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Mitochondrial KATP channels stabilize intracellular Ca2+ during
hypoxia in retinal horizontal cells of goldfish (Carassius auratus)
Michael W. Country1 and Michael G. Jonz1,2,*

ABSTRACT
Neurons of the retina require oxygen to survive. In hypoxia, neuronal
ATP production is impaired, ATP-dependent ion pumping is reduced,
transmembrane ion gradients are dysregulated, and intracellular Ca2+

concentration ([Ca2+]i) increases enough to trigger excitotoxic cell
death. Central neurons of the common goldfish (Carassius auratus)
are hypoxia tolerant, but little is known about how goldfish retinas
withstand hypoxia. To study the cellular mechanisms of hypoxia
tolerance, we isolated retinal interneurons (horizontal cells; HCs), and
measured [Ca2+]i with Fura-2. Goldfish HCs maintained [Ca2+]i
throughout 1 h of hypoxia, whereas [Ca2+]i increased irreversibly in
HCs of the hypoxia-sensitive rainbow trout (Oncorhynchus mykiss)
with just 20 min of hypoxia. Our results suggest mitochondrial ATP-
dependent K+ channels (mKATP) are necessary to stabilize [Ca2+]i
throughout hypoxia. In goldfish HCs, [Ca2+]i increased when mKATP

channels were blocked with glibenclamide or 5-hydroxydecanoic
acid, whereas themKATP channel agonist diazoxide prevented [Ca2+]i
from increasing in hypoxia in trout HCs. We found that hypoxia
protects against increases in [Ca2+]i in goldfish HCs via mKATP

channels. Glycolytic inhibition with 2-deoxyglucose increased [Ca2+]i,
which was rescued by hypoxia in a mKATP channel-dependent
manner. We found no evidence of plasmalemmal KATP channels in
patch-clamp experiments. Instead, we confirmed the involvement of
KATP in mitochondria with TMRE imaging, as hypoxia rapidly (<5 min)
depolarized mitochondria in a mKATP channel-sensitive manner. We
conclude that mKATP channels initiate a neuroprotective pathway in
goldfish HCs to maintain [Ca2+]i and avoid excitotoxicity in hypoxia.
This model provides novel insight into the cellular mechanisms of
hypoxia tolerance in the retina.
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INTRODUCTION
The retina is part of the central nervous system, and therefore shares
the high ATP demand of the brain (Country, 2017; Wong-Riley,
2010). Normally, over 50% of ATP supply is used to pump ions
across neuronal membranes, both to maintain membrane potential
and to extrude Ca2+ from the cytosol (Ames, 1992; Nilsson and
Lutz, 2004). When neurons receive insufficient O2 (hypoxia) or
blood supply (ischemia), ATP supply is reduced, neurons
depolarize, and intracellular Ca2+ concentration ([Ca2+]i) reaches
toxic levels (Bickler and Buck, 1998). Several other phenomena

increase [Ca2+]i even further, as depolarization opens voltage-gated
Ca2+ channels and releases excitatory neurotransmitters, such as
glutamate (Szydlowska and Tymianski, 2010). High [Ca2+]i is toxic
to cells, and is recognized as a common final step among many
pathways that trigger cell death (Bickler, 1992; Orrenius and
Nicotera, 1994). This pathway from hypoxia to Ca2+-mediated cell
death is called excitotoxicity, and is central in strokes and several
types of blindness (Bickler and Kelleher, 1992; Choi, 1992;
Osborne et al., 2004).

Some species have adapted strategies to survive extended periods
of hypoxia. Some turtles (e.g. Trachemys spp. and Chrysemys spp.)
can survive months in hypoxic, ice-covered ponds by reducing their
neuronal activity to a ‘pilot light’ level (Jackson and Heisler, 1982;
Lutz and Nilsson, 2004). The crucian carp (Carassius carassius)
can survive months of hypoxia at ∼4°C (Holopainen and Pitkänen,
1985; Nilsson and Lutz, 2004), and the congeneric goldfish
(Carassius auratus) can withstand hypoxia for days at 4°C, and for
hours at room temperature (Walker and Johansen, 1977; Wilkie
et al., 2008). Instead of becoming quiescent during hypoxia like
turtles, Carassius spp. maintain a reduced level of neural activity
and locomotion, possibly to search out waters with greater partial
pressures of O2 (PO2

) (Nilsson, 2001; Nilsson et al., 1993b;
Vornanen et al., 2009; Wilkie et al., 2008). These strategies limit
ATP turnover, maintain a low [Ca2+]i and prevent excitotoxicity
(Bickler, 1992; Bickler and Buck, 1998; Jackson, 2002; Nilsson and
Lutz, 2004). The retina is also resistant to hypoxia in these species.
Electroretinogram responses to light are greatly diminished during
anoxia in turtle (Stensløkken et al., 2008) and carp (Johansson et al.,
1997) retinas, but recover completely upon reperfusion. These
studies suggest that vision withstands hypoxic insult in hypoxia-
tolerant species, but the cellular mechanisms of hypoxia tolerance
are completely unexplored in the retina.

Mitochondria are the major consumers of O2 and producers of
ATP, and therefore they are well positioned to sense changes in
metabolite supply (Pamenter, 2014). In the turtle brain, hypoxia is
sensed by mitochondrial ATP-dependent K+ channels (mKATP

channels), and the resulting mitochondrial depolarization triggers a
second messenger pathway which downregulates plasma membrane
ion channels and limits Ca2+ influx (Hawrysh and Buck, 2013;
Pamenter et al., 2016; Zivkovic and Buck, 2010). mKATP channels
are also required for ischemic preconditioning (IPC) in the
mammalian retina, in which brief, sublethal bouts of ischemia
protect against subsequent ischemic insult (Dreixler et al., 2008;
Roth et al., 2006). Mitochondrial responses to hypoxia are unknown
in the ectotherm retina.

Horizontal cells (HCs) are interneurons of the inner nuclear layer
of the retina, which receive glutamatergic input from photoreceptors
in the dark. In return, they provide inhibitory feedback to
photoreceptors to improve visual contrast and colour opponency
(Thoreson and Mangel, 2012; Twig et al., 2003). The Ca2+-
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pathways in HCs are well known, especially in teleost fish
(reviewed in Country and Jonz, 2017). Teleost HCs present
spontaneous Ca2+-based action potentials (APs) both in vitro and
in situ (Country et al., 2019; Country et al., 2020; Kreitzer et al.,
2012; Tachibana, 1981). The function of these APs is unknown,
but they have been proposed to affect feedback to photoreceptors
and assist in the transition from light to dark, by rapidly depolarizing
HCs (Country et al., 2019). These APs have been observed in
Ca2+ imaging experiments (Country et al., 2019; Country et al.,
2020; Kreitzer et al., 2012). Changes in APs may provide insight
into how Ca2+ homeostasis is being maintained or threatened.
In the present study, we examined how hypoxia affects [Ca2+]i in

HCs. We compared responses of isolated HCs from the hypoxia-
tolerant goldfish with the hypoxia-sensitive rainbow trout
(Oncorhynchus mykiss). We showed that goldfish HCs maintained
stable baseline [Ca2+]i even after 1 h of hypoxia, whereas [Ca2+]i
increased in response to only 20 min of hypoxia in trout. We showed
that hypoxia tolerance depends upon mKATP channels: blocking
mKATP channels increased [Ca2+]i in hypoxic goldfish HCs, whereas
opening mKATP channels preserved [Ca2+]i in hypoxic trout HCs.
We found no evidence for KATP channel currents at the plasma
membrane. Instead, we report that mitochondria depolarized in
hypoxia, and that this depolarization was diminished with mKATP

channel blockers. Furthermore, we present evidence that hypoxia
stabilized [Ca2+]i in a mKATP channel-dependent manner, preventing
increases in [Ca2+]i caused by blocking glycolysis. These results
suggest that hypoxia triggers a neuroprotective pathway to maintain
[Ca2+]i homeostasis in goldfish HCs.

MATERIALS AND METHODS
Ethical approval
All animal care procedures were approved by the University of
Ottawa Animal Care and Veterinary Services (protocol BL-1760),
in accordance with regulations of the Canadian Council on Animal
Care. Adult common goldfish, Carassius auratus (Linnaeus 1758)
(a mix of both sexes, ranging from 7 to 60 g), were obtained from
Mirdo Importations Canada (Montreal, QC, Canada), and
maintained in 170 l tanks at 18°C. Rainbow trout, Oncorhynchus
mykiss (Walbaum 1792) (a mix of both sexes, ranging from 112
to 142 g), were obtained from Linwood Acres Trout Farm
(Campbellcroft, ON, Canada), and maintained in 170 l tanks at
13°C. Tanks received fresh, aerated and dechloraminated water
from a constant flow-through system. Tanks were maintained on a
12 h light:12 h dark photoperiod. Fish were dark adapted for
approximately 1 h, euthanized by rapid decapitation and pithed.

Isolated cell preparation
HCs were isolated according to Jonz and Barnes (2007). Unless
otherwise stated, all reagents and chemicals were sourced from
MilliporeSigma (Oakville, ON, Canada). Eyes were enucleated and
quickly placed into ice-cold Ca2+-free Ringer’s solution (in
mmol l−1: 120 NaCl, 2.6 KCl, 10 Hepes, 0.5 NaH2PO4 and 16
glucose, with pH adjusted to 7.8 with NaOH). The eye was
punctured at the ora serrata, and the anterior chamber of the eye was
removed. The retina was carefully dissected out from the eye cup
and placed in hyaluronidase (100 U ml−1, cat. no. H-3506) in L-15
solution (70% Leibovitz’s L-15 medium with glutamine and 30%
Ca2+-free Ringer’s solution) at room temperature. Retinas were
washed 3 times for 3 min in fresh L-15 solution, and moved to L-15
solution containing 7 U ml−1 papain (cat. no. 3126, Worthington
Biochemical Corporation, Lakewood, NJ, USA) and 2.5 mmol l−1

cysteine for 40 min. Retinas were washed a further 3 times in L-15

solution, and cut into small sections (∼4 mm2). These sections were
triturated 3 times to remove excess photoreceptors (Dowling et al.,
1985). Then, they were moved to 1 ml of fresh L-15 solution and
gently triturated to mechanically dissociate cells. The resulting cell
suspension was transferred to 35 mm culture dishes (Corning Inc.,
Bedford, MA, USA) containing perfusion chambers (cat. no. RC-
33DL, Warner Instruments Inc, Hamden, CT, USA). Dishes were
pre-coated with 0.01% poly-L-lysine (cat. no. A-005-C) for 10 min,
rinsed 3 times with water purified using a MilliQ system, and air-
dried before use. Cells were left to settle for 15 min, and rinsed
3 times with extracellular solution (ECS; in mmol l−1: 120 NaCl,
5 KCl, 2.5 CaCl2, 2 MgCl2, 10 Hepes and 10 glucose, with pH
adjusted to 7.80 with NaOH) before dye loading.

Relative [Ca2+]i measurements
Ca2+ imaging was performed according to Country et al. (2019).
Briefly, to measure relative changes in free [Ca2+]i, cells were
loaded with a membrane-permeant form of the Ca2+ indicator dye
Fura-2 (Fura-2-LeakRes-AM, cat. no. 1061, Ion Biosciences, San
Marcos, TX, USA). Cells were incubated with 5 µmol l−1 Fura-2
and 0.1% v/v of 10% w/v Pluronic F-127 (cat. no. P2443) in ECS at
room temperature in the dark. After 30 min, dishes were washed
3 times with fresh ECS.

Cells were first observed with brightfield imaging using a
compound microscope (FN-1, Nikon, Tokyo, Japan) and a Nikon
40× water-immersion objective (numerical aperture 0.8). HCs were
identified by their characteristically large somata and thick
dendrites, as in previous reports (Country et al., 2019; Dowling
et al., 1985; Tachibana, 1981). For fluorescence imaging, a Lambda
DG-5 wavelength changer (Sutter Instruments, Novato, CA, USA)
was used to rapidly alternate between 340 and 380 nm excitation
wavelengths once per second. Emission light was filtered through
a 510 nm bandpass filter. Images were captured with a CCD
camera (QImaging, Surrey, BC, Canada). Fluorescence ratios were
recorded with NIS Elements software (Nikon), by setting circular
regions of interest within HC somata. We observed no change in
fluorescence ratio in cells that were not incubated in Fura-2 (n=4;
not shown).

Electrophysiology
Patch-clamp recordings were taken in the whole-cell configuration.
Electrodes were pulled from capillary glass (cat. no. PG52151-4,
World Precision Instruments, Sarasota, FL, USA) using a vertical
pipette puller (Narishige International Inc., East Meadow, NY,
USA) to yield resistances of 4–8 MΩ. Electrodes were prepared
immediately before recordings, and backfilled with intracellular
solution (in mmol l−1): 10 NaCl, 120 KCl, 2 CaCl2, 2 MgCl2,
5 EGTA and 10 Hepes, and adjusted to pH 7.40 with KOH. Only
cells with a stable membrane seal above 1 GΩ were used. Protocols
were performed with pCLAMP 7 software, an AxoPatch 1D
amplifier and a DigiData 1440A digitizer (Axon Instruments,
Sunnyvale, CA, USA). Signals were filtered at 5 Hz. The liquid
junction potential was calculated to be 5 mV using pCLAMP 7
software and was subtracted from the pipette potential to report
membrane potential.

Mitochondrial membrane potential measurements
To measure relative changes in mitochondrial membrane potential,
we used tetramethylrhodamine ethyl ester (TMRE) dye (cat. no.
87917) in quenching mode. Cells were incubated at room
temperature with 50 nmol l−1 TMRE for 30 min in the dark.
Dishes were then rinsed 3 times with ECS, for 3 min per wash.
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Because TMRE uptake is partially dependent upon plasma
membrane potential (Perry et al., 2011), TMRE was co-applied
with 100 µmol l−1 nifedipine in dimethyl sulfoxide (DMSO) to
prevent spontaneous APs (Country et al., 2019) and to prevent
subsequent loss of dye from cells. Nifedipine was maintained
throughout dye loading, washes and perfusion throughout
experiments.
Horizontal cells were identified in brightfield imaging as

described above. For fluorescence imaging, cells were illuminated
for 100 ms once every 10 s, and once per second for oligomycin and
carbonyl cyanide m-chlorophenyl hydrazone (CCCP) controls.
Excitation light was filtered through a 545 nm (±15 nm) bandpass
filter; emission light was filtered through a 620 nm (±30 nm)
bandpass filter. Images were captured with a CCD camera and
recorded with NIS Elements software as above.

Experimental procedure and solutions
Cells were continuously superfused at ∼1 ml min−1 by a gravity-
driven system. Solutions were drained from the recording chamber
at the same rate using a peristaltic pump (Fisher Scientific, Ottawa,
ON, Canada). In all imaging experiments, cells were observed for
10 min in ECS before superfusion with treatment solution. After
treatment, the bath was washed with ECS for a 10 min recovery
period. To create hypoxic solutions, solution reservoirs were
bubbled with 100% N2 for at least 30 min. This procedure
produced recording solution with a PO2

of approximately
25 mmHg (Jonz et al., 2004). Control solutions were bubbled
with air for the same duration. Glibenclamide (80 µmol l−1; cat. no.
G0639), 5-hydroxydecanoic acid (5-HD; 100 µmol l−1; cat. no.
H135) and diazoxide (100 µmol l−1; cat. no. D9035) were dissolved
in DMSO, which never surpassed a final concentration of 0.25%
v/v. At this concentration, DMSO alone had no effect on Ca2+ APs
or Ca2+ baseline. To block glycolysis in experiments shown in
Fig. 6, glucose was replaced with equimolar 2-deoxyglucose
(2-DG; cat. no. D8375). CCCP (10 µmol l−1; cat. no. 215911) and
oligomycin (10 µmol l−1; cat. no. 495455) were dissolved in DMSO
and used as positive and negative controls, respectively, in TMRE
experiments.

Analysis
For Fura-2 recordings, ratios were calculated by dividing the
fluorescence emission at 340 nm by that at 380 nm following
excitation at these wavelengths (F340/F380). These values are
proportional to [Ca2+]i. Ratios were exported to Excel (Microsoft
Corp., Redmond, WA, USA) and analysed in OriginPro 2016
(OriginLab Corp., Northampton, MA, USA). OriginPro’s peak
analysis gadget was used to approximate baseline using a second-
derivative algorithm. The peak analysis gadget was then used to
detect peaks using a local maximum function compared with
baseline. For analysis, baseline was calculated as the last 30 s of
baseline F340/F380 ratio for a given time period. AP amplitude was
measured as the difference between peak F340/F380 ratio and
baseline before the AP. Values of the last two APs of a given time
period were averaged. For statistics, the values at the end of a
treatment or recovery period were compared with the last 5 min
before the treatment, and the fold-change was reported.
For TMRE imaging, fluorescence values were averaged from

the last 30 s before, during and after each time period. For CCCP
controls, a local maximum function was used to report peak
fluorescence.
All statistical tests were performed in Prism 8 (GraphPad Software

Inc., San Diego, CA, USA). Data are presented as means±s.d.

In Fig. 6E,F, a Kruskal–Wallis test was used with Dunn’s post hoc
test. All columns were compared with all other columns, with a
family-wise significance level of 0.05. For Fig. 8A, a one-way
ANOVA was used. Holm–Šidák’s post hoc test was used with a
family-wise significance level of 0.05. All normoxic treatment groups
were compared with normoxia alone, and all hypoxic groups were
compared with hypoxia alone. One-tailed Mann–Whitney tests were
used for all other analyses unless otherwise stated.

RESULTS
Hypoxia does not increase [Ca2+]i in HCs of goldfish
HCs were isolated from goldfish and rainbow trout, and baseline
[Ca2+]i was monitored over time with the ratiometric Ca2+ imaging
dye Fura-2. HCs of both species presented spontaneous Ca2+-
based APs for the duration of normoxic recordings as controls
(Figs 1 and 2A,B). APs were similar in the two species, and matched
previous reports of spontaneous, seconds- to minutes-long Ca2+

transients in goldfish HCs (Country et al., 2019; Kreitzer et al.,
2012): APs began with a steep rise in [Ca2+]i followed by a
prolonged plateau and a sharp return to baseline.

To test the hypothesis that goldfish HCs (but not trout HCs)
would maintain [Ca2+]i baseline throughout hypoxia, we treated
HCs of both species with normoxic or hypoxic solutions and
monitored [Ca2+]i over time. Representative brightfield images are
shown in Fig. 1, along with pseudocolour representations of [Ca2+]i
during APs after treatment with normoxia or hypoxia. Traces of
[Ca2+]i over time are shown in Fig. 2A for goldfish, and Fig. 2B for
trout. In goldfish HCs, [Ca2+]i baseline did not change in response
to 20 min normoxia (n=12) or 20 min hypoxia (n=6; Fig. 2C).
Similarly, [Ca2+]i did not significantly increase throughout 1 h
normoxia (n=9) or 1 h hypoxia (n=5; Figs 1A–D and 2A,C).

Restoring [Ca2+]i after an AP would likely require ATP for
extrusion or sequestration, and APs during hypoxia may therefore
strain ATP supply. We tested the hypothesis that AP amplitude
would be reduced during hypoxic treatment, possibly to reduce ATP
demand. Even during 1 h exposures to normoxic solution, APs
persisted throughout treatment. However, in goldfish HCs, AP
amplitude decreased during hypoxia (n=8; P=0.0242) when
compared with normoxia (n=4; Fig. 2D). Amplitude returned to
pre-treatment values upon reperfusion with normoxic solution, and
there was no difference in AP amplitude between hypoxia-treated
(n=7) and normoxia-treated (n=3) cells in the recovery period
(Fig. 2D).

In trout HCs, [Ca2+]i baseline was stable in normoxia (1.18±0.25-
fold change, n=13) but increased irreversibly in response to 20 min
hypoxia (1.68±0.81-fold change, n=11; Figs 1E–H and 2B,C). This
represents a 50% increase in [Ca2+]i compared with that in normoxia
(P=0.0128). Unlike the case in goldfish HCs, AP amplitude was not
significantly diminished during hypoxic treatment (normoxia n=13,
hypoxia n=9; Fig. 2E). These data support the hypothesis that HCs
of the hypoxia-tolerant goldfish, but not hypoxia-sensitive trout,
maintain a stable [Ca2+]i baseline and reduce AP amplitude during
hypoxia.

mKATP channels are necessary to stabilize [Ca2+]i in goldfish
HCs during hypoxia
Next, we tested the hypothesis that mKATP channels might be
involved in neuroprotection against hypoxia, as has been reported in
turtle cortical neurons (Hogg et al., 2014; Pamenter et al., 2008b)
and in IPC in the mammalian retina (Dreixler et al., 2008; Roth
et al., 2006). First, we exposed isolated goldfish HCs to the mKATP

channel antagonists glibenclamide (Fig. 3) and 5-HD (Fig. 4), with
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either normoxia or hypoxia for 20 min. In normoxia, glibenclamide
(80 µmol l−1; Pamenter et al., 2008b) had no effect on post-
treatment [Ca2+]i baseline (n=11; Fig. 3A). When co-applied with
hypoxia, mKATP channel inhibition with glibenclamide led to
an increase in [Ca2+]i (1.26±0.23-fold change, n=12; Fig. 3B), a
22% increase over glibenclamide alone (P=0.0344; Fig. 3C).
Consistent with the effects of hypoxia in Fig. 2D, AP amplitude
decreased during treatment with glibenclamide and hypoxia (n=11)
when compared with glibenclamide alone (n=10; P=0.0305;
Fig. 3D). AP amplitude was partially restored when glibenclamide
and hypoxia were washed out, and there was no difference in
AP amplitude during recovery (normoxia n=9, hypoxia n=12;
Fig. 3D).
Likewise, 20 min of 5-HD (100 µmol l−1; Pamenter et al., 2008b)

alone had no effect on post-treatment [Ca2+]i baseline (1.00±0.07-fold
change, n=8; Fig. 4A). Co-applicationwith hypoxia increased baseline
1.06±0.08-fold (n=10; Fig. 4B). This difference was subtle (6%) but
significant (P=0.0273; Fig. 4C). AP amplitude decreased slightly
during application of 5-HD alone (0.81±0.23-fold change, n=6) as
well as during co-application of 5-HD and hypoxia (0.84±0.15-fold
change, n=9; Fig. 4D). Upon recovery, amplitude was restored and
there were no differences among treatments (Fig. 4D).

mKATP channel activation is sufficient to stabilize [Ca2+]i
in HCs of the hypoxia-sensitive trout
To test the hypothesis that a mKATP channel-dependent pathway
could stabilize [Ca2+]i in trout HCs, we applied the mKATP channel
agonist diazoxide (100 µmol l−1; Dukoff et al., 2014; Pamenter
et al., 2008b) to isolated trout HCs in the presence and absence of
hypoxia. [Ca2+]i baseline did not change with diazoxide alone (n=6;
Fig. 5A), or when diazoxide was co-applied with hypoxia (n=10;
Fig. 5B,C). AP amplitude decreased during both conditions
(diazoxide and normoxia, 0.66±0.19-fold change, n=5; diazoxide
and hypoxia, 0.48±0.14-fold change, n=7; Fig. 5D). The decrease in
hypoxia was greater but did not differ at the prescribed level of
statistical significance (P=0.053). AP amplitude increased upon
reperfusion, with no differences between treatment groups
(normoxia n=7, hypoxia n=8).

Hypoxia and diazoxide prevent increases in [Ca2+]i baseline
caused by inhibiting glycolysis
The previous experiments suggest that a mKATP channel-dependent
pathway may stabilize cytosolic [Ca2+] baseline during hypoxia. To
test whether this pathway was also active in another low-energy
condition, we replaced glucose with equimolar 2-DG to block
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images (from left to right) represents [Ca2+]i before, during and after an action potential (AP) sampled within the last 5 min of normoxia or hypoxia treatment.
(A,B) Goldfish HCs maintained low [Ca2+]i baseline and presented APs after superfusion with normoxic solution for 1 h. (C,D) Low [Ca2+]i baseline and APs
were maintained in goldfish HCs despite 1 h of hypoxia. (E,F) HCs of rainbow trout maintained the [Ca2+]i baseline and APs after 20 min superfusion with
normoxic solution. (G,H) 20 min of hypoxia increased the [Ca2+]i baseline in trout HCs. Scale bars: 20 µm for A–D, 10 µm for E–H.
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glycolysis (Dvoriantchikova et al., 2012) in isolated goldfish HCs.
Exposure to 2-DG for 1 h increased post-treatment [Ca2+]i, compared
with 1 h normoxic controls (normoxia, 1.16±0.33-fold change,
n=9; 2-DG, 2.36±1.57, n=9; P=0.0106; Fig. 6A,E). However,
co-application of 2-DG and hypoxia prevented this increase
almost completely (1.23±0.10-fold change, n=4; Fig. 6B,E). This
protection was abolished in the presence of 5-HD (2.19±1.03-fold
change, n=9; P=0.0055 versus normoxic control; Fig. 6C,E).
Diazoxide (100 µmol l−1), like hypoxia, prevented Ca2+ from
increasing (1.46±0.33-fold change, n=6; Fig. 6D,E). These data
further suggest a role for mKATP channels in stabilizing [Ca2+]i
during hypoxia in goldfish HCs.
Next, we tested whether blocking glycolysis would reduce AP

amplitude, as we observed during hypoxia in previous experiments.

Amplitude decreased during all treatments, when compared with
normoxic controls (Fig. 6F). This decrease was significant for 2-DG
(n=6; P=0.0309) and for 2-DG plus hypoxia (n=3; P=0.0219) but
was not significant for 2-DG plus hypoxia and 5-HD (n=4). A
decrease in amplitude was not apparent following treatment with 2-
DG plus diazoxide, but because only a small proportion of cells
displayed APs under these conditions, this could not be assessed.
Amplitude was partially restored in all groups upon normoxic
reperfusion.

No plasmalemmal KATP channel currents are detected in
goldfish HCs with whole-cell patch clamp
Diazoxide, glibenclamide and 5-HD are often used to activate
or block mKATP channels, but some reports suggest they may
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additionally affect KATP channels at the plasma membrane
(Baumann et al., 2002; Hanley and Daut, 2005; Hill et al., 2021).
HCs express at least three plasmalemmal K+ channels (an inward
rectifier, a delayed outward rectifier and a transient outward
channel) (Jonz and Barnes, 2007; Lasater, 1991; Tachibana,
1983), but to our knowledge, plasmalemmal KATP channels have
not been found in HCs. To test for their presence in goldfish HCs,
we used whole-cell patch clamp to record membrane currents while
applying the aforementioned KATP channel drugs. In the absence of
these drugs, HCs presented a stable membrane current while voltage
clamped to −65 mV. Hyperpolarizing and depolarizing voltage
steps from −65 mV produced an ‘N-shaped’ profile of whole-cell
currents, as in previous reports (Jonz and Barnes, 2007; Shingai and
Christensen, 1986; Tachibana, 1983). Membrane currents remained
stable during and after 5 min superfusion of the mKATP channel
agonist diazoxide (100 µmol l−1; Fig. 7A; n=5), and the I–V
relationship did not change during or after treatment (Fig. 7B; n=5).
Similarly, membrane currents were unchanged during and after
5 min superfusion of 5-HD (100 µmol l−1; Fig. 7C,D; n=6) and
glibenclamide (80 µmol l−1; Fig. 7E,F; n=6).

Mitochondria depolarize early in hypoxia in a mKATP
channel-dependent manner
Using TMRE imaging, we tested the hypothesis that mKATP

channels open to depolarize mitochondria during hypoxia. TMRE
fluorescence typically decayed gradually in normoxia (0.88±0.15-
fold change within 5 min, n=23; Fig. 8A,B). Fluorescence
significantly increased within 5 min of hypoxia (1.19±0.25-fold
change, n=27; P<0.0001; Fig. 8A,C). Similarly, 5-HD had no
significant effect alone (n=22; Fig. 8A,D), but reduced fluorescence
in hypoxia by 9%. However, this effect was not significant
(1.102±0.29-fold change, n=18; Fig. 8A,E). Glibenclamide alone
(n=19; Fig. 8A,F) had no significant effect on fluorescence, but
significantly reduced the response to hypoxia (0.99±0.15-fold
change, n=14; P=0.0312; Fig. 8A,G).

At low TMRE concentrations, as mitochondria hyperpolarize,
they take up more TMRE dye and fluorescence increases. But at
high concentrations of TMRE, as used in the present experiments,
TMRE dimerizes and quenches itself, so that fluorescence decreases
as mitochondria hyperpolarize (Perry et al., 2011; Zorova et al.,
2018). To confirm that TMRE attained this ‘quenching mode’ in our
preparation, we applied CCCP, a proton ionophore, to dissipate the
mitochondrial H+ gradient and depolarize mitochondria (Brown
et al., 2006; Perry et al., 2011). In quenching mode, depolarization
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by CCCP is expected to first increase fluorescence (as dye loss
reduces quenching) and then greatly diminish it (as dye
concentration drops low enough to enter ‘non-quenching mode’)
(Perry et al., 2011). In line with this model, fluorescence rapidly
increased with 10 µmol l−1 CCCP (1.56±0.33-fold change, n=4;
P<0.0001; Fig. 8A,H); then, fluorescence was nearly abolished.
Oligomycin is known to block complex V of the electron transport
chain, preventing the dissipation of the mitochondrial H+ gradient
and hyperpolarizing mitochondria. In our preparation, 10 µmol l−1

oligomycin decreased fluorescence within 5 min (0.68±0.28-fold
change, n=44; P=0.0049; Fig. 8A,I).

DISCUSSION
The present study establishes part of a novel neuroprotective
pathway, which maintains [Ca2+]i throughout hypoxia in HCs of the
hypoxia-tolerant goldfish retina. We showed that goldfish HCs
require functional mKATP channels to maintain [Ca2+]i. Hypoxia
prevented [Ca2+]i from increasing in response to glycolytic
inhibition with 2-DG. This protective effect was negated by the
mKATP channel antagonist 5-HD and mimicked by the mKATP

channel agonist diazoxide, further suggesting that mKATP channels
are necessary for hypoxia tolerance. We found no evidence for
plasmalemmal KATP channel currents. Instead, our data support a
role for KATP channels in mitochondria, as mitochondria

depolarized early in hypoxia in a mKATP channel-dependent
manner.

Previous reports have shown hypoxia tolerance in the retina of
Carassius spp. In the crucian carp, electroretinogram activity
decreased during anoxia and was completely restored upon
reperfusion, suggesting neuronal function and vision are not lost
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by anoxic insult (Johansson et al., 1997). In the goldfish retina,
metabotropic glutamate receptors protected against apoptosis
caused by 3 h of hypoxia and reperfusion at room temperature
(Beraudi et al., 2007). In the present study, we showed that neurons
of the goldfish retina resisted hypoxic increases in [Ca2+]i, which
have been established as a precursor to excitotoxic cell death (Choi,
1992; Szydlowska and Tymianski, 2010).
The present study demonstrated that a mKATP channel-dependent

pathway is required to stabilize [Ca2+]i baseline in goldfish HCs.
This work agrees with a growing body of evidence which shows a
central role for mKATP channels and mitochondria in protection
against hypoxia across a wide array of tissues and species. mKATP

channel protection has been shown in diverse organs in mammals
including the heart (O’Rourke, 2004; Obal et al., 2005; Wang et al.,
2001), brain (Heurteaux et al., 1995), kidney (O’Sullivan et al.,
2008; Rahgozar et al., 2003), liver (O’Sullivan et al., 2008) and
retina (Dreixler et al., 2008; Ettaiche et al., 2001; Roth et al., 2006).
Likewise, mKATP channels protect against hypoxia in hypoxia-
tolerant species, including in the turtle brain (Dukoff et al., 2014;
Pamenter et al., 2008b) and in cardiomyocytes of hypoxia-tolerant
fish, such as the goldfish (Chen et al., 2005), the yellowtail flounder
(Limanda ferruginea) (MacCormack and Driedzic, 2002) and the
armoured catfish (Liposarcus pardalis) (MacCormack et al., 2003).
Among hypoxia-tolerant species, the neuronal mechanisms of

hypoxia tolerance have been best studied in cortical neurons of the
red-eared slider turtle (Trachemys scripta). These neurons
maintained [Ca2+]i for hours in hypoxia, but not when glycolysis
was inhibited with iodoacetate (Bickler, 1992). Pre-treating brain
slices with anoxia protected against iodoacetate insult, similar to how
hypoxia prevented increases in [Ca2+]i during glycolytic inhibition
in the present study. Furthermore, mKATP channels were necessary
for neuroprotection in painted turtle (Chrysemys picta) cortical
neurons (Pamenter et al., 2008b; Zivkovic and Buck, 2010), andmay
have conferred neuroprotection in HCs in the present report.
Although the exact mechanisms of mKATP channel-dependent

neuroprotection in turtles have yet to be established, there is

evidence that hypoxia opens mKATP channels, which depolarizes
mitochondria, triggering a subtle release of Ca2+ via the
mitochondrial permeability transition pore (Hawrysh and Buck,
2013; Pamenter et al., 2008b; Zivkovic and Buck, 2010). This slight
increase in [Ca2+]i activates second messenger pathways and
ultimately downregulates AMPA receptors (Pamenter et al.,
2008a; Zivkovic and Buck, 2010), NMDA receptors (Pamenter
et al., 2008b; Shin et al., 2005), and Ca2+-dependent K+ (KCa)
channels (Rodgers-Garlick et al., 2013). This downregulation of
membrane currents, or ‘channel arrest’ (Hochachka, 1986), would
limit Ca2+ influx and reduce the ATP required to maintain
transmembrane ion gradients, so as to conserve energy during
hypoxia. Channel arrest has been demonstrated in the goldfish brain
(Wilkie et al., 2008), but not yet in the goldfish retina.

The mKATP channel protection we observed likely involves a
different pathway from that of the turtle brain. In contrast with the
turtle model, we did not observe an immediate increase in [Ca2+]i
after applying hypoxia to goldfish HCs, suggesting any mKATP

channel pathway in goldfish HCs is Ca2+ independent. Instead, we
report that mKATP channel blockade increased [Ca2+]i in hypoxia,
whereas in the turtle, mKATP channel activation increased [Ca2+]i
(Hawrysh and Buck, 2013; Pamenter et al., 2008b). Mitochondrial
Ca2+ release may not be a feasible strategy in HCs because they
appear to have few mitochondria. Mitochondria are scarce in
electron micrographs (Dowling and Boycott, 1966; Yamada and
Ishikawa, 1965) and cytochrome c oxidase labelling is weak in HC
somata (Kageyama and Meyer, 1988). Furthermore, Ca2+ is
elevated in darkness, so a Ca2+-dependent pathway might not be
feasible (Country and Jonz, 2017; Hayashida and Yagi, 2002).

Our results may align more closely with IPC in the mammalian
retina, which is also Ca2+ independent. In the rat retina, mKATP

channels are both necessary and sufficient for IPC (Dreixler et al.,
2008; Roth et al., 2006; Stokfisz et al., 2017). Once open, mKATP

activates two Ca2+-independent isoforms of protein kinase C
(PKC): PKC-δ and PKC-ɛ (Dreixler et al., 2008). HCs likely benefit
because IPC prevents thinning of the inner nuclear and outer
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plexiform layers (Roth et al., 1998; Toprak et al., 2002; Zhu et al.,
2007), and the δ isoform localizes to mammalian HCs (Dreixler
et al., 2008). It is possible that neuroprotection is Ca2+ independent
in both mammalian and goldfish HCs, because [Ca2+]i is already
elevated throughout darkness as a result of constant glutamatergic
input from photoreceptors. Future experiments could compare this
HC pathway with neuroprotection in the inner retina (e.g. ganglion
cells), as inner retinal neurons are not expected to undergo
prolonged increases in [Ca2+]i during the dark, unlike HCs.
These models may offer insight into how mKATP channels open

in the goldfish retina. Local decreases in [ATP] have been proposed
to increase mKATP channel open probability in the turtle (Hogg
et al., 2014), yet this is unlikely in goldfish HCs because blocking
glycolysis dysregulated [Ca2+]i in the current study. Adenosine and
A1/A2a receptors are necessary for neuroprotection in the turtle
(Buck and Bickler, 1995; Pérez-Pinzón et al., 1993) and they open
mKATP channels during IPC in the mammalian retina (Li and Roth,
1999; Li et al., 2000). Adenosine may be a likely candidate as
adenylates are released by goldfish HCs, where they may buffer the
synaptic cleft pH and modulate feedback to cones (Vroman et al.,
2014). Other candidate mKATP channel openers include nitric oxide
and mitochondrion-specific isoforms of PKC (Korge et al., 2002;
Sasaki et al., 2000). PKC is present in HCs of the catfish (Pfeiffer-
Linn and Lasater, 1998) and nitric oxide synthase is present in
goldfish H1 cells (Daniels and Baldridge, 2011).
The specificity of mKATP channel agonists and antagonists has

been called into question, as has the existence of mKATP channels
(reviewed in Garlid and Halestrap, 2012; Roth et al., 2006).
Glibenclamide may inhibit plasmalemmal KATP channels, and
5-HD is a fatty acid which can interfere with lipid oxidation in
mitochondria (Hanley and Daut, 2005). Although diazoxide is over

1000 times more specific for mKATP channels than for
plasmalemmal KATP channels (Garlid et al., 1996), it has been
shown to inhibit complex II of the electron transport chain and to
lead to mitochondrial uncoupling (Kowaltowski et al., 2001).
However, these off-target effects may require higher concentrations
than those used in mKATP channel experiments (Garlid and
Halestrap, 2012; Kowaltowski et al., 2001), and they are not
themselves sufficient to explain the drugs’ neuroprotective impacts
in hypoxia (reviewed in O’Rourke, 2004; Roth et al., 2006). The
present report provides further evidence for mKATP channels, as we
show mitochondrial depolarization was dependent on KATP

channels yet we found no evidence for KATP channel currents
at the plasma membrane. Perhaps most convincingly, mKATP

channel proteins were recently reconstituted and shown to confer
protection via IPC and activation by diazoxide (Paggio et al., 2019),
supporting the existence and protective role of mKATP channels.
They are expressed and mediate hypoxic protection in a wide
range of species, including Caenorhabditis elegans (Wojtovich
et al., 2012), turtles (Dukoff et al., 2014; Pamenter et al., 2008b),
rats (Piriou et al., 2000; Roth et al., 2006) and humans (Jiang
et al., 2006). In fish, mKATP channels have been found in the
goldfish heart (Chen et al., 2005) and trout liver (Onukwufor et al.,
2016).

In the present study, AP amplitude was reduced as ATP supply
was challenged with hypoxia or with inhibition of glycolysis.
Reductions in AP amplitude may be a neuroprotective response
to hypoxia, so as to limit Ca2+ influx and reduce the ATP demand
for extrusion via Ca2+ ATPases. In support of this theory,
mKATP channel activation in trout reduced AP amplitude and
stabilized [Ca2+]i baseline. However, reductions in AP amplitude
were not sufficient to maintain [Ca2+]i, as [Ca

2+]i was dysregulated
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in multiple conditions despite amplitude reductions (i.e.
glibenclamide and hypoxia; 2-DG; 2-DG, hypoxia and 5-HD).
This may be an example of channel arrest, either of L-type Ca2+

channels or of ryanodine receptors (Country et al., 2019), to limit
increases in [Ca2+]i during APs. Channel arrest is known to protect
neurons of the goldfish telencephalon (Wilkie et al., 2008) and the
turtle cortex (Pamenter et al., 2008a,b; Rodgers-Garlick et al.,
2013); however, to our knowledge it has yet to be shown in the
retina.
Rainbow trout have been shown to be sensitive to hypoxia in

previous reports (e.g. Hylland et al., 1995; Iftikar et al., 2010;
Nilsson et al., 1993a), and a-, b-, and c-waves of the trout
electroretinogram were all negatively affected by hypoxia (Ubels,
1979). Our results confirmed the hypoxia sensitivity of trout retinal
neurons. Furthermore, activating mKATP channels in trout HCs
prevented hypoxia from increasing [Ca2+]i baseline, suggesting the
mechanisms of hypoxia tolerance downstream of mKATP channel
activation are conserved among fish. An additional take-home point
from these studies relates to the hypoxia sensitivity of HCs, more
generally. In mammals, HCs were resistant to excitotoxic cell death
(Kim et al., 2010), possibly because they have adapted to long
periods of high [Ca2+]i in the dark. By showing that [Ca2+]i is
dysregulated in trout but not goldfish, our results suggest that
neuroprotection is specific to goldfish, and not to HCs more
generally. Furthermore, we showed that trout HCs are susceptible to
hypoxic cell death even in the absence of glutamate. But in the dark,
glutamate from photoreceptors increases HC Ca2+ to a steady
concentration of∼600 nmol l−1 (Hayashida and Yagi, 2002), so that
more ATP turnover would be required to maintain Ca2+

homeostasis. The mKATP channel pathway and other forms of
neuroprotection are likely even more crucial for cell survival in
darkness.
Turtles are often considered the champions of hypoxia tolerance,

partly because they greatly reduce electrical activity in their brains
during anoxia, compared with modest reductions in goldfish and
crucian carp (Nilsson and Lutz, 2004). But in the retina, this
paradigm may be reversed. Electroretinogram recordings suggest
electrical activity in the turtle retina is reduced modestly (50%) in
hypoxia (Stensløkken et al., 2008), and turtles respond to visual
stimuli during their hibernation (Madsen et al., 2013). Carp shows
upwards of a 90% reduction in electroretinogram activity in hypoxia
(Johansson et al., 1997). Given this difference, the Carassius retina
merits consideration as a novel model of neuroprotection against
hypoxia. This model may be important because strokes, and the
majority of retinal diseases of the eye, involve ischaemic cell death
(Hayreh and Zimmerman, 2005; Osborne et al., 2004). Blood flow
is negatively affected in the eye in branch and central retinal artery
occlusions, retinal vein occlusions and glaucoma (Hayreh and
Zimmerman, 2005; Osborne et al., 2004, 1999). Other diseases,
such as age-related macular degeneration and diabetic retinopathy,
can leave affected areas of the retina hypoxic, leading to cell death
and vision loss (Blasiak et al., 2014; Sim et al., 2014). By clarifying
the cellular mechanisms by which goldfish retinal neurons survive
hypoxia, we may learn of new strategies to mitigate or prevent
retinal disease and protect vision.

Conclusion
The present study revealed a novel mKATP channel-dependent
mechanism which may protect the vertebrate retina from hypoxia.
We showed that [Ca2+]i was dysregulated in hypoxia in HCs of the
hypoxia-sensitive trout; in contrast, HCs of the hypoxia-tolerant
goldfish maintained [Ca2+]i even after 1 h of hypoxia. mKATP

channels were necessary to stabilize [Ca2+]i in goldfish HCs and
sufficient for Ca2+ homeostasis in trout HCs. We ruled out the
involvement of plasmalemmal KATP channels, while showing that
mKATP channels depolarize mitochondria early in hypoxia. Finally,
we showed that hypoxia stabilized [Ca2+]i even as glycolysis was
inhibited. This novel in vitro model is the first to explore intrinsic
hypoxia tolerance in retinal neurons, and may lead to novel insights
to protect against ischaemic diseases of the eye.
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