017; Monternier et al., 2015, 2017; Roussel et al., 2019). In
contrast, studies showed that fasting mammals exhibited
compromised mitochondrial efficiency during food deprivation
periods (Brown and Staples, 2011; Menezes-Filho et al., 2019).
Further investigations could also determine the mechanism of the
insensitivity to complex III inhibitors in snakes, which suggests that
the ubiquinol–cytochrome c oxidoreductase complex exhibits a
different molecular structure, as this outcome was also observed in
Bothrops alternatus (Ogo et al., 1993) and Python regius
(Bundgaard et al., 2020). Interestingly, snakes were claimed to
show high levels of modifications in proteins involved in aerobic
metabolism, especially in the complex IV, cytochrome c oxidase
subunit I (Castoe et al., 2008).

Themitochondrial Ca2+ retention capacity is a proxy for evaluating
MPT susceptibility, a phenomenon characterized by the Ca2+-
dependent opening of a non-specific pore in the inner mitochondrial
membrane. MPT affects the structure and function of mitochondria,
which is ultimately related to cell death by apoptosis or necrosis and
tomany pathological conditions (Vercesi et al., 2018). The amount of
Ca2+ that leads to overload, thus triggering MPT, varies with the
source and conditions of mitochondria and the presence of protectors
or inducers acting on the still debated pore constitutional units
(Kowaltowski et al., 2001).MPT can be sensitized by oxidative stress
and oxidized NADPH (NADP+) (Castilho et al., 1995; Vercesi et al.,
1988; Zago et al., 2000), as excess ROS increase oxidation of protein
thiols and promotes disulfide bonds and cross-linked protein
aggregation in the inner mitochondrial membrane (Castilho et al.,
1995; Fagian et al., 1990; Valle et al., 1993; Vercesi, 1984). Unlike
mice mitochondria, which showed a higher susceptibility to MPT at
fasting (Menezes-Filho et al., 2019), snakes exhibited no significant
differences in mitochondrial Ca2+ retention in response to feeding,
despite the tendency of lower Ca2+ retention capacity at fasting. CsA
reversed this tendency, although maintaining the lack of significant
differences.

Regarding the redox status, liver mitochondria from fed B.
constrictor exhibited higher rates of H2O2 release after ingestion of a
meal than after fasting. Results from the literature should be
compared with caution as the differences depend on the substrates,
the respiratory state measured, the technique used, and the capacity
of H2O2 scavenging (Munro and Pamenter, 2019). In birds, it was
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also found that liver mitochondria released higher rates of H2O2 at a
basal state after feeding than after fasting, using NAD-linked
substrates and succinate (Roussel et al., 2019). In contrast, fasting
brown trout (Salmo trutta) exhibited higher in vivo levels of H2O2

when subjected to fasting than when feeding continuously for
2 weeks (Salin et al., 2018). Rat liver mitochondria also exhibited
higher levels of H2O2 in the 72 h fasting group compared with a
control, overnight fasting group, measured at phosphorylation state
with succinate as a substrate (Sorensen et al., 2006). The reduced
H2O2 of fasting boas may be due to the low energetic demand
during fasting in snakes (Ensminger et al., 2021) and may be related
to the remarkable capacity of metabolic regulation in such animals
(McCue, 2007). Nevertheless, a 2-month fasting period in B.
constrictor may not be sufficient to induce detrimental effects
in mitochondria. Ambush-hunting snakes were shown to possess
lower metabolic rates than active foraging snakes that feed more
frequently (Stuginski et al., 2018), meaning that the energetic costs
could be sustained for long periods using stored energy reserves.
For example, the rattlesnake Crotalus durissuswas shown to endure
12 months of food deprivation with slow body mass loss and no
changes in resting VO2

(Leite et al., 2014). We did not observe
differences in the redox status of NAD(P), indicating that the
reducing power used for the antioxidant system was similar in both
fasting and fed conditions. We also did not find differences in
aconitase activity, a redox-sensible enzyme whose activity is
reversibly decreased by oxidants (Sadek et al., 2002; Scandroglio
et al., 2014). Supporting evidence showed an increased antioxidant

defense in digesting snakes, as genes encoding antioxidant enzymes
such as catalase, peroxiredoxin, glutathionine transferase and heat
shock protein were shown to be upregulated in digesting pythons
(Duan et al., 2017). Our results suggest that the increased H2O2

released by mitochondria from fed boas did not compromise the
mitochondrial redox balance.

Studies are increasingly showing that ROS generation is not
essentially connected to damage, with demonstrations that ROS can
act as signaling molecules, playing an essential role in the crosstalk
from mitochondria and nucleus to maintain cell homeostasis
(Shadel and Horvath, 2015). Of note, in mammals, there are
remarkable differences between an acute fasting event and chronic
fasting regimes as intermittent fasting or caloric restriction
interventions. In both intermittent fasting and caloric restriction,
there is growing evidence that chronic recurrent fasting regimes
improve defenses against oxidative stress and repair damaged
molecules (de Cabo and Mattson, 2019). In liver mitochondria from
rodents, caloric restriction did not affect respiration rates but
reduced ROS generation when energized with complex I-linked
substrates and protected against MPT opening (Lambert et al., 2004;
López-Torres et al., 2002; Menezes-Filho et al., 2017). Similar
adaptive mechanisms can be potentially operative in B. constrictor,
which is adapted to recurrent fasting regimes. Nevertheless, more
studies could be performed to carefully evaluate the contrasting
effects of transient beneficial ROS and harmful sustained elevated
ROS levels in response to a fasting–feeding transition in snakes with
different feeding strategies.
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Concluding remarks
In summary, our results show that liver mitochondria of
B. constrictor possess postprandial effects, exhibiting a rapid shift
of mitochondrial bioenergetics towards higher respiration rates and
OXPHOS supported by complex I-linked substrates, demonstrating
the plasticity of mitochondrial function in snakes. Furthermore, our
results show that the adaptation in mitochondrial function of boas

might play a vital role in the fasting and feeding transition and be
pivotal in organismal fitness by affecting animal performance.
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Scandroglio, F., Tórtora, V., Radi, R. and Castro, L. (2014). Metabolic control
analysis of mitochondrial aconitase: influence over respiration and mitochondrial
superoxide and hydrogen peroxide production. Free Radic. Res. 48, 684-693.
doi:10.3109/10715762.2014.900175

Schieber, M. and Chandel, N. S. (2014). ROS function in redox signaling and
oxidative stress. Curr. Biol. 24, R453-R462. doi:10.1016/j.cub.2014.03.034

Secor, S. M. (2009). Specific dynamic action: a review of the postprandial metabolic
response. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 179, 1-56.
doi:10.1007/s00360-008-0283-7

Secor, S. M. and Carey, H. V. (2016). Integrative physiology of fasting. Compr.
Physiol. 6, 773-825.

Secor, S. M. and Diamond, J. (1997). Effects of meal size on postprandial
responses in juvenile Burmese pythons (Python molurus). Am. J. Physiol. Integr.
Comp. Physiol. 272, R902-R912. doi:10.1152/ajpregu.1997.272.3.R902

Secor, S. M. and Diamond, J. (1998). A vertebrate model of extreme physiological
regulation. Nature 395, 659-662. doi:10.1038/27131

Secor, S. M. and Diamond, J. M. (2000). Evolution of regulatory responses to
feeding in snakes. Physiol. Biochem. Zool. 73, 123-141. doi:10.1086/316734

Shadel, G. S. and Horvath, T. L. (2015). Mitochondrial ROS signaling in organismal
homeostasis. Cell 163, 560-569. doi:10.1016/j.cell.2015.10.001

Shepherd, D. and Garland, P. B. (1969). The kinetic properties of citrate synthase
from rat liver mitochondria. Biochem. J. 114, 597-610.
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