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Repeated stimulation of the HPA axis alters white blood cell count
without increasing oxidative stress or inflammatory cytokines
in fasting elephant seal pups
David C. Ensminger1,2,*, Daniel E. Crocker3, Emily K. Lam1, Kaitlin N. Allen1 and José Pablo Vázquez-Medina1

ABSTRACT
The hypothalamic–pituitary–adrenal (HPA) axis controls the release
of glucocorticoids, which regulate immune and inflammatory function
by modulating cytokines, white blood cells and oxidative stress via
glucocorticoid receptor (GR) signaling. Although the response toHPA
activation is well characterized in many species, little is known about
the impacts of HPA activation during extreme physiological
conditions. Hence, we challenged 18 simultaneously fasting and
developing elephant seal pups with daily intramuscular injections of
adrenocorticotropin (ACTH), a GR antagonist (RU486), or a
combination of the two (ACTH+RU486) for 4 days. We collected
blood at baseline, 2 h and 4 days after the beginning of treatment.
ACTH and ACTH+RU486 elevated serum aldosterone and cortisol at
2 h, with effects diminishing at 4 days. RU486 alone induced a
compensatory increase in aldosterone, but not cortisol, at 4 days.
ACTH decreased neutrophils at 2 h, while decreasing lymphocytes
and increasing the neutrophil:lymphocyte ratio at 4 days. These
effects were abolished by RU486. Despite alterations in white blood
cells, there was no effect of ACTH or RU486 on transforming growth
factor-β or interleukin-6 levels; however, both cytokines decreased
with the 4 day fasting progression. Similarly, ACTH did not impact
protein oxidation, lipid peroxidation or antioxidant enzymes, but
plasma isoprostanes and catalase activity decreased while
glutathione peroxidase increased with fasting progression. These
data demonstrate differential acute (2 h) and chronic (4 days)
modulatory effects of HPA activation on white blood cells and that
the chronic effect is mediated, at least in part, by GR. These results
also underscore elephant seals’ extraordinary resistance to oxidative
stress derived from repeated HPA activation.
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mammals, Glucocorticoids, Antioxidants, Receptor signaling

INTRODUCTION
The hypothalamic–pituitary–adrenal (HPA) axis facilitates
organismal responses to metabolic perturbations and environmental
stressors (Sapolsky et al., 2000; Tsigos and Chrousos, 2002). Upon
activation of the HPA axis, the hypothalamus secretes corticotropin-
releasing hormone, which stimulates the anterior pituitary to

release adrenocorticotropin (ACTH; Plotsky et al., 1989). ACTH
then acts on the adrenal cortex to induce the secretion of
corticosteroids including the glucocorticoid cortisol and the
mineralocorticoid aldosterone (Haning and Tait, 1970). Cortisol
and aldosterone promote energy mobilization and osmotic balance
via cellular signaling involving glucocorticoid (GR) and
mineralocorticoid receptors (MR; MacDougall-Shackleton et al.,
2019). Thus, adrenocorticosteroids impact many physiological
processes including lipolysis, immune function and oxidative stress
(Wilckens, 1995; Sapolsky et al., 2000; Xu et al., 2009; Costantini
et al., 2011).

While glucocorticoids have well-characterized immunosuppressive
effects (Claman, 1972; De Bosscher et al., 2000), acute
glucocorticoid release also enhances immune function through
alterations in white blood cells and cytokine production (Dhabhar
and McEwen, 1996; McInnis et al., 2015). As glucocorticoid
elevations persist, however, the physiological response shifts to
prevent long-term hyperactivity, resulting in decreased white blood
cell count and reduced expression of pro-inflammatory cytokines
including interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α;
Claman, 1972; Dhabhar, 2009). This highlights the role of GR-
mediated glucocorticoid signaling in inflammation (Baschant
and Tuckermann, 2010) and the opposing impacts of acute versus
chronic glucocorticoid exposure on immune function (Dhabhar
and McEwen, 1997; Dhabhar, 2009). While glucocorticoids,
mineralcorticoids and white blood cells play important roles in
the production of reactive oxygen species (ROS; Smith and
Weidemann, 1993; Yang et al., 2013; Costantini et al., 2011;
Spiers et al., 2015; Ferreira et al., 2021), the contrasting actions of
GR signaling with stressor duration obscure broad predictions of the
role of HPA axis activation on ROS production and redox balance.

ROS are essential for cellular signaling and the immune response
(Dröge, 2002; Hamanaka and Chandel, 2010; Yang et al., 2013),
but dysregulated ROS generation promotes oxidative stress (Sies,
2019). White blood cells such as neutrophils use superoxide and
hydrogen peroxide generated during phagocytosis as part of
the respiratory burst, an essential component of the innate
immune response (Babior, 1984; Alberts et al., 2008). Moreover,
mitochondrial and NADPH oxidase-derived ROS generation
increase in response to GR and MR signaling (McIntosh and
Sapolsky, 1996; Houstis et al., 2006; You et al., 2009; Spiers et al.,
2015). In addition to modulating ROS generation, glucocorticoids
have differential impacts on antioxidants (Costantini et al., 2011).
Acute glucocorticoid exposure increases antioxidant enzyme
expression and activity (Yoshioka et al., 1994; Atanasova et al.,
2009) while chronic exposure has the opposite effect (Djordjevic
et al., 2010). The three-way interaction between glucocorticoids,
immune cells and ROS generation/removal thus complicates
extrapolation of the impact of HPA axis activation on redoxReceived 19 July 2021; Accepted 1 September 2021
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balance in animals undergoing extreme life history events (Stier
et al., 2019; Gormally and Romero, 2020; Ensminger et al., 2021).
Northern elephant seals (Mirounga angustirostris) molt and

develop during prolonged terrestrial fasts and frequently experience
sleep apnea, hypoxemia and ischemia/reperfusion (Vázquez-
Medina et al., 2012; Allen and Vázquez-Medina, 2019). In many
animals, these processes increase oxidative stress and inflammation
(Sakamoto et al., 1991; Colominas-Ciuró et al., 2019). Elephant
seals, however, can sustain these fasts for months without
experiencing oxidative stress or inflammation (Vázquez-Medina
et al., 2010, 2013). Fasting-induced increases in antioxidants
(Vázquez- Medina et al., 2010, 2011a) allow elephant seals to cope
with physiological oxidative stress (Vázquez- Medina et al., 2012,
2013). Whether this adaptation of the redox system extends to the
systemic response to HPA axis activation is unknown. To our
knowledge, no previous study has experimentally manipulated the
HPA axis and looked at redox biology and immune function
markers in pinnipeds.
The impacts of glucocorticoids on redox homeostasis in marine

mammals are poorly understood. Therefore, we studied whether
acute or repeated activation of the HPA axis and GR signaling
regulate immune cell function and redox balance in elephant seals.
Elephant seals are a unique marine mammal species in which
to study the impacts of acute and chronic HPA axis activation as
they fast on land for months (Le Boeuf et al., 1973), maintain a
functioning HPA axis response (Ensminger et al., 2014;
McCormley et al., 2018), and are highly tractable, which allows
repeated sampling. Previous work in this species shows that HPA
axis activation with exogenous ACTH increases circulating cortisol
and aldosterone (Ensminger et al., 2014; McCormley et al., 2018).
Additionally, ex vivo and in vivo transcriptomics studies
(Khudyakov et al., 2015, 2017; Deyarmin et al., 2019; Torres-
Velarde et al., 2021) highlight the impact of glucocorticoids on
expression of genes involved in redox metabolism including polo-
like kinase 3, thioredoxin, DNA damage inducible transcript 4 and
glutathione peroxidase (GPx) 4. Here, we used exogenous ACTH
and a GR blocker to study the effects of acute and chronic HPA axis
activation and GR signaling on oxidative stress and immune
function in elephant seals. We predicted that ACTH would alter
redox balance in elephant seals, with acute ACTH and GR blockade
increasing antioxidant enzymes and chronic ACTH increasing
oxidative damage. Additionally, we predicted ACTH treatment
would alter white blood cell composition, leading to an increase in
neutrophils and a decrease in lymphocytes with acute ACTH, and a
decrease in neutrophils with chronic ACTH. Finally, we predicted
that ACTH treatment would lead to a pro-inflammatory phenotype
and that these parameters would be mediated, at least in part, by GR.

MATERIALS AND METHODS
Study site and study animals
All animal procedures were approved by the Sonoma State
University and UC Berkeley Institutional Animal Care and Use
Committees and were conducted under the National Marine
Fisheries Service permit # 19108. Eighteen post-weaned
(8 females, 10 males; simultaneously fasting and developing)
early fasting (1–2 weeks, pre-molted) elephant seal pups,Mirounga
angustirostris (Gill 1866), were studied at Año Nuevo State Park,
CA, USA.

Field procedures and sample collection
Animals were chemically immobilized with an intramuscular
injection of ∼1 mg kg−1 tiletamine/zolazepam HCl (Telazol, Fort

Dodge Animal Health, Fort Dodge, IA, USA). Immobilization was
maintained with intravenous injections of ketamine HCl (Ketaset,
Fort Dodge Animal Health). Animals were randomly assigned to
one of three groups: (1) daily intramuscular injection of slow-release
adrenocorticotropin LA gel (4 females, 2 males; ACTH; Westwood
Pharmacy, Richmond, VA, USA) for 4 days, (2) subcutaneous
implant of 4 day time-release GR blocker pellets (2 females, 4
males; RU486; Arcos Organics, Fair Lawn, NJ, USA; Innovative
Research of America, Sarasota, FL, USA), or (3) ACTH+RU486
treatment (2 females, 4 males). While the sample sizes per sex are
small per treatment, there are no major sex effects at this stage in
development in this species; hence, we do not suggest any sex
effects in our studies (Ortiz et al., 2001; Yochem et al., 2008;
Vázquez-Medina et al., 2011a,b).

Animals were given 0.22±0.01 U kg−1 (mean±s.e.m.) of ACTH
and/or 3.130±0.102 mg kg−1 of RU486. ACTH doses were chosen
based on previously published work from juvenile elephant seals
(McCormley et al., 2018). RU486 implants were positioned
laterally, approximately 220 mm superior to the pelvic girdle at
the muscle interface, after making a small incision on the skin with a
sterile scalpel and removing a blubber core using a 6.0 mm diameter
biopsy punch (Vázquez-Medina et al., 2010). ACTH injections
were given on the opposite side to where the RU486 implants were
positioned. Body mass was collected via the truncated cones
method (Crocker et al., 2001), which provides estimates within 5%
of that obtained via direct measurement (Crocker et al., 2012).
Blood samples were collected from the extradural vein into chilled
serum and EDTA vacutainer tubes for analysis at baseline and 2 h
post-treatment. ACTH injections on days 2, 3 and 4 were given as
remote injections and did not involve animal handling or
disturbance. Four days later, animals were again immobilized and
sampled 2 h after the last ACTH injection (Fig. 1). This sampling
regime does not induce a stress response in elephant seals
(Champagne et al., 2012; McCormley et al., 2018). Samples were
transported on ice to the laboratory where serum and plasma were
prepared and stored at −80°C until analysis.

Whole-blood, serum and plasma analysis
Hematology
Complete white blood cell counts were measured in whole blood
using an automated hematology analyzer previously used to analyze
pinniped blood (VetScan HM5, Abaxis Inc., Union City, CA, USA;
Unal et al., 2018, Thompson and Romano, 2019).

Corticosteroids and metabolites
Cortisol (11-CORHU-E01, Alpco, Salem, NH, USA) and
aldosterone (11-AD2HU-E01, Alpco) were measured in serum
using EIA kits validated for use in elephant seals (McCormley
et al., 2018). Non-esterified fatty acids [NEFA; HR Series NEFA-
HR(2), Wako Chemicals, Richmond, VA, USA], and triglycerides
(10010303, Cayman Chemical, Ann Arbor, MI, USA) were
measured in plasma using enzymatic colorimetric assays as
previously described (Ortiz et al., 2003a,b; Viscarra et al., 2012).

Antioxidants
Plasma GPx (703102, Cayman Chemical), glutathione-disulfide
reductase (GSR; 703202, Cayman Chemical) and catalase activity
(707002, Cayman Chemical), along with total thiols (700340,
Cayman Chemical) were measured using colorimetric kits
previously used in elephant seals (Vázquez-Medina et al., 2010;
Sharick et al., 2015), or validated via parallelism and spiked
recovery (total thiols).
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Oxidative damage
Plasma F2-isoprostanes, a marker for lipid peroxidation, were
measured using gas chromatography-mass spectrometry at the
Vanderbilt University Eicosanoid Core Laboratory as previously
described (Milne et al., 2007; Vázquez-Medina et al., 2010). Protein
carbonyls were measured using commercial EIA assays (STA-310,
Cell Bio Labs, San Diego, CA, USA) validated for elephant seals
via parallelism and spiked recovery.

Cytokines
Plasma transforming growth factor beta (TGF-β; DY240,
R&D Systems, Minneapolis, MN, USA) and IL-6 (ELC-IL6-1,
RayBioTech, Norcross, GA, USA) were measured using commercial
kits previously validated for elephant seals (IL-6; Peck et al., 2016) or
validated via parallelism and spiked recovery (TGF-β).
All samples were analyzed in duplicate. The average coefficient

of variation for blood, plasma and serum analyses was 6.33% for
intra-assay and 3.84% for inter-assay variation.

Data analysis
Data were analyzed using linear mixed models (v.1.1.463, R
Development Core Team, Boston, MA, USA; package lme4: https://
CRAN.R-project.org/package=lme4) and met the assumptions of
the models. Figures were made in RStudio (package ggplot2:
https://CRAN.R-project.org/package=ggplot2). For all models,
treatment, time point and the interaction of treatment and time
point were included as fixed effects and seal ID was included as a
random effect. The interaction term of treatment and time point was
removed if it did not significantly explain variation in the models
(P>0.20). Seal mass, sex and mass-specific treatments were
originally included in the models but were removed stepwise as
they did not explain variation (P>0.20). Tukey’s post hoc tests were
used to identify specific effects. Line graph data are represented as
means±s.e.m., and box and whisker data are presented as median,

upper quartile, lower quartile, and 1.5× interquartile range
(whiskers). Effect sizes were calculated as partial eta squared (η2p).
Results were considered significant at P<0.05.

RESULTS
Repeated stimulation of the HPA axis causes differential
effects on adrenal steroids
We measured circulating cortisol and aldosterone to corroborate
acute and sustained activation of the HPA axis by exogenous ACTH
and RU486. Both treatment and time had an effect on serum
cortisol and aldosterone (cortisol: F2,52=42.549, P<0.001, η

2
p=0.85;

F2,52=220.069, P<0.001, η2p=0.94; aldosterone: F2,52=4.880,
P=0.023, η2p=0.39; F2,52=57.087, P<0.001, η

2
p=0.79). There was

an interaction between treatment and time which led to differential
effects on circulating cortisol and aldosterone (F4,50=52.187,
P<0.001, η2p=0.87; F4,50=8.775, P<0.001, η

2
p=0.54). Acute ACTH

injection increased both cortisol and aldosterone after 2 h (+366%,
+186%; Fig. 2). Similarly, both the cortisol and aldosterone post-
ACTH responses were maintained after four daily ACTH injections
(+264%, +195%); however, the magnitude of the cortisol response
at 4 days was attenuated compared with that at 2 h (−22%; Fig. 2).
ACTH+RU486 did not change the response compared with ACTH
alone. Moreover, aldosterone increased in response to RU486 alone
at 4 days (+92%; Fig. 2A,B). These results show that (1) exogenous
ACTH administration increases adrenocorticosteroids in post-
weaning elephant seals, (2) repeated ACTH treatment for 4 days
decreases the cortisol but not the aldosterone response, and (3) GR
blockade with RU486 for 4 days causes a compensatory increase in
circulating aldosterone.

Repeated stimulation of the HPA axis does not induce
oxidative stress in fasting elephant seal pups
Sustained glucocorticoid release induces oxidative stress in several
vertebrates (Costantini et al., 2011). Hence, we measured circulating

Day 1
ACTH and/or RU486

Day 2
ACTH

Day 3
ACTH

Day 4
ACTH

Basal
sample 

2 h
sample

4 day
sample

Fig. 1. Field procedures and sample collection. Graphical representation of the experimental design for adrenocorticotropin (ACTH) and glucocorticoid
receptor (GR) blocker (RU486) treatment and blood sampling. Seals were given ACTH and/or RU486. Slow-release ACTH gel was administered every 24 h
for 4 days, with ACTH administration on days 2, 3 and 4 via remote injection with no animal handling or disturbance. A 4 day time-release tablet of RU486
was implanted on day 1. Blood samples were taken before treatment administration, 2 h post-treatment administration, and 2 h after the fourth day of
treatment.
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antioxidants, lipid peroxidation and protein oxidation to assess the
impact of acute and repeated HPA stimulation on oxidative stress in
fasting elephant seal pups. While treatment did not alter F2-
isoprostanes, there was an impact of time on F2-isoprostanes
(F2,52=2.697, P=0.100, η

2
p=0.26; F2,52=4.612, P=0.017, η

2
p=0.22),

with concentrations lower at 4 days than at 2 h (−21%; Fig. 3A).
There was no impact of treatment or time on protein carbonyls
(F2,52=0.266, P=0.770, η

2
p=0.03; F2,52=2.599, P=0.089, η

2
p=0.13;

Fig. 3B). Together, these data show that neither acute nor repeated
stimulation of the HPA axis or endogenous GR blockade for 4 days
causes systemic oxidative damage despite promoting robust
adrenocorticosteroid release in fasting elephant seal pups.
We then measured plasma antioxidants to explore whether

manipulation of the HPA axis or endogenous GR blockade alters
antioxidant defenses in fasting elephant seal pups. Treatment did not
impact catalase or GSR activity (F2,52=0.669, P=0.528, η2p=0.09;
F2,52=0.585, P=0.570, η2p=0.07). Surprisingly, both catalase and
GSR activity decreased at 4 days compared with baseline (−15%,
F2,52=9.705, P<0.001, η2p=0.38; −5%, F2,52=5.113, P=0.011,
η2p=0.21; Fig. 4A,B). Treatment did not impact GPx, but, in
contrast to catalase and GSR, GPx activity increased at 4 days

compared with baseline and 2 h (F2,52=0.602, P=0.561, η
2
p=0.07;

+12%, +11%, F2,52=6.921, P=0.003, η
2
p=0.29; Fig. 4C). There were

trends for the impact of treatment and time on total thiols
(F2,52=3.225, P=0.069, η

2
p=0.30; F2,52=2.913, P=0.070, η

2
p=0.16).

RU486 tended to increase total thiols compared with
ACTH+RU486 (+8%), while concentrations tended to be higher
on day 4 compared with 2 h (+7%; Fig. 4D). There was no
interaction between treatment and time for total thiols (F4,50=1.946,
P=0.129, η2p=0.21). These data show that increased antioxidant
defenses do not account for the absence of systemic oxidative
damage during acute or repeated stimulation of the HPA axis or
endogenous GR blockade in elephant seals.

Stimulation of the HPA axis does not induce lipolysis in
postweaning elephant seals
In most animals, glucocorticoid release increases fuel availability
through the liberation of stored energy. Hence, we measured
circulating NEFA and triglyceride levels to assess the impacts of
acute and repeated stimulation of the HPA axis on circulating lipids.
NEFA was not altered by treatment, time or the interaction of
treatment and time (F2,52=0.663, P=0.530, η2p=0.08; F2,52=0.771,
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P=0.471, η2p=0.05; F4,50=2.144, P=0.100, η2p=0.22; Table 1).
Similarly, triglycerides were not affected by treatment or the
interaction of treatment and time (F2,52=0.630, P=0.546, η2p=0.08;
F4,50=2.135, P=0.101, η2p=0.08). However, triglycerides were
impacted by time (F2,52=4.391, P=0.021, η2p=0.24), with
triglyceride concentrations being lower at 4 days compared
with baseline or 2 h (−26%, −28%; Table 1). These data
show that neither ACTH nor GR signaling alter rates of lipolysis
in post-weaned (simultaneously fasting and developing) elephant
seals.

Acute and repeated stimulation of the HPA axis alters white
blood cell count without affecting cytokine levels
Wemeasured white blood cell count and cytokine levels to examine
the role of acute and repeated stimulation of the HPA axis and GR
signaling on the immune system in elephant seals. Neither treatment
nor time altered total white blood cell count (F2,52=0.238, P=0.791,
η2p=0.03; F2,52=0.432, P=0.653, η

2
p=0.03). There was a trend for an

interaction; however, post hoc analysis revealed no differences
(F4,50=2.607, P=0.057, η

2
p=0.27; Fig. 5A). Treatment did not affect

the neutrophil percentage, but this increased at 4 days compared
with baseline and 2 h (F2,52=2.625, P=0.108, η

2
p=0.27; +4%, +8%,

F2,52=7.984, P=0.001, η
2
p=0.33; Fig. 5B). In contrast, both treatment

and time impacted lymphocyte percentage (F2,52=4.433, P=0.032,

η2p=0.39; F2,52=11.070, P<0.001, η2p=0.41). ACTH lowered
lymphocyte percentage compared with ACTH+RU486 or RU486
(−22%,−24%) and this was also lower at 4 days than either baseline
or at 2 h (−23%,−29%, Fig. 5C). Similar to lymphocyte percentage,
both treatment and time altered the neutrophil:lymphocyte ratio
(F2,52=5.927, P=0.014, η2p=0.46; F2,52=13.132, P<0.001, η2p=0.45).
ACTH increased the neutrophil:lymphocyte ratio compared with
ACTH+RU486 or RU486 (+28%, +40%; Fig. 5D). The neutrophil:
lymphocyte ratio was higher at 4 days compared with baseline and
2 h (+29%, +47%; Fig. 5D). These results show that acute and
repeated stimulation of the HPA axis have differential effects on
white blood cell count in elephant seals. While acute stimulation of
the HPA axis does not have an effect on the neutrophil:lymphocyte
ratio, repeated activation increases the neutrophil:lymphocyte ratio,
suggesting a shift in the immune response, which is mediated
by GR.

We then measured plasma cytokine levels to explore whether
HPA axis activation or GR signaling alter circulating cytokine
levels. Neither treatment nor time altered TGF-β or IL-6 levels
(TGF-β: F2,52=2.112, P=0.155, η

2
p=0.22; F2,52=2.640, P=0.086,

η2p=0.14; IL-6: F2,52=1.404, P=0.276, η2p=0.16; F2,52=2.632,
P=0.087, η2p=0.13; Table 1). These data show that despite altering
white blood cell proportions, repeated stimulation of the HPA axis
does not increase cytokine expression in elephant seals,
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Fig. 5. Acute and repeated stimulation of the HPA axis
alters white blood cell count. White blood cell count and
composition during basal conditions and after 2 h and 4 days
of treatment. (A) Complete white blood cell (WBC) count,
(B) neutrophil percentage, (C) lymphocyte percentage and
(D) neutrophil to lymphocyte ratio. ACTH, red (n=6);
ACTH+RU486, black (n=6); RU486, blue (n=6). Different
numbers represent statistical differences between time
groups (P<0.05) and different letters represent statistical
differences between treatment groups based on Tukey’s post
hoc comparisons of linear mixed models. Boxplots depict the
first quartile and third quartile (box), ±1.5× interquartile range
(whiskers) and the median (horizontal line).

Table 1. Plasma lipids and cytokines in elephant seal pups during basal conditions and after adrenocorticotropin (ACTH) and glucocorticoid
receptor (GR) blocker (RU486) administration

ACTH ACTH+RU486 RU486

Basal 2 h 4 days Basal 2 h 4 days Basal 2 h 4 days

NEFA (mmol l−1) 1.56±0.21 1.55±0.25 1.66±0.22 1.24±0.09 1.94±0.44 1.2±0.14 1.19±0.13 1.14±0.12 1.61±0.38
Triglycerides (mg ml−1) 21.46±4.45 21.37±4.13 11.6±1.44* 15.45±0.96 18.19±2.81 10.39±1.3* 16.75±1.92 15.45±1.29 17.46±4.7*
TGF-β (pg ml−1) 146±31.5 163.6±16.2 121.5±22.3 85.2±9.3 150.5±32.6 121.1±23.5 185.5±35.8 227.6±54.1 136.3±56.6
IL-6 (pg ml−1) 113±41 141±20 116±27 41±11 135±29 88±32 149±20 147±27 72±33

NEFA, non-esterified fatty acids; TGF-β, transforming growth factor beta; IL-6, interleukin-6. *Significant difference from baseline (P<0.05) based on Tukey’s post
hoc comparisons of linear mixed models.

5

RESEARCH ARTICLE Journal of Experimental Biology (2021) 224, jeb243198. doi:10.1242/jeb.243198

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y



underscoring these animals’ extraordinary resistance to
inflammation while simultaneously fasting and developing.

DISCUSSION
A variety of stressors activate the HPA axis, altering corticosteroid
concentrations, redox balance and inflammation across taxa. While
the stress response has been heavily explored in terrestrial
vertebrates, considerably less is known about the downstream
impacts of this response in marine mammals. Here, we show that
acute and chronic activation of the HPA axis elicit differential
responses on adrenocorticosteroids and that GR blockade causes a
compensatory increase in aldosterone but not cortisol in elephant
seal pups. Additionally, we found that neither manipulation of the
HPA axis nor blockade of endogenous GR signaling induces
oxidative stress or lipolysis in post-weaned elephant seal pups. Our
data also show that stimulation with exogenous ACTH alters the
proportion of white blood cells without altering cytokine levels, and
that this effect is driven by GR signaling.
In our experiments, ACTH stimulation increased circulating

cortisol and aldosterone; however, the impact of repeated ACTH
exposure and the role of GR feedback differed between the two
adrenocorticosteroids. The magnitude of the cortisol response to
ACTH stimulation decreased after 4 days of repeated ACTH
exposure, as reported previously in juvenile elephant seals
(McCormley et al., 2018). This response may result from
desensitization of the HPA axis, stronger negative feedback or
adrenal exhaustion (Rich and Romero, 2005; Welberg et al., 2006;
Ga ̨dek-Michalska et al., 2013). HPA axis desensitization was
previously observed in adult male elephant seals (Ensminger et al.,
2014), suggesting that repeated stimulation with ACTH desensitizes
the HPA axis independent of age.
Our results also show low individual variability in cortisol levels

in response to ACTH, suggesting tight regulation of cortisol during
early postnatal development. In contrast, the cortisol response to
ACTH is largely variable in juvenile and adult elephant seals
(Ensminger et al., 2014; McCormley et al., 2018), suggesting that
this variability is impacted by postnatal maturation. Our results
about the effect of ACTH stimulation on aldosterone are consistent
with those of juvenile elephant seals (McCormley et al., 2018), but
contrary to those for adult males, suggesting that life history stage
impacts negative feedback on aldosterone secretion (Ensminger
et al., 2014). Contrary to cortisol, there was a compensatory impact
of GR blockade on aldosterone levels, which increased after 4 days
of repeated ACTH stimulation, further supporting the hypothesis
that aldosterone is an important component of the stress response in
marine mammals (Thomson and Geraci, 1986; Houser et al., 2011).
This change in aldosterone levels could result from a potential shift
in aldosterone signaling between GR and MR (Gaeggeler et al.,
2005; Gauer et al., 2007); however, this idea needs further
exploration. Though chronically elevated aldosterone may have
less impact on land than at sea because of low urinary output
(Adams and Costa, 1993), it could negatively impact osmotic
balance while at sea as a result of aldosterone’s influence on sodium
concentrations (Morris, 1981; Ortiz et al., 2000). Moreover,
aldostoerone signaling via MR increases oxidative stress and
alters white blood cell function, increasing inflammatory cytokines
(Christ and Wehling, 1999; Ferreira et al., 2021), suggesting further
potential downstream impacts of HPA axis activation. Furthermore,
these differential impacts on aldosterone and cortisol also show
differential sensitivity of the zona glomerulosa and zona fasciculata
to acute and repeated ACTH stimulation and endogenous GR
blockade.

Despite robust HPA axis activation, which elevated both cortisol
and aldosterone, we found no effects of ACTH stimulation or GR
blockade on oxidative stress in fasting elephant seal pups. While
redox metabolism varies with tissue type, circulating levels of lipid
and protein oxidation are a reliable metric for systemic oxidative
stress across vertebrates (Costantini et al., 2011). In elephant seals,
prolonged fasting has strong impacts on circulating markers of
redox metabolism (Vázquez-Medina, et al., 2010, 2011a, 2015).
Cortisol increases oxidative stress in several vertebrates (Costantini
et al., 2011; Spiers et al., 2015). Similarly, aldosterone induces
oxidative stress via activation of NADPH oxidases (Sun et al., 2002;
Miyata et al., 2005). Our results, however, show that neither cortisol/
aldosterone nor GR signaling regulates circulating antioxidants,
lipid peroxidation or protein oxidation in elephant seal pups. These
results support previous observations of the extraordinary capacity
elephant seals possess to cope with oxidative stress derived from
prolonged food and water deprivation (Vázquez-Medina et al.,
2010, 2011a, 2013), sleep apnea, hypoxemia and ischemia/
reperfusion (Vázquez-Medina et al., 2012; Allen and Vázquez-
Medina, 2019). Both acute and repeated ACTH injection alter
blubber and muscle expression of genes involved in redox balance
in juveniles (polo-like kinase 3 and thioredoxin; Khudyakov et al.,
2015; Khudyakov et al., 2017; Deyarmin et al., 2019). Similarly,
sustained exposure to glucocorticoids upregulates the expression of
the phospholipid hydroperoxidase GPx4 while downregulating
peroxiredoxin 6 expression in elephant seal muscle cells in primary
culture (Torres-Velarde et al., 2021). Therefore, the lack of response
here suggests that either pups have an altered redox response to
cortisol compared with other life history stages, likely due to the
combination of fasting and development, or that the effect of
cortisol on oxidative stress is tissue specific. In support of the latter
hypothesis, a previous meta-analysis shows tissue-specific
differences in cortisol-induced oxidative stress across taxa
(Costantini et al., 2011). Future research should focus on
identifying the interplay between tissue-specific and systemic
oxidative responses to further elucidate these relationships.

While our treatments did not alter circulating antioxidant
enzymes or oxidative damage, we found opposing patterns in
lipid peroxidation and antioxidants involved in reducing lipid
hydroperoxides (GPX and total thiols) within the short (4 day)
fasting progression. Lipid peroxidation decreased from day 1 to day
4 and was not associated with changes in NEFA or triglyceride
levels (data not shown) (Pérez-Rodríguez et al., 2015). Moreover,
GPx and total thiols increased with time, supporting the hypothesis
that fasting promotes a positive redox balance in part by stimulating
the glutathione system, as previously shown in fasting elephant seal
pups (Vázquez-Medina et al., 2010, 2011a; Ensminger et al., 2021).
Interestingly, both catalase and GSR decrease from 2 h to 4 days.
Combined with the increase in GPx and total thiols, these data
suggest a potential shift in resources away from recycling
glutathione through GSR and toward increasing lipid
hydroperoxide removal and stimulating glutathione synthesis
(Vázquez-Medina et al., 2011a). Of note, the previously observed
decrease in catalase and GSR opposed patterns in muscle and red
blood cells further suggests tissue-specific effects in redox
metabolism or differential effects of short and long fasting
duration (4 days versus 2 months; Vázquez-Medina et al., 2010,
2011a).

Similar to oxidative stress markers, we found no impact of ACTH
or GR blockade on NEFA or triglycerides; however, triglycerides
decreased with fasting progression. While changes in triglycerides
may represent a fasting-derived decrease in stored fat supplies
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(Williams et al., 1999), the constant NEFA concentrations suggest
that these seals were not fat limited (Jenni-Eiermann and Jenni,
1992). As elephant seals have a high fat-based metabolism, tight
regulation of cortisol-induced lipolysis may support fat metabolism
during prolonged fasting (Crocker et al., 2014). However, while
breeding females show correlations between cortisol and NEFA,
males only exhibit this relationship during the molt (Ensminger
et al., 2014; Fowler et al., 2016). As such, our results differ from
results found in other life history stages, suggesting that life history
plays a strong role in the downstream effects of HPA axis activation
on lipolysis in elephant seals and that animals in certain life history
stages (weaned elephant seal pups and breeding males) might limit
the impact of adrenal stimulation on fat metabolism during
prolonged fasts. More work is needed to understand the
mechanisms underlying this phenomenon.
While there was no impact on oxidative balance or lipolysis,

repeated ACTH stimulation shifted the composition of white blood
cells, lowering the lymphocyte proportion and subsequently
increasing the neutrophil:lymphocyte ratio. While white blood
cells take longer to respond to stressors (Gross, 1990; DuRant et al.,
2015), they stay elevated over the duration of chronic stress exposure
(Goessling et al., 2015). When combined with findings showing
that changes in white blood cells are more sensitive than cortisol to a
wider range of stressors (Müller et al., 2011), these results support
the hypothesis that neutrophil:lymphocyte ratios may be a better
marker for assessing chronic stress exposure in wildlife, and that the
observed changes in neutrophil:lymphocyte ratio are likely driven
by both neutrophils and lymphocytes (Keogh and Atkinson, 2015;
Davis and Maney, 2018). Despite shifts in white blood cell
proportions, cortisol and aldosterone, we found no impact of either
ACTH stimulation or GR blockade on pro-inflammatory cytokines.
Similar cytokines remain stable across the fast despite increases in
cortisol (i.e. IL-1β; Ortiz et al., 2003a,b; Vázquez-Medina et al.,
2013; Peck et al., 2016), suggesting that elephant seals possess
physiological mechanisms to limit inflammation. This is further
supported by the intrinsic anti-inflammatory properties of elephant
seal serum (Bagchi et al., 2018), though more research is needed to
understand the uncoupling of both cortisol and HPA axis activation
from the inflammatory response, as activation of the renin–
angiotensin–aldosterone system increases with fasting progression
in elephant seal pups, along with muscle TNF-α muscle expression
and protein abundance (Suzuki et al., 2013; Vázquez-Medina et al.,
2010, 2013).
Overall, this study shows that neither repeated stimulation of the

HPA axis nor blockade of endogenous GR signaling causes
systemic oxidative stress or inflammation, or alters lipolysis in
simultaneously fasting and developing weaned elephant seals.
Hence, these results underscore elephant seals’ robust tolerance of
repeated and sustained cortisol elevations. Furthermore, our results
support the hypothesis that animals in metabolically demanding life
history stages or living in areas with repeated stressors may rely on
physiological processes that help mitigate the deleterious impacts of
a prolonged stress response (Huber et al., 2017; Stier et al., 2019;
Ensminger et al., 2021). These data also support the hypothesis that
aldosterone is an important component of the stress response in
marine mammals and highlight a potential role of GR signaling in
osmotic regulation (Gaeggeler et al., 2005). Though the sample size
precludes an explicit examination of the interaction of treatment and
fasting on neutrophil:lymphocyte ratio, these data highlight the need
for future research to examine the use of this metric as a more
consistent indicator of chronic stress in marine mammals (Davis and
Maney et al., 2018).
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