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Correlated decision making across multiple phases
of olfactory-guided search in Drosophila improves
search efficiency
Floris van Breugel

ABSTRACT
Nearly all motile organisms must search for food, often requiring
multiple phases of exploration across heterogeneous environments.
The fruit fly, Drosophila, has emerged as an effective model system
for studying this behavior; however, little is known about the extent to
which experiences at one point in their search might influence
decisions in another. To investigate whether prior experiences impact
flies’ search behavior after landing, I tracked individually labelled fruit
flies as they explored three odor-emitting but food-barren objects. I
found two features of their behavior that are correlated with the
distance they travel on foot. First, flies walked larger distances when
they approached the odor source, which they were almost twice as
likely to do when landing on the patch farthest downwind.
Computational fluid dynamics simulations suggest this patch may
have had a stronger baseline odor, but only ∼15% higher than the
other two patches. This small increase, together with flies’ high
olfactory sensitivity, suggests that their flight trajectory used to
approach the patches plays a role. Second, flies also walked larger
distances when the time elapsed since their last visit was longer.
However, the correlation is subtle and subject to a large degree of
variability. Using agent-based models, I show that this small
correlation can increase search efficiency by 25–50% across many
scenarios. Furthermore, my models provide mechanistic hypotheses
explaining the variability through either a noisy or stochastic decision-
making process. Surprisingly, these stochastic decision-making
algorithms enhance search efficiency in challenging but realistic
search scenarios compared with deterministic strategies.
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INTRODUCTION
All moving organisms spend a significant amount of their time and
energy searching for food, mates, or oviposition and nesting sites.
Improving our knowledge of the algorithms that animals use during
these search efforts represents a critical step towards understanding
how organisms function by connecting neuroscience, behavior,
ecology and evolution (Hein et al., 2016). On the behavior and
ecology fronts, countless field studies have helped shape our
understanding of the search behavior exhibited by mammals, birds
and fish in the context of optimal foraging theory and satisficing
(Carmel and Ben-Haim, 2005; Charnov, 1976). In laboratory

environments designed to discover the neural basis underlying these
decisions, many efforts have focused on olfactory search of
organisms including mice (Findley et al., 2021), insects (van
Breugel et al., 2018) and crustaceans (Michaelis et al., 2020; for a
review, see Baker et al., 2018). To move the field forward, there is a
growing push to connect laboratory and field experiments.

Most natural environments consist of a patchwork of potential
resources, demanding multiple scales of search: long-range,
intermediate, local and nutrient driven. Perhaps surprisingly, the
unassuming fruit fly, Drosophila melanogaster, has emerged as a
prime model to bridge the investigation of behaviors in patchy
environments among disparate size scales. Long-range search for a
Drosophila consists of flights of up to 10 km across food-barren
areas in search of a resource cluster (Coyne et al., 1982; Jones et al.,
1981), initially relying on celestial cues (Warren et al., 2019; Weir
and Dickinson, 2012), as well as vision and wind (Leitch et al.,
2021) until it catches an odor plume to follow (Budick and
Dickinson, 2006; van Breugel and Dickinson, 2014). Within a
resource cluster, a fly begins its intermediate search phase: tracking
odor plumes (Becher et al., 2012; Dweck et al., 2013; Mansourian
et al., 2018; van Breugel et al., 2018) and approaching visual cues
(Saxena et al., 2018; van Breugel and Dickinson, 2014), often
relying on the integration of the two (Cheng et al., 2019; van
Breugel et al., 2015) in addition to wind information (Suver et al.,
2019; van Breugel and Dickinson, 2014) to find fermenting fruit.
After landing (van Breugel and Dickinson, 2012), the fly enters its
third phase, local search. Now travelling on foot, the fly continues
using odors to navigate the patchiness (Álvarez-Salvado et al.,
2018; Demir et al., 2020; Gaudry et al., 2013; Jung et al., 2015; Tao
et al., 2020), as cracks in the fruits’ skin serve as entry points,
whereas mold renders portions too toxic (Stensmyr et al., 2012).
After tasting some nutrients, the fly enters its final nutrient-driven
search phase, characterized by a so-called ‘dance’ that is driven
mainly by idiothetic cues (Corfas et al., 2019; Dethier, 1957; Kim
and Dickinson, 2017). Regardless of whether the fly finds the
nutrients it needs, eventually it will decide to take flight and leave,
only to start the process all over again.

Whereas each phase of flies’ search has been subject to recent
research efforts aimed at understanding both the behavior and
neurobiology, little is known about how individual experiences
from one encounter with an odor or food patch might influence the
next. Building an understanding of this process has important
implications for interpreting their neurobiology, ecology and
behavior (Hein et al., 2016).

In this paper, I simulate a patchy environment in the lab by
placing three ethanol-emitting objects in a wind tunnel. Individually
marked fruit flies are allowed to freely explore these objects for
18 h. My results indicate that their local search behavior on each
individual patch is correlated with (1) whether they approach theReceived 18 January 2021; Accepted 19 July 2021
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odor source and (2) the time interval since their prior visit. Although
the relationship is subtle, agent-based models indicate that both
this interval correlation and the variability in their decision-
making process can increase search efficiency for certain
environmental scenarios. These small improvements could easily
add up over the timescale of a flies’ lifespan or over a population as a
whole.

MATERIALS AND METHODS
Animals and experiments
To discover the relationship between decisions that Drosophila
melanogaster Meigen 1830 make during local and intermediate
search behaviors in patchy landscapes, I placed three food-
barren odorous patches (10.8 cm diameter) in a wind tunnel
(61×61×150 cm) with 40 cm s−1 wind (Fig. 1A–C; van Breugel
et al., 2018). Each patch constantly emitted the attractive odorant
ethanol from the center of the patch by bubbling 60 ml min−1 of air

through a 50% ethanol/water solution. The acrylic patches had a
perforated area in the center for emitting the odor and were all
identical in size, shape, color, odor type and concentration.
Although I did not characterize the spatial distribution of odor on
the patch, it was likely most concentrated at the perforated holes,
with a plume extending downwind near the surface of the platform
(see fig. 2B in van Breugel et al., 2018). The edge was coated in
fluon (byFormica, byformica.com) to prevent the flies from
crawling out of view.

Above each patch there was both a 400×600 pixel monochrome
machine vision camera (acA720-520um, Basler, Exton, PA)
equipped with a Tamron 4-12 mm IR lens (Tamron USA,
Commack, NY, USA) and an 18 megapixel color dSLR camera
(Canon Rebel SL2; Canon USA, Huntington, NY, USA) equipped
with Tokina 100 mm macro lenses (Tokina, Tokyo, Japan)
(Fig. 1B). The optics and camera positions for both the machine
vision and dSLR cameras were set to fill their field of view with the
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Fig. 1. Flies explore odorous objects longer on their first encounter. (A) Photograph of experimental arrangement of three odor emitting patches inside a
60×60×120 cm wind tunnel (ELD, Lake City, MN, USA). (B) Above each patch was a machine vision camera to track the flies’ walking trajectories, and a
digital SLR to image their markings. All six cameras were positioned to maximize the size of the patch in the field of view. (C) Top view diagram of
experimental arrangement, red shading indicates approximate region where ethanol odor was emitted (see van Breugel et al., 2018). (D) Representative
photographs of flies indicating their identifying color spots painted on with nail polish. (E) Representative trajectory on one patch. (F) Distance travelled on the
patch by individual flies that approached the odor (black) or did not (white). Red: first approach. Shading indicates 95% confidence interval about the median.
(G,H) Histograms show bootstrapped distributions of the expected mean distance flies should travel if each visit is identical and independent. Red line shows
the actual mean distance travelled only the first visit. In G, only trajectories where the flies approached the odor were considered. In H, all trajectories were
considered.
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platform. When the flies landed on a patch, the machine vision
camera tracked them at 30 frames s−1 using the software described
previously (van Breugel et al., 2018), with one modification. As
soon as a fly landed, and every 10 s thereafter, the dSLR
photographed the flies in higher resolution. This tracking system
did not allow me to track flies in three dimensions between patch
visits. The analysis presented here focuses only on the trajectories
while flies were on one of the three patches.
To keep track of individual flies across all three patches, I painted

a dot of colored nail polish on their thorax (Fig. 1D). The flies were
cold-anesthetized for the painting and allowed to recover while
being deprived of food, but not water, for 8 h before the experiment
started. For each experiment, I used six female flies (Heisenberg
Canton-S background). They were placed in the wind tunnel 6 h
prior to their entrained dusk (relative to a 16 h:8 h light:dark cycle)
and allowed to move freely throughout the wind tunnel for 18 h. In
some experiments, nearly all flies visited the patch at least once, but
typically only 2–3 of the flies made an appearance.
All trajectories were hand-corrected for tracking errors to

guarantee their completeness and manually associated with the
correct color identity from the dSLR images. This approach allowed
for the clear identification of 194 out of the 201 total trajectories
recorded. The seven unidentifiable trajectories ranged in length
between 0.23 and 360 s (mean 135 s) and were omitted from my
analysis. They could have contributed to some of the unexplained
variance seen in the results. I limited the analysis to individuals who
made at least three landings, as a critical component of their search
behavior was the time interval between their visits. After this
filtering, 178 trajectories remained, contributed by 16 individual
flies. Except for the analysis presented in Fig. 1, I had to omit the
first visit from the analysis since the interval before that visit is
undefined. In a few cases, two flies interacted with one another on
the patches, sometimes exhibiting aggressive behavior such as wing
threats. These encounters were rare (<5% of trajectories), and their
potential effects were ignored in the analysis.

Statistics: comparing first encounters with subsequent
encounters
To determine if the distance flies travelled on their first visit to a
patch was significantly larger than on their subsequent visits, I
compared the mean distance that the 16 flies travelled on their first
visits to a bootstrapped null distribution. To create the null
distribution, which represents the expected distribution of mean
distance travelled assuming that all the visits were independent and
identical, I randomly selected one visit for each fly, calculated
the mean of these 16 values, and repeated this operation for
1000 iterations. I then compared the mean of the distance travelled
only on the first visits to this bootstrapped distribution. I ran
this analysis for two scenarios: (1) including only visits where the
flies approached the odor source, and (2) all the visits that flies
made.

Statistics: mixed-effects model
To analyzewhich of six potential inputs might be correlated with the
distance flies travelled on the platform while also accounting for
the potential differences across individual flies, I ran a mixed
linear model on the data with random intercepts for each individual
fly. I first log-transformed the distance travelled and all but one
of the inputs (Table 1) to ensure that they were relatively
symmetrically distributed about the mean. I also normalized each
input to the standard deviation to allow the coefficients of the model
to serve as a measure of effect size. See Fig. S1 for a summary of

goodness-of-fit metrics. For these goodness-of-fit metrics, as well
as the R2 values, I report both marginal and conditional results,
where the marginal only takes into account the fixed effects. The
conditional considers both the fixed and random effects due to
each individual fly (Nakagawa and Schielzeth, 2013). There is some
heteroskedasticity in the residuals for the mixed-effects model
(Breusch–Pagan test P=0.002). By replacing the fraction of time
spent near the odor with a related metric, regardless of whether flies
approached the odor source (i.e. spent more than 1% of their time
near the odor), and applying a Box–Cox transformation to the
output and inputs, this heteroskedasticity can be removed (Breusch–
Pagan test P=0.078), without having any meaningful impact on the
mixed-effects model results. To improve the interpretation of the
data, I use the log-transformed data as opposed to the Box–Cox
transformed data throughout the paper. All analyses, modeling and
statistics were performed in Python, statistics were calculated using
SciPy (Virtanen et al., 2020) and StatsModels (Seabold and
Perktold, 2010), and the code is provided online at https://github.
com/florisvb/correlated_decision_making_jeb.

Computational fluid dynamics
To analyze the flow patterns of the odor plumes, a two-dimensional
(2D) quasi-DNS (direct numerical simulation) was performed
using OpenFOAM. A 2D computational domain mimicking the
geometry of the wind tunnel but having a length of 3 m was
used. The cylinders were positioned according to the wind tunnel
setup (see Fig. 1). However, they were shifted 0.01 m from center
to avoid numerical instabilities. No-slip boundary conditions
were enforced on the walls and each cylinder. A zero-pressure
(gauge) outlet was used. The inlet velocity was ramped from 0 to
0.4 m s−1 over the first half-second of simulation time to avoid
divergence.

After the flow had settled to its transient base flow, a constant
concentration of passive scalars was introduced at each node of the
cylinder walls. Note that this differs from the actual odor release
site, which was restricted to the center of the cylinders. This
simplification was needed to run the simulation in 2D and provides a
more conservative result. The simulation was then run for an
additional 21 convective lengths. The transport equation for the
scalar was solved at each time step according to:

@f

@t
þr � ðQufÞ þ r � ðDrfÞ ¼ Sf; ð1Þ

where f is the scalar quantity, D is the diffusivity coefficient
(10−4 m s−1), Qu is the velocity vector and Sf is the source term
(Maric et al., 2014). During each convective cycle, 32 snapshots of
the flow were stored for analysis.

Table 1. Normalized coefficients and statistics for amixed-effects linear
model describing the log of the distance travelled by flies during each
visit to a patch

Variable Coefficient z-statistic P-value

log(fraction of time near odor) 0.531 8.658 <0.001
log(interval) 0.227 3.220 0.001
log(circadian time) −0.188 −1.755 0.048
log(mean walking speed) −0.032 −0.483 0.629
Novel patch (yes/no) 0.045 0.695 0.487
log(nth visit) −0.007 0.064 0.949

The data are from 162 observations of 16 individual flies; see Fig. S1 for
diagnostic plots. Conditional and marginal R2 values are 0.45 and 0.41,
respectively.
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Agent-based modelling of decision-making strategies and
goodness-of-fit
To understand the impact of my results on hypothetical food search
scenarios, I ran a series of agent-based models. I primarily consider
four decision-making strategies (TGUD, ITGUD, GPL, IGPL)
guiding when flies should leave a patch in search of a new one in my
agent-based models. These strategies can be described by probability
density functions of distance travelled. In addition to these four
primary strategies, I also discuss four other strategies, including
stochastic renditions of TGUD and ITGUD, a slight modification of
the IGPL strategy, and a fixed probability of leaving strategy.
Descriptions andmathematical equations of these strategies are given
below. Parameter values and implementation are available online
at https://github.com/florisvb/correlated_decision_making_jeb and
their discretized 2D probability mass functions are shown in Fig. S3.

TGUD (threshold giving-up distance)
In this deterministic strategy, agents always leave after travelling a
constant distance (i.e. d=a, where a is a constant).

ITGUD (interval threshold giving-up distance)
In this deterministic strategy, agents always leave after travelling a
distance that is log-linearly correlated with the time interval (i) since
their last visit to a patch. Mathematically the distance travelled (d ) is
given by:

d ¼ ea�logðiÞþb; ð2Þ
where a and b are both constants.

GPL (gamma probability of leaving)
In this stochastic strategy, agents leave after travelling a distance that
has a gamma-distributed probability density function regardless
of the time interval. Mathematically, the probability density
function (PDF) of distance travelled (d ) given the interval (i) is
described by:

pðdÞ ¼ ðd=scaleÞa�1e�ðd=scaleÞ

scale � GðaÞ ; ð3Þ

where both a and ‘scale’ are constants, and Γ is the gamma function.

IGPL (interval gamma probability of leaving)
In this stochastic strategy, agents leave after travelling a distance that
has a gamma-distributed probability density function with
parameters that depend on the time interval. Mathematically, the
PDF of distance travelled (d ) given the interval (i) is:

pðdjiÞ ¼ ðd=scaleÞa�1e�ðd=scaleÞ

scale � GðaÞ ; ð4Þ

where a and ‘scale’ are defined by the following equations with a1,
a2, s1, s2 being constants:

a ¼ ea1 logðiÞþa2 ;

scale ¼ es1 logðiÞþs2 :
ð5Þ

STGUD (stochastic threshold giving-up distance)
In this stochastic strategy, agents leave after travelling a distance that
has a log-normally distributed probability density function:

pðdÞ ¼ e�0:5ððlogðdÞ�mÞ=sÞ2

s
ffiffiffiffiffiffi
2p

p ; ð6Þ
where μ and σ are constants.

SITGUD (stochastic interval threshold giving-up distance)
In this stochastic strategy, agents leave after travelling a distance that
has a log-normally distributed probability density function with
parameters that are functions of the interval since the last visit:

pðdjiÞ ¼ e�0:5ððlogðdÞ�mÞ=sÞ2

s
ffiffiffiffiffiffi
2p

p ; ð7Þ

where σ is a constant, but m ¼ a �N ðlogðiÞ;siÞ þ b, and a, b, σi are
constants. This strategy models the assumption that the agent has a
noisy measurement of the interval (i).

IGPLO (interval gamma probability of leaving offset)
This strategy is almost identical to the IGPL strategy, except that the
gamma distribution has an offset parameter, which can be thought
of as a minimal distance travelled threshold. Mathematically, the
PDF of distance travelled (d ) given the interval (i) is:

pðdjiÞ ¼ ðd � offset=scaleÞa�1e�ðd�offset=scaleÞ

scale � GðaÞ ; ð8Þ

where ‘offset’ is a constant, but a and ‘scale’ are defined as in the
IGPL strategy.

FPL (fixed probability of leaving)
In this stochastic strategy the agent has an equal probability of
leaving at each step, resulting in the following distance-travelled
probability density function:

pðdÞ ¼ ke�kd; ð9Þ
where k is a constant.

For each strategy, I chose values for the parameters that maximize
the log-likelihood of the data. To evaluate the goodness-of-fit for
each strategy, I compared the log-likelihood of the data to a
bootstrapped distribution of log-likelihoods for simulated datasets
derived from the model (Fig. S4).

Agent-based modelling: relative search efficiency
To compare the efficiency of two decision-making strategies such as
those highlighted in the previous section, I calculated the relative
difference in the mean metabolic costs for an agent in my
simulations to find food across 50,000 trials in a given environment
scenario. I define the mean metabolic cost (MC) for a strategy as:

MC ¼ kðtp þMR � tiÞ; ð10Þ
where tp is the total time spent searching on patch, ti is the total time
spent during intervals between patch visits (i.e. the quantity of patch
visits minus one multiplied by the mean time interval elapsed
between visits), MR is the metabolic ratio describing the relationship
between the metabolic cost to travel between patches and to search a
patch, and k is energy cost per unit time for time spent on the patch. I
then define the relative search efficiency between two strategies as the
difference in these metabolic costs as:

Relative search efficiency = % Difference in MC

¼ MC1 �MC2

MC1

� �
� 100%; ð11Þ

which eliminates the factor k. Since the decision strategies I consider
rely on the agent estimating distance travelled on a patch, I first
convert these distances to time tp using the log–log relationship given
by the data (Fig. S3A, R2=0.7). For a fruit fly, the metabolic cost of
flight is approximately 10–15 times greater than the basal metabolic
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rate (Chadwick, 1947; Lehmann and Dickinson, 1997), so if the
agents spent all of their time between patch visits flying MR should
be 10–15. However, just like the flies in my experiments, the agents
may spend some of this time resting, so I considered a range of values
for MR from 1 to 10.

RESULTS
After landing, many of the flies performed a stereotypical search
bout during which they spent a significant amount of time near the
odor source in the center of the patch, while also making periodic
forays towards the edge, often circling the perimeter of the object
(Fig. 1E, see also Movie 1). This complex search phase has been
described in great detail previously by several authors (Álvarez-
Salvado et al., 2018; Demir et al., 2020; Gaudry et al., 2013; Jung
et al., 2015; Tao et al., 2020). Here, I set out to quantify how
behavior varied across subsequent visits to the odorous objects. I
focused on the distance the flies travelled during their search, which
provides a measure of how much surface area they explored before
giving up and leaving, and is likely measurable for an insect (Kim
andDickinson, 2017;Wittlinger et al., 2006). There is a large degree
of variability in the distance each fly travelled on a patch before
giving up and leaving (Fig. 1F). Although a substantial amount of
this variability is likely due to unobservable factors such as the
internal behavioral state of the flies, as is the case with any complex
behavior, the goal of this paper is to understand how much of that
variability can be explained by observable features of the flies’
behavior and environment.

First visits are longer than subsequent visits
For the majority of flies (10 of 16), the first time they visited the
patch and also approached the odor source (i.e. entered the red
region shown in Fig. 1C and spent at least 1% of their time there)
they travelled farther than the average of their subsequent visits in
which they also approached the odor source (compare the red dot
with black dots in Fig. 1F). To understand if the distance travelled
on these first visits was statistically longer than expected if all visits
were independent and identical, I compared the average distance
travelled on these first visits to a null distribution bootstrapped from
all of the flies’ visits (see the Materials and Methods for detail).
When only considering visits during which flies approached the
odor source, flies did indeed walk significantly farther on their first
visit compared with the average of all their visits (resampling test
one-tailed P-value=0.005, Fig. 1G). However, when considering all
the trajectories, not just those where the flies approached the odor
source, flies did not walk significantly farther on their first visits
(Fig. 1H). These observations suggest that both approaching the
odor source and prior experiences play an important factor in flies’
decision-making process for how long they search the patch before
leaving. To address these two hypotheses in more rigorous detail
while also considering four other potential factors, I next built a
mixed-effects linear model with all the visits after the first one.

Approaching the odor source and the interval between visits
are key correlates with distance travelled
What potential factors might influence the distance flies travelled
while searching? I considered six potential factors as hypotheses, as
follows (Fig. 2A). First, flies might become habituated to the odor
with multiple successive encounters or learn a negative association
with the odor because of their failure to locate food nearby (nth
visit). Second, if there is such a memory, perhaps it fades with time,
suggesting that the time between visits might be important
(interval). Note that in my experiments, it was not possible to

track the flies during these intervals, so this time likely includes
periods of flying, walking and resting. Third, perhaps flies that
approach the odor source (i.e. entered the red region shown in
Fig. 1C) or spend a larger fraction of their time near it are more
likely to continue searching for longer (fraction of time near odor).
Fourth, previous experiments indicate that the overall activity is
correlated with attraction (van Breugel et al., 2018) and that might
explain some of the variability (mean walking speed). As an
alternative to mean walking speed, I also considered the fraction of
time that flies were moving faster than 1 mm s−1, which produced
qualitatively similar results. Fifth, perhaps flies can visually
remember the spatial location of the patch they visit (Ofstad et al.,
2011) and search more on novel patches (novel patch). And sixth,
the timing of their landing relative to their circadian rhythm might
play a role (van Breugel et al., 2018) (circadian time). Hunger is also
likely to play a role in modulating the local search behavior (Root
et al., 2011). In my experiments, the flies were all starved before the
experiment began, and subsequent increases in hunger were
correlated with the circadian time. Finally, each fly may have its
own behavioral idiosyncrasies owing to genetics (Ayroles et al.,
2015) or perhaps the hunger state for each individual is variable
despite all being taken off of food at the same time. To determine
which of the six potential features as well as the individual
variability can explain the distance flies travelled, I built a mixed-
effects (random intercept) linear model (Table 1, Fig. 2B) from all
the visits, excluding the first visit contributed by 16 individual flies,
resulting in a total of 162 visits.

Only two of the six features I considered were significantly
correlated with distance travelled: the fraction of time spent near the
odor and the time interval elapsed since the last visit to one of the
odorous patches (Table 1). Note that these two correlations are
consistent with the independent conclusions drawn from the flies’
first visits to the patches. Although the mixed-effects linear model
serves as an efficient means for testing the six hypotheses under
consideration, it is not intended to offer an accurate prediction of the
flies’ behavior. Approximately 45% of the variance in the distance
travelled is explained if fly individuality is taken into account
(conditional R2=0.45). In contrast, without the random fly effect,
41% of the variance is explained (marginal R2=0.41). The similarity
between these R2 values suggests that although some differences
may be attributed to individual flies, the effect is relatively small.
The next two subsections consider these two significant features in
greater depth in conjunction with theoretical modeling to
understand: (1) why some flies might approach the odor source
and others not, (2) how the relatively small effect size of the interval
between visits could impact search efficiency in a meaningful way
over the course of multiple visits, and (3) what mechanisms might
underlie the variability in behavior and the impact of such
variability on search efficiency.

The likelihood of approaching the odor source is correlated
with patch location
Flies that spend even just a small fraction of their time near the odor
source travelled a significantly larger distance during their search
bout compared with flies that did not (Fig. 2C). The distance they
travel, however, is not correlated with the fraction of time that the
flies spent in a ±45 deg wedge downwind of the odor source
(Fig. S2). To better understand the potential mechanisms underlying
this behavior, I split the data into two groups: flies that approached
the odor source (i.e. spent at least 1% of their time in the red region
shown in Fig. 1C) and those that did not. Flies that approached the
odor source travelled significantly farther (Fig. 3A). One trivial
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explanation could be that finding the odor source is difficult, and
simply by covering more ground, flies may be more likely to
encounter the odor source. If this were true, we would expect to see
flies that take a long time approaching the odor source to also travel
significantly farther. There is, however, no such correlation
(Fig. 3B). In fact, the majority of flies that approached the odor
source did so early in their trajectory: in the first ∼100 mm travelled
compared with their average distance travelled of ∼1000 mm
(Fig. 3C). Since most approaches happen early in the search, it is
likely that encountering the odor triggers flies to pursue a longer
search bout rather than the other way around. The flies that did not
approach the odor source also generally travelled close to ∼100 mm
or more, so should have had ample opportunity to approach the odor
source (Fig. 3D).
Why might some flies approach the odor source and others not?

Perhaps the flies were in different behavioral states that made them
less motivated to search. Although this cannot be discounted
entirely, prior experiments have found that flies are unlikely to land
on an object in the presence of wind unless they first detect an odor
(Budick and Dickinson, 2006; van Breugel and Dickinson, 2014),
suggesting that the majority of the flies landing on the patches in my
experiment had already detected some amount of odor prior to
landing. Furthermore, the mean walking speeds of flies that
approached and did not approach the odor source were no
different (Fig. 3E), suggesting that their activity states were similar.
Flies were, however, significantly more likely to approach the

odor source when searching the center patch (93% of 68 landings)

compared with the other two patches that were positioned upwind of
the center patch (left: 49% of 59 landings; right: 52% of 52
landings) (Fig. 3F). Perhaps the flies land on different locations on
each patch, thereby resulting in different initial olfactory
experiences? This is unlikely because flies predominantly landed
roughly downwind from the odor source on all three patches
(Fig. 3G). Therewere no differences in the mean angle at which flies
landed, regardless of whether they approached the odor source
(Fig. 3H), or in how far they travelled after landing. Finally, since
flies landed at roughly similar frequencies on the three patches (68,
59, 52), it is not surprising that the time interval between landings
was no different for the three patches (Fig. 3I).

Why are flies more likely to approach the odor source when
landing on the downwind patch? One possibility is that odors
advected downwind from the two upwind patches increase the odor
concentration near the downwind patch. To explore this possibility,
a colleague performed a 2D computational fluid dynamics
simulation with passive tracers for my experimental arrangement.
We ran the simulation for two scenarios: with all three patches as
arranged in the wind tunnel (Fig. 3J, Movie 1) and just the two
upwind patches (Fig. 3K, Movie 2). Although simplified compared
with the full 3D flow, these 2D simulations together offer a rough
estimate of howmuch odor from the upwind patches may have come
close to the downwind patch. Comparing the two simulations
suggests that, on average, there may have been a slight (∼15%)
increase in odor concentration at the downwind patch due to the
advected odor emanating from the upwind patches.
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Fig. 2. When flies explore an odorous, but food-barren, patch, the distance they travel on the object is larger when they approach the odor, and
when the time since their last visit to a similar object is longer. (A) Cartoon of a hypothetical sequence of four visits to three odor-emitting patches.
(B) Observed versus predicted distance travelled for a mixed effects linear model (Table 1). Filled and open circles indicate trajectories during which flies
approached, or did not approach, the odor, respectively. Marginal (m) and conditional (c) R2 values are given for the model. Red line indicates a slope of 1.
(C) Observed distance travelled after controlling for all relationships in the mixed linear model except for the fraction of time flies spent near the odor.
(D) Observed distance travelled after controlling for all relationships in the mixed linear model except for the interval before landing. Shading around the blue
lines in C,D indicates the 95% confidence interval for the slope and intercept for the relationship.
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Agent-based modeling suggests that both interval
correlation and behavioral variance improve search
efficiency
Of the variables I tested, the only other correlate with distance
travelled was the interval between patch visits (Table 1). Unlike
odor source approaches, there was no correlation between which
patch the flies landed on and the interval between visits (Fig. 3I).
After accounting for the effect of approaching the odor source, there
is still a significant but subtle positive correlation relating the
interval between visits with the distance travelled (Fig. 2D). This
correlation could be due to a variety of factors that I could not
measure in this experiment. However, one possibility that can be
explored with this dataset is whether it is possible that such a
correlation could provide an advantage to the overall food search
efficiency. The data show that when the time interval between visits
was large, flies tended to search farther and longer before giving up
and leaving. From an efficiency standpoint this makes sense: if it
will take a long time to find a new candidate patch, it might pay off
to be absolutely certain there is no food on the patch where the fly is
presently searching. On the other hand, if the interval between visits
is very short, the cost of leaving and finding a fresh patch may be
small enough that it is worth leaving early, especially if it is
generally easy to localize food on a patch. This section carefully
explores this hypothesis by answering three questions: (1) could the
subtle positive correlation I observed have a meaningful effect on

search efficiency, (2) could the unexplained variance from my
statistical model be the result of a simple underlying stochastic
decision-making process, and (3) might such a stochastic process
actually improve the search efficiency?

To understand how the relationship of the time between patch
visits and the distance travelled on each patch might impact the
search behavior of flies, I ran a series of agent-based models of a
simple search paradigm (Fig. 4A). In my models, after landing on a
patch with Pf probability of having food, the agents travelled for
some distance before giving up and leaving. I modelled the decision
to leave using a probability density function that describes the
outcome of several decision-making strategies (see the Materials
and Methods for mathematical details). During their search,
I modeled the likelihood of finding food (when not on a barren
patch) as identical for each step they took. This corresponds to a
cumulative distribution function of an exponential distribution with
parameter λ (CDF=1−e−λd, where d is the distance travelled). This
modeling decision is based on previously published data for
walking flies searching a 170 mm arena for a small dab of yeast
(Fig. 4B; Kim and Dickinson, 2017). In this model, larger values of
λ−1 correspond to patches where it is more difficult to localize food.
At each step, agents who did not find food decided according to one
of several decision-making strategies to either continue searching or
leave. If the agent left, there was a time interval before encountering
a new patch, which models the x-axis of the data shown in figures
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Fig. 3. Flies are more likely to approach odor source when landing on the downwind patch. (A) Flies that approach the odor also travel farther on the
patch. (B) Distance travelled is not correlated with the time elapsed between landing and the first odor approach. Shading indicates 95% confidence interval
of the relationship. (C) The total distance flies travel on the patch is much larger than the distance they travel before first approaching the odor, whereas
(D) the distributions are similar for flies that do not approach the odor. (E) The main walking speed is no different for flies that do or do not approach the odor.
(F) Flies are more likely to approach the odor on the center-downwind patch. (G) Location of landings for each trajectory on the three patches (see Fig. 1).
(H) Angle of landing is uncorrelated with approaching the odor. (I) The interval between patch visits is not different for the three patches. (J,K) Average
relative odor concentration for a 2-dimensional computational fluid dynamics simulation of the three patches (J) or just the two upwind patches to provide a
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such as Fig. 2D. As in my experiments, this interval could include
active travel time as well as resting time. To compare the efficiency
of the two strategies, I calculated a mean metabolic cost, effectively
a weighted sum of the total search time (see the Materials and
Methods).
In ecology, the process of search has been dominated by the field

of optimal foraging theory, namely, the marginal value theorem
(Charnov, 1976; Schoener, 1971; Nonacs, 2001) and satisficing
(Carmel and Ben-Haim, 2005). Neither model, however, provides
an explanation for how these strategies could be implemented by a
simple neural mechanism. However, several ‘rules of thumb’ that
could be easily implemented have been proposed (Green, 1984;
Iwasa et al., 1981). I considered two variations each of previously
described deterministic and stochastic rules of thumb, resulting in
four decision-making strategies.

One example of a deterministic search strategy is ‘threshold
giving-up time’ (TGUT) (Croze, 1970; McNair, 1982), which states
that an animal should continue searching for food in a patch for an
amount of time proportional to the quality of the patch (i.e. the
likelihood of finding food). However, because maintaining an
accurate sense of time elapsed is challenging, a more likely strategy
for insects is to leave after some ‘threshold giving-up distance
travelled’ (TGUD) has been reached, given the behavioral and
neural evidence for insects’ ability to count steps (Kim and
Dickinson, 2017; Wittlinger et al., 2006). In my experiments, where
everything is identical for each patch, the TGUD strategy is
equivalent to traveling the same threshold distance on each patch
until giving up and leaving, regardless of the travel time between
patches. When the time interval between patch visits is large, either
due to large travel times or the difficulty of finding patches, it might
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after a fixed threshold distance travelled; ITGUD, flies leave after a threshold distance travelled that is larger for larger intervals between patch visits; GPL, flies
leave with some probability at each step, where the probability is drawn from a constant gamma distribution; IGPL, flies leave with some probability at each step,
where the probability is drawn from a constant gamma distribution with parameters that depend on the time interval.
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make sense for the animal to commit more effort (i.e. distance
travelled) searching for food when they do get to a patch before
giving up and leaving. I call this extension of the TGUD strategy the
‘interval threshold giving up distance-travelled’ (ITGUD). For both
the TGUD and ITGUD strategies, I chose thresholds and a slope that
best matched my data (Fig. 4C). The addition of the subtle interval
dependence found in my data improves the mean search efficiency
across all scenarios I considered with only slight losses in efficiency
for the intermediate intervals (Fig. 4D, Fig. S3B). These results are
not strongly dependent on the choice of metabolic ratio, nor do they
depend on the value of Pf (Fig. S3B). In challenging search
scenarios, corresponding to environments where it is difficult to
localize food on a patch (large values of λ−1) and where time
intervals between patch visits are large, the ITGUD strategy is as
much as 25–50% more efficient compared with TGUD. Meanwhile
in easy search scenarios, corresponding to environments with small
values of λ−1 and where time intervals between patch visits are
short, the ITGUD strategy also prevails. Overall the ITGUD strategy
is consistently more efficient because it tunes the decision to leave
based on the time interval between patch visits, whereas the TGUD
strategy relies on a fixed decision to leave that is tuned for the
average across all intervals.
The distances that flies travelled in my experiments exhibit

substantial variability that is not explained by the deterministic
strategies. This variability could arise from a number of different
sources, including: (1) general behavioral variability due to
unobservable states of the fly such as their overall motivation and
their activities between visits; (2) flies having poor estimates of
distance travelled, though some walking insects exhibit remarkable
accuracy in their distance estimates (Wittlinger et al., 2006); and (3)
poor estimates of the time interval between visits given the
challenge of accurately estimating time. The latter two of these
scenarios are discussed later, after considering another intriguing
possibility: the variability may result from a stochastic decision-
making process. Furthermore, regardless of the source, variability in
the decision-making process might improve the average search
efficiency across a population of flies.
In contrast to deterministic threshold-based strategies, the search

behavior of some animals like jumping spiders has been described
by a simple stochastic heuristic: the fixed probability of leaving
(FPL) (Kareiva et al., 1989). With the FPL strategy, the animal does
not need to remember time elapsed (or distance travelled) and
instead leaves with a fixed probability at each time step (or physical
step), resulting in an exponential distribution. By its very nature, the
exponential distribution has a peak probability density function at
zero with a long tail, resulting in more short visits than long ones,
which may lead to visiting an unnecessarily large number of patches
(Fig. S4). To avoid these short visits without the addition of any
memory, it is possible to use a sum of FPL processes, corresponding
to a sum of exponential distributions, which is equivalent to an
Erlang distribution, a special case of the gamma distribution. With
the right choice of parameters, an Erlang or gamma distribution
allows for an entirely stochastic process to have a peak probability
density at a non-zero value. By implementing a decision to leave
based on such a gamma distribution, a fly could, on average,
approximate a noisy TGUD decision-making process without the
need for any memory or step counting. I call this strategy the
‘gamma probability of leaving’ (GPL), and implementation-wise it
is the most straightforward decision-making strategy I consider.
Finally, since my experiment suggests that there is a positive
correlation between the distance travelled and the interval since the
last visit, I considered an extension of the GPL strategy where the

parameters of the gamma distribution are a function of the time
interval since the last visit, which I call ‘interval gamma probability
of leaving’ (IGPL). I chose parameters for both the GPL and IGPL
strategies to maximize the log-likelihood of my data concerning the
2D probability mass functions (Fig. 4E, Fig. S3). To understand the
impact of stochasticity in the decision-making process, I compared
the efficiency of the IGPL and ITGUD strategies (Fig. 4F, Fig. S3B)
and find that for more challenging scenarios (large values of λ−1 and
large intervals), the IGPL strategy is the most efficient.

Which search strategy is most consistent with my data? To
address this question, I reconsider the possibility that flies may
utilize a stochastic TGUD strategy (STGUD) with log-normal
variability in their measurements of distance travelled, or a
stochastic ITGUD strategy (SITGUD) with log-normal variability
in their measurements of the time interval between visits as well as
distance travelled. The SITGUD and IGPL strategies both offer
more explanatory power than their non-interval dependent
counterparts, as seen by the lower Akaike information criterion
(AIC) values (Fig. S4). Comparing the SITGUD and IGPL
strategies, there are subtle differences. Still, overall, they both
offer a similar fit with the data (Fig. S4). In summary, the data from
my experiments are most consistent with a strategy that has a subtle
correlation with the time interval between visits and high variance.
However, the source of this variance could be either a simple
stochastic mechanism, a noisy measurements process, or a
combination thereof. Critically, the correlation and variance both
offer improved efficiency in the more challenging search scenarios.

DISCUSSION
My results indicate that flies’ travel farther on odorous but food-
barren objects before giving up and leaving when (a) they approach
the odor source, and (b) the time interval between patch visits is
large. Flies search behavior is, however, quite variable across visits.
Using an agent-based modeling framework, I show that both the
time interval correlation as well as the variance in their behavior
could be the result of a simple stochastic decision-making process
that actually improves the average search efficiency for some
environmental scenarios.

Significance of which patch flies land on
Despite all three patches being identical in size, shape, color, and
odor emitted, flies were more likely to approach the odor source
when landing on the downwind patch. Computational fluid
dynamics simulations suggest that although the downwind patch
may have a slightly higher baseline odor landscape compared to the
two upwind patches, the effect is relatively small: a ∼15% increase.
This slight increase in concentration would have resulted in a
slightly higher baseline odor distribution across the top of the patch,
potentially increasing the motivation of flies to search the patch
more thoroughly, leading them to discover the odor source in the
center of the patch. Alternatively, the flies landing on the downwind
patch may have experienced a higher or different olfactory
experience prior to landing based on their flight trajectories,
resulting in a different internal state. Future experiments that
simultaneously track walking and flying flies will be needed to test
the hypothesis that flies are more likely to approach an odor source
depending on their olfactory experience during flight.

Significance of interval-correlation and variability in the
decision to leave
The time interval between visits had a significant but subtle impact
on how far flies walked on the patches before giving up and leaving.
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It is possible that the correlation I observed could be due to other
unmeasured factors that cannot be addressed in this manuscript.
However, to understand whether a subtle interval correlation might
have a meaningful impact on search efficiency I developed a series
of general purpose agent-based search strategies. My models
demonstrate that incorporating an interval correlation in the decision
to leave improves the search efficiency in nearly all search scenarios
because it tailors the search behavior to parameters of the
environment (i.e. the time to travel between patches). When these
models are applied to the specific correlation that I observed in my
experiments with flies, this increase in efficiency was in some cases
25–50% – a surprisingly large increase for the subtlety of the
correlation. It is possible that other organisms may exhibit even
stronger correlations. Future field experiments with a variety of
animals will be needed to test the validity of my models in a broader
context. Furthermore, my models suggest that flies’ behavior is
consistent with a stochastic decision-making process, which
requires less memory and is more efficient on average than a
deterministic strategy in some realistic search scenarios. Over the
course of a fly’s life, these improvements in efficiency could add up
to thousands of fewer fruitless landings, and across an entire
population, this may represent a significant evolutionary advantage.
Although my agent-based modelling suggests that the observed

variability in behavior may be expected if flies utilize a stochastic
decision-making process, there are many other possible causes of
the underlying variance. These other factors include: (a) their
motivation for landing in the first place, (b) whether there are social
interactions on the patch and (c) what exactly the flies are doing in
between their visits [they are almost certainly not flying that whole
time, as insects spend most of the time sitting in these wind tunnel
experiments (van Breugel et al., 2015)]. Finally, although all the
flies were starved for the same amount of time before starting each
experiment, it is possible that some became hungrier than others
over the course of the experiment, which would change how
persistent they would be during their search bouts on the patches
(Root et al., 2011; Sayin et al., 2019) and thus introduce additional
variability. Future experiments that monitor fly behavior throughout
the chamber will be needed to address these hypotheses.
Which of the environmental scenarios that I consider are the best

match for real-world conditions? This is, unfortunately, impossible
to answer without data from flies behaving in their natural habitat.
However, it is possible to make some rough estimates. The red
arrows in Fig. 4F indicate scenarios that best match the values of λ−1

from Fig. 4B and the range of intervals seen in Fig. 2D. Note that
these values of λ−1 are for when the fly first encountered the food.
After this point, flies typically initiate a new local nutrient-driven
search (Corfas et al., 2019; Kim and Dickinson, 2017), so the real
value of λ−1 may actually be much higher. Together, these results
suggest that flies’ decision-making strategy for when to leave an
odorous patch may be optimally tuned for challenging search
scenarios. One limitation of my simulations is that I did not consider
heterogeneous environments that might have patches with different
values of Pf, different intervals, or different values of λ on each
patch. Future experiments will be needed to determine the real-
world heterogeneity of such patches for wild flies and how much
time flies spend on natural odor sources before finding a suitable
food source or giving up and leaving.

How might flies keep track of the interval between visits?
Although a number of models for neural encoding of interval-
timing have been proposed (Tallot and Doyer̀e, 2020), there is little
experimental evidence for minute to hour scale interval-timing. In

rats, extended time sense is encoded in the hippocampus (Mankin
et al., 2012, 2015; Rubin et al., 2015). However, the accuracy is
modulated by drugs, hormones, and context (Meck, 1983; Penney
et al., 1998). For insects, the ability to measure time intervals on the
scale of seconds to minutes is open for debate. Parasitoid wasps can
learn time intervals (Parent et al., 2016, 2017). Honeybees,
however, can not (Grossmann, 1973; Philip et al., 2014).
Although their cousins, bumblebees, have been shown to learn
fixed time intervals (Boisvert and Sherry, 2006), the analysis has
been called into question (Philip et al., 2014). Instead, their behavior
suggests that they may have learned a different strategy that
approximates interval timing. An alternative to keeping track of true
time elapsed could be through habituation, sensory adaptation, or
novelty detection.

In my experiments, although the time interval since the last visit
was significantly correlated with distance travelled on the patch
(Fig. 2D), the quantity of repeated prior visits was not (Table 1),
suggesting that long-term habituation is unlikely. I further
confirmed this by re-analyzing previously published data of
walking flies encountering an ethanol stimulus every 40 min over
the course of 18 h (van Breugel et al., 2018) (see supplemental code
for detail: https://github.com/florisvb/correlated_decision_making_
jeb). In these experiments, the preference index for flies towards
ethanol was primarily determined by their mean walking speed
(mixed linear model R2=0.552), rather than a combination of speed
and the number of prior encounters (mixed linear model R2=0.592,
P=0.267 for prior encounters). Sensory adaptation is unlikely to be
the sole contributing factor given that peripheral olfactory receptor
level adaptation occurs on much faster time scales [∼0.5 s (Bell and
Wilson, 2016) to 10s of seconds (Martelli and Fiala, 2019)]
compared with the behavior observed in my experiments, which
occurs on the scale of minutes to hours. A likely explanation
consistent with my data is that flies rely on some form of one-shot
novelty detection mediated by the mushroom bodies, which has a
time scale of up to 1 h (Hattori et al., 2017), which corresponds
surprisingly well with the ∼3600 s mean interval (on the log scale)
in my experiments. Future experiments will leverage genetic tools
to manipulate this system to see how it changes their search
behavior.

Conclusion
My results suggest that the search behavior exhibited by fruit flies
likely depends on the recency of prior experiences. These results,
along with recent innovations in genetic tools, optogenetics,
imaging etc., suggest that flies may serve as a powerful model
system for studying multi-scale complex search behavior in
heterogeneous environments. Finally, the research approach and
results presented here offer possible paths to uncover the neural
basis of these behaviors.
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