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Molecular and physiological responses predict acclimation limits in
juvenile brook trout (Salvelinus fontinalis)
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ABSTRACT
Understanding the resilience of ectotherms to high temperatures is
essential because of the influence of climate change on aquatic
ecosystems. The ability of species to acclimate to high temperatures
may determinewhether populations can persist in their native ranges.
We examined physiological and molecular responses of juvenile
brook trout (Salvelinus fontinalis) to six acclimation temperatures
(5, 10, 15, 20, 23 and 25°C) that span the thermal distribution of the
species to predict acclimation limits. Brook trout exhibited an
upregulation of stress-related mRNA transcripts (heat shock protein
90-beta, heat shock cognate 71 kDa protein, glutathione peroxidase
1) and downregulation of transcription factors and osmoregulation-
related transcripts (nuclear protein 1,Na+/K+/2Cl− co-transporter-1-a)
at temperatures ≥20°C. We then examined the effects of acclimation
temperature on metabolic rate (MR) and physiological parameters
in fish exposed to an acute exhaustive exercise and air exposure
stress. Fish acclimated to temperatures ≥20°C exhibited elevated
plasma cortisol and glucose, and muscle lactate after exposure to
the acute stress. Fish exhibited longer MR recovery times at 15
and 20°C compared with the 5 and 10°C groups; however, cortisol
levels remained elevated at temperatures ≥20°C after 24 h. Oxygen
consumption in fish acclimated to 23°C recovered quickest after
exposure to acute stress. Standard MR was highest and factorial
aerobic scope was lowest for fish held at temperatures ≥20°C. Our
findings demonstrate how molecular and physiological responses
predict acclimation limits in a freshwater fish as the brook trout in the
present study had a limited ability to acclimate to temperatures
beyond 20°C.
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INTRODUCTION
In ectotherms, temperature is a ‘master’ abiotic factor as it affects
most major physiological and ecological processes (Fry, 1947;
Beitinger and Bennett, 2000; Somero, 2005). For this reason,
shifts in the thermal characteristics of a species’ habitat that
go beyond their specific thermal limits can lead to numerous
changes including: altered species distribution, disease outbreaks,

phenological modifications and decreased survival (Bassar et al.,
2016; Hermoso, 2017; Krabbenhoft et al., 2014). Ultimately,
temperatures that surpass the physiological limits of a species will
lead to extirpation or extinction (Nogués-Bravo et al., 2018);
however, adaptive responses can reduce climate-mediated mortality
(Kingsolver and Buckley, 2017).

Acclimation is an adaptive response whereby a reversible
phenotypic change occurs because of exposure to an environmental
condition (i.e. temperature) for a period of days to months
(Hochachka and Somero, 2002; Crozier and Hutchings, 2014;
Havird et al., 2020). During acclimation, ectotherms undergo changes
in biological processes to maintain homeostasis (Schreck and Tort,
2016). Changes at a cellular level can alter an ectotherm’s phenotype
and allow for ‘normal’ processes to occur despite environmental
change (e.g. altered expression of protein isoforms; Hochachka and
Somero, 2002). Individuals that can acclimate to changing thermal
conditions are more likely to contribute to future generations because
of increased survival (Somero, 2010). Further, the capacity of an
individual to acclimate predicts sublethal responses to thermal stress
that could influence performance and reproduction (Komoroske et al.,
2015). Therefore, understanding acclimation in ectotherms can
predict population-level responses to warming climates (Schulte,
2014).

An organism’s ability to acclimate to warm temperatures
can be investigated with an approach that integrates whole-
organism physiology with molecular techniques to reveal the
underlying mechanisms of tolerance (Connon et al., 2018). This
approach often uses whole-organism oxygen consumption rate as
an indicator of performance because oxygen consumption varies
with temperature, suggesting changes in energetic demands
being placed on the organism (Pörtner, 2001, 2002; Pörtner et al.,
2017). Additionally, when ectotherms are exposed to a thermal
disturbance, the glucocorticoid cortisol is released as an end product
of the hypothalamic-pituitary–interrenal (HPI) axis (Wendelaar
Bonga, 1997; Barton, 2002). Increases in circulating levels of
cortisol can result in the increased mobilization of energy resources,
such as glucose, which contributes to the increased tissue metabolic
rates at higher temperatures (Wendelaar Bonga, 1997; Barton,
2002). Cortisol is also often used to indicate an organism’s ability
to respond to a stressor (Barton, 2002; Sopinka et al., 2016).
Cellular-level responses include changes in the expression of
genes responsible for various processes that help ectotherms
maintain performance. Therefore, transcriptomics has contributed
to advances in understanding the cellular processes behind
whole-organism physiological responses (Miller et al., 2014;
Evans, 2015). For example, some isoforms of heat shock proteins
may be continuously expressed over time (i.e. constitutive), which
can indicate that thermal acclimation is occurring in an organism
(Iwama et al., 1998). Additionally, inducible isoforms can indicate
an acute response to elevated temperatures (Iwama et al., 1998).Received 9 December 2020; Accepted 13 July 2021
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Some cellular responses may also be altered before detrimental
physiological or whole-organism changes, which can help to
identify sub-lethal thresholds (Jeffries et al., 2014, 2018). Therefore,
changes in the expression of some genes, as estimated by the
abundance of mRNA transcripts, also provide information about the
acute and chronic effects of temperature at the cellular level. Overall,
by using molecular approaches to quantify acute and chronic effects
of temperature at a cellular level and pairing it with whole-body
parameters (HPI response, oxygen consumption), a more complete
understanding of an organism’s tolerance to changing temperatures
and climate can be obtained.
Temperate freshwater fishes are a common ectotherm model for

studies on climate change because their distributions are changing
(Comte et al., 2013) and extensivework has been done to characterize
their ecophysiology (e.g. Costa and Sinervo, 2004; Eliason et al.,
2011; Chadwick et al., 2015). Additionally, freshwater fishes are
among the most at-risk animals on the planet (WWF, 2020) and it is
estimated that 50% of freshwater species are threatened by climate
change and associated warming temperatures (Darwall and Freyhof,
2016; Reid et al., 2019). Fishes differ greatly in their abilities
to tolerate temperatures outside their thermal distribution (Rahel,
2002) and sometimes individual fish thermoregulate behaviourally to
remain in waters with ‘preferred’ temperatures (Martins et al., 2011;
Cott et al., 2015; Raby et al., 2018), or select thermally heterogeneous
habitats (Brett, 1971; Neverman and Wurtsbaugh, 1994; Nielsen
et al., 1994; Biro, 1998; Newell and Quinn, 2005). However, if a fish
is unable to leave or acclimate to the temperature of the environment,
exposure may lead to mortality (e.g. Hasler et al., 2012). Therefore,
acclimation is a critical process to study to better understand how
freshwater fish will respond to climate change.
In our study, we aimed to address how multiple scales of

biological organization respond during acclimation to a range of
temperatures to predict sub-lethal and lethal thermal limits in a
temperate freshwater fish.We used brook trout, Salvelinus fontinalis
(Mitchill 1814), a predominantly freshwater salmonid species in
North America that is under threat from warming temperatures in its
native range (Chadwick et al., 2015). The preferred temperature (i.e.
temperature at which fish congregate when placed within a thermal
gradient in the laboratory) for brook trout is approximately 15°C
(Graham, 1949; Fry, 1971; Cherry et al., 1977; Stitt et al., 2014;
Smith and Ridgway, 2019) and habitat use in the wild becomes
limited at temperatures ranging from 21 to 23.5°C (Meisner, 1990;
Benfey et al., 1997; DeWeber and Wagner, 2015; Chadwick et al.,
2015; Chadwick and McCormick, 2017), suggesting a sub-lethal
thermal limit. Climate projections show 49% contraction in the
southern limit of brook trout distribution by 2050 (Meisner, 1990;
Chu et al., 2005; Flebbe et al., 2006). Because of the risk of rising
temperatures and the habitat requirements of brook trout, it is
important to understand how thermal acclimation occurs across
multiple scales of biological organization for this species.
Our first objective was to examine the effects of temperature

acclimation on cellular and physiological processes in juvenile
brook trout to identify sub-lethal thresholds and acclimation limits
for this species. Our second objective was to examine the effects of
acclimation temperature on blood stress indices and metabolic rate
following exposure to acute exhaustive exercise and air exposure
stressors, as well as metabolic rate recovery following the stressor.
Previous studies have suggested that temperatures between 20 and
23°C lead to reduced physiological performance in brook trout
(Smith and Ridgway, 2019; Morrison et al., 2020). Brook trout in
the present study were acclimated for a minimum of 21 days to one
of six different temperatures (5, 10, 15, 20, 23 and 25°C) that span

their thermal distribution. We predicted that mRNA abundance of
constitutive transcripts associated with the cellular stress response
(i.e. reducing damage to cellular proteins due to heat stress,
preventing damage from reactive oxygen species, and regulating
cell growth) would be elevated when fish are acclimated to
temperatures beyond a sub-lethal threshold (i.e. >20°C in brook
trout). Additionally, we predicted that an exhaustive exercise and air
exposure treatment would increase levels of physiological indices of
stress (i.e. plasma cortisol, plasma glucose, plasma osmolality and
muscle lactate) at temperatures ≥20°C. Further, we predicted that
metabolic rate would increase with temperature (i.e. standard
metabolic rate, SMR), where those fish exposed to the higher
temperature groups (≥20°C) would experience the longest
metabolic recovery from acute exhaustive exercise and air
exposure stressor. In this study, we found that brook trout have a
reduced ability to acclimate to temperatures ≥20°C as supported by
changes in mRNA transcript abundance, SMR and the ability to
recover from exercise stress.

MATERIALS AND METHODS
Study animals
The juvenile brook trout (mass 38.3±1.7 g, fork length 14.5
±0.2 cm) used in this study were first generation (F1) brook trout
originally obtained from the Whiteshell Fish Hatchery in eastern
Manitoba, Canada. In 2016, brood stock brook trout were bred at the
Fisheries and Oceans Canada (DFO) Freshwater Institute in
Winnipeg, MB, Canada. After hatching (January 2017) and when
past the swim-up stage, fish were moved to one of two aerated 600 l
circular flow-through tanks held at approximately 10°C. Fish were
fed ad libitum with commercial pellet fish food (EWOS Pacific,
Complete Fish Feed for Salmonids, Cargill, Winnipeg, MB,
Canada) for a 35 week rearing period. All methods were approved
by the Freshwater Institute Animal Care Committee (FWI-ACC-
AUP-2018-02/2019-02).

Temperature treatment
Juvenile brook trout (n=140) were haphazardly netted from the
general population tank and placed into 200 l aerated, flow-through
tanks and exposed to one of six temperatures (5, 10, 15, 20, 23 and
25°C; n=50 per temperature tank) for 21–30 days. Because of
logistic constraints, temperature exposures were staggered across
four months in 2018–19: 10°C beginning on 11 October, 25°C on
23 October, 23°C on 2 November, 20°C on 16 November, 15°C on
17 December and 5°C on 1 January. The treatments were conducted
in random order (i.e. starting with 10°C and ending with 5°C) to try
to minimize growth or timing effects. On the first day of each
temperature treatment, fish were transferred to a 200 l acclimation
tank at ∼10°C and were given 1 day to recover from the handling
stress. The water temperature was then gradually adjusted to the
assigned treatment temperature at a rate of 1.5–2°C day−1 using
heating or cooling coils that were placed in an auxiliary tank
plumbed to the holding tank. Once the treatment temperature was
reached, fish remained at the temperature for a minimum 21 day
acclimation period (Beitinger et al., 2000). Throughout the
treatment period, the water temperature of the holding tank was
measured using a HOBO Tidbit v2 Sensor (ONSET Computer
Corporation, Bourne, MA, USA) and controlled with WitroxCTRL
software (Loligo® Systems, Tjele, Denmark), where it fluctuated
daily by ±1.5°C of the treatment temperature to simulate diurnal
temperature changes (Durhack et al., 2021). A 12 h:12 h day:night
cycle was used throughout the experiment for all treatments (65 min
of dawn and dusk, full-light starting at 07:05 h, and full dark at
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19:05 h) and there was no natural light entering the room. Dissolved
oxygen was kept above 7 mg l−1 throughout the experiment. After
the 21 day acclimation period, fish were assigned to one of three
groups: unhandled, acute stress or acute recovery. Those in the
unhandled group were immediately sampled (see ‘Tissue sampling
of unhandled group’, below; n=10). Those fish in the acute groups
were exposed to a 2 min chase test and 5 min air exposure, and were
either sampled 30 min after the stressor exposure to allow
physiological parameters to reach elevated values (the acute stress
group; n=8; Biron and Benfey, 1994; Benfey and Biron, 2000) or
placed in a respirometry chamber for 24 h and sampled afterwards
(the acute recovery group; n=8), as detailed below. Fish from the 25°
C group were not exposed to the full 21 day treatment period, as they
exhibited potential fungal infections, reduced feeding and mortality.
Therefore, the 25°C treatment group was sampled for tissues after
11 days (see below) and these fish were not subjected to the acute
stress experiments. Additionally, there were two mortalities after
assessment of maximum metabolic rate (MMR) by intermittent-
flow respirometry (see below) in the fish from the 20°C temperature
group. These values were not used in any of the calculations for the
study.

Tissue sampling of unhandled group
Fish in the unhandled group (n=60; n=10 per treatment group) were
individually euthanized in a buffered tricaine methanesulfonate
solution (300 mg l−1 MS-222; buffered with 600 mg l−1 NaHCO3)
with water at the same temperature as for their treatment.
Fish were measured for length and body mass prior to tissue
sampling. Blood was collected by severing the caudal fin and using
ammonium-heparinized capillary tubes (Fisherbrand®, Thermo
Fisher Scientific, Pittsburgh, PA, USA). Whole-blood glucose
was immediately measured using a UltraMini® Glucose Meter
(OneTouch®, LifeScan Canada, Burnaby, BC, Canada), after
which blood samples were centrifuged at 3000 g for 6 min.
Plasma was removed, flash frozen in liquid nitrogen and stored
at −80°C until analysis. The second two gill arches from the left
side (looking anteriorly) of each fish and the liver were sampled
and placed in RNAlater™ (Invitrogen™, Carlsbad, CA, USA)
and stored at 4°C overnight prior to storage at −80°C. White
muscle was taken from the fish’s right side (looking anteriorly),
placed in liquid nitrogen and stored at −80°C measurement of
muscle lactate.

Acute stress and recovery
For the acute stress and acute recovery groups, another subset of fish
from each acclimation temperature, with the exception of the 25°C
group (see above), underwent an acute 2 min chase (e.g. Suski et al.,
2006) and 5 min air exposure (e.g. Gingerich et al., 2007) and/or a
recovery trial (n=80; n=8 per temperature and acute stress group
group). The chase test consisted of placing individual fish into a
bucket (diameter ∼43 cm) with 15–20 l of water at the acclimation
temperature. There was a pipe in the centre of the bucket to force the
fish to swim around the perimeter of the container. Once the water
was added to the bucket, the bucket was plugged, and the fish was
manually chased using a small net. After 2 min, the fish was netted
out of the water and air exposed for 5 min, during which time it was
measured for length and mass. Following the acute stressor
exposure, eight fish were placed into a holding tank at their
acclimation temperature for 30 min to allow plasma cortisol and
glucose to reach the putative peak values (Biron and Benfey, 1994;
Benfey and Biron, 2000) before being sampled for blood and white
muscle as described above for unhandled individuals.

The remaining eight fish from the acute stressor exposure (i.e.
those fish not placed into holding tanks following the stressor) were
placed in an intermittent-flow respirometry system, in a water
bath held at the same temperature as the acclimation treatment,
for 24 h to record oxygen consumption. After the 24 h concluded
fish were sampled for blood and white muscle as described
previously. Intermittent-flow respirometry was used to quantify
oxygen consumption as an estimate of metabolic rate. Oxygen
consumption was measured by in-line probes connected to
respirometry chambers (Presence, Regensburg, Germany) and
automatically calculated by AutoResp software (Loligo Systems,
Viborg, Denmark). To validate the quality of measurements, r2

values for rates of oxygen decline were also automatically
generated. Only r2 values above 0.9 were used for final analysis
of SMR and MMR. For SMR calculations, the lowest 20th quantile
of oxygen consumption rate (ṀO2

estimates) were used after
removing the first 10 h of measurements to ensure fish were
at minimum oxygen consumption levels; Chabot et al., 2016;
Norin and Clark, 2016). Following this, the ‘FishMO2’ package
in R (Chabot et al., 2016) was used to analyse ṀO2

estimates over
time including the calculation of SMR and plotting of r2 values for
each individual at each temperature to include those with r2>0.9.
Background respiration from microbial respiration (biochemical
oxygen demand, BOD) was also estimated by including an empty
respirometry chamber in each trial and oxygen consumption values
from these chambers were subtracted from the SMR measurements.
MMR was estimated from the acute recovery treatment fish. Three
measurements of oxygen consumption were taken to estimateMMR
when each fish was first placed into the respirometry chamber post-
exercise and air exposure event (Norin and Clark, 2016). Time to
recovery was determined as the elapsed time from when the fish was
placed into the respirometer to the time when oxygen consumption
first began to stabilize (Cooke et al., 2014). This allowed us to
capture the progressive decline in oxygen consumption to more
baseline levels where presumably recovery of metabolites and stress
hormones is possible, too (Brett, 1971; Eliason et al., 2013; Zhang
et al., 2018). Aerobic scope (AS) was calculated by subtracting
SMR estimates from MMR for each fish. Factorial aerobic scope
(FAS) was also calculated by comparing MMR with SMR (MMR/
SMR; Eliason and Farrell, 2016).

Physiological assays
Blood plasma samples were used to measure cortisol, glucose and
osmolality. Plasma cortisol levels were quantified using an enzyme-
linked immunosorbent assay (ELISA; 1:50 dilution; Neogen
Corporation, Lexington, KY, USA), previously validated for use
in other salmonids (e.g. Jeffries et al., 2012b; Sopinka et al., 2017;
Durhack et al., 2020). The plasma osmolality was determined using
a VAPRO vapour pressure osmometer (Wescor Inc., Logan, UT,
USA). Plasma glucose was quantified using a hexokinase kinetic
assay that was adapted for a 96-well plate (Treberg et al., 2007)
where plasma samples were diluted 1:30. Results from the
hexokinase kinetic assay were used to develop a correction factor
for the whole-blood glucose levels measured using the UltraMini®

Glucose Meter (see ‘Tissue sampling of unhandled group’ above).
Glucose values from the hexokinase kinetic assay and the glucose
meter were compared using linear regression and the resulting
equation of the line was used to correct whole-blood values
measured with the handheld meter (Fig. S1).

White muscle was used to determine the amount of muscle
lactate.White muscle samples were first powdered in liquid nitrogen
using a mortar and pestle, and tissue metabolites were extracted
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using an 8% perchloric acid solution mixed with EDTA, which was
later neutralized using a base solution (mixture of sodium
hydroxide, sodium chloride and imidazole) to pH 7–8 (Booth
et al., 1995). After metabolite extraction, lactate concentration was
determined using an enzymatic assay that utilized the reaction of
converting lactate to pyruvate using NAD+ (nicotinamide adenine
dinucleotide) and lactate dehydrogenase (Lowry and Passonneau,
1972; Gutman and Wahlefeld, 1974).

Quantitative PCR
Total RNAwas extracted from the gill and liver tissues using a Qiagen
RNeasy Plus Mini Kit (Qiagen, Toronto, ON, Canada) following the
manufacturer’s protocols. The RNA samples were checked for purity
(A260/A280, A260/A230) and concentration using a NanoDrop One
Spectrophotometer (Thermo Fisher Scientific, Wilmington, DE,
USA). The integrity of the RNA was assessed by electrophoresis on
a 1% agarose gel. For cDNA preparation, 1 µg of total RNA was
reverse transcribed using a QuantiTect Reverse Transcription Kit
(Qiagen, Valencia, CA, USA) following the manufacturer’s
protocols, with the exception that the total volumewas scaled to 32 µl.
All forward and reverse quantitative PCR (qPCR) primers

(Table 1) were designed using Primer Express 3.0.1 (Applied
Biosystems, Thermo Fisher Scientific). Primers were designed
using sequences from the brook trout transcriptome from Sutherland
et al. (2019) (Table S1). Primers were designed for 13 target genes

(Table 1) that represented transcriptomic responses consistent with
high temperature [cold-inducible RNA-binding protein (cirbp), heat
shock cognate 71 kDa protein (hspa8), heat shock protein 90-beta-
1 (hsp90ab1), serpin h1 (serpinh1)], osmoregulatory function [Na+/
K+-transporting ATPase subunit alpha-3 (atp1a3), cystic fibrosis
transmembrane conductance regulator (cftr), ATP-sensitive inward
rectifier K+ channel 8 (irk8), Na+/K+/2Cl− co-transporter-1-a
(nkcc1a), V-type H-ATPase B and E1 subunits (vatb and vate1)]
and general cellular function [glucose-6-phosphatase (g6pc),
glutathione peroxidase-like peroxiredoxin (gpx1), nuclear protein
1 (nupr1)]. Target genes were selected based on previous literature
that identified these genes as being expressed during times of stress
or exposure to high temperatures in salmonids (Momoda et al.,
2007; Jeffries et al., 2012a,b; Jeffries et al., 2014; Akbarzadeh et al.,
2018; Swirplies et al., 2019). Primers were designed for three
reference genes, 60s ribosomal protein L7 and L8 (rpl7 and rpl8)
and 40s ribosomal protein S9 (rps9) (Table 1). Primer efficiency
was tested by generating standard curves using cDNA synthesized
from the RNA pooled from 6 individuals from the treatment groups.
Each 12 µl qPCR reaction consisted of 1 µl of a 1:10 dilution of
cDNA, 500 nmol l−1 forward and reverse primer, 6 µl of PowerUP
SYBR Green Master Mix (Applied Biosystems, Thermo Fisher
Scientific) and 4.8 µl RNase-free water. The qPCR reactions were
run on a QuantStudio 5 Real-Time PCR System (Thermo Fisher
Scientific, Life Technologies Corporation, Carlsbad, CA, USA) in

Table 1. Primer sequences for qPCR in brook trout (Salvelinus fontinalis)

Gene Function Primer sequence (5′–3′)
Product
size (bp)

Efficiency
(%)

atp1a3 Na+/K+ regulation F: TCCTGGCCTACGGAATCCA
R: GAGCACAACACCCAGGTACAAA

74 96G

cftr Chloride transporter F: TCAAACAACGCCCCGATAC
R: CAACCTGACCACCACTGAGGTA

75 96G

cirbp RNA stabilization involved in osmotic stress and
cold shock response

F: AGGTATGGGCAGGCAATCTG
R: AAGAGGGAGGGCAAGACAAAA

73 101G

g6pc Glycogen metabolism F: CACTTCCCTCACCAGGTTGT
R: TCCATTGGACCCGGTCAAAG

76 111L

gpx1 Oxidative stress response, involved in cell immunity F: CGTTCTTGCAGTTCTCCTGATG
R: ACCGACAAGGGTCTCGTGAT

70 90G; 91L

hspa8 Heat shock protein, regulatory role in autophagy F: GGGTTCATGGCAACCTGATT
R: ACGTTGCCTTCACTGACTCTGA

67 91G; 94L

hsp90ab1 Heat shock protein, role in cell response to stress
and buffer against cell mutation

F: CAACATGGAGCGCATCATG
R: CAGGTGTTTCTTGGCCATCA

79 93G; 97L

irk8 ATP-sensitive inward rectifier K+ channel 8 F: CCCTGTTCTCGGATGTTCTTG
R: GGTGAACAAAGCACGCTTCA

72 87G

nkcc1a Ion regulation F: CGGGAATTGTTCTCTCCTGTGT
R: GCAATCGCTGAGGTCGAAA

82 101G

nupr1 Cell growth and apoptosis regulator F: TGGCCTTCTTTTCAGTGTTCTG
R: GGAAGCCAGCGACAATACCA

89 96L

rpl7 Reference gene ribosomal protein L7 F: TCTGACGCAGACGCATGAG
R: CGAAACTGGCCTTCGTCATC

86 88G; 95L

rpl8 Reference gene ribosomal protein L8 F: GCCACAGTCATCTCCCACAA
R: GGAGCCAGAGGGAAGCTTAAC

63 96G; 91L

rps9 Reference gene ribosomal protein S9 F: GAGTTGGGTTTGTCGCAAGAC
R: CCTGGTCGAGACGAGACTTCTC

68 85G; 100L

serpinh1 Biosynthesis of collagen and role in
restoration of homeostasis

F: CCCAAGCTGTTCTACGCTGA
R: AGTCTGCCGAGGAAGAGGAT

83 92G; 92L

vatb Regulation of H+ gradient F: GCTTCAGCATTTCTTTGGGAAA
R: TCAGGGCCCTTATGACAACAG

89 104G

vate1 Regulation of H+ gradient F: GGCTGGGTCCTTGGCTATGT
R: GGTGTTAAAGGCTCGCGACG

85 97G

F, forward primer; R, reverse primer. For efficiency values, superscript L denotes liver, superscript G denotes gill.
atp1a3,Na+/K+-transporting ATPase subunit alpha-3; cftr, cystic fibrosis transmembrane conductance regulator; cirbp, cold-inducible RNA-binding protein; g6pc,
glucose-6-phosphatase; gpx1, glutathione peroxidase-like peroxiredoxin; irk8, ATP-sensitive inward rectifier K+ channel 8; hspa8, heat shock cognate 71 kDa
protein; hsp90ab1, heat shock protein 90-beta-1; nkcc1a, Na+/K+/2Cl− co-transporter-1-a; nupr1, nuclear protein 1; vatb, V-type H-ATPase B; vate1, V-type H-
ATPase E1; rpl7, 60 s ribosomal protein L7; rpl8, 60 s ribosomal protein L8; rps9, 40 s ribosomal protein S9.
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384-well plates. Target mRNA levels were normalized to the three
reference genes using the 2−ΔCt method (Livak and Schmittgen,
2001). The stability of the reference genes across treatments was
confirmed using a pair-wise comparison with BestKeeper Version 1
(Pfaffl et al., 2004).

Statistical analysis
To determine whether mass was a significant factor contributing to
physiological response variables (plasma cortisol, plasma glucose,
tissue lactate, osmolality), a two-way analysis of covariance
(ANCOVA) was initially run, but mass was shown to have no
significant effect. Therefore, the effect of acclimation temperature
and treatment (unhandled, acute stress, acute recovery) on the
physiological response variables (plasma cortisol, plasma glucose,
tissue lactate, osmolality) was examined using two-way analyses of
variance (ANOVA) followed by Tukey’s honestly significant
difference (HSD) post hoc tests. Assumptions of normality and
equal variance were assessed using a Shapiro–Wilk normality test
and a Levene’s test, respectively. If assumptions of normality and
equal variance were not met, a generalized linear mixed effects
model (glmm; http://www.R-project.org/) was used. We focused on
the effects of the exhaustive exercise and air exposure stressor
within an acclimation temperature and across acclimation
temperatures within the three treatment groups for the post hoc
tests (Tukey HSD or glmm).
To determine the effect of acclimation temperature on the mRNA

abundance and oxygen consumption parameters (SMR, MMR,
time to recovery and AS), ANOVAwere used followed by Tukey’s
HSD post hoc tests. If data failed to meet the assumptions of the
ANOVA (see above), a Kruskal–Wallis test was run, followed by
Dunn’s post hoc test. For metabolic estimates (SMR and MMR),
mass was used in the calculation of these metrics and therefore
mass-specific effects are not a factor and there was no significant
difference in mass between treatments. All statistical analyses
were run in R v.1.2.5033 (http://www.R-project.org/). The level of
significance (α) was 0.05 when one variable was analysed (i.e.
mRNA abundance) and for multiple comparisons (i.e. treatment and
temperature). Only qPCR results that were statistically different
between acclimation groups are presented.

RESULTS
Chronic temperature exposure effects on mRNA abundance
Gill mRNA abundance differed across acclimation temperatures
for genes associated with thermal and oxidative stress (Fig. 1).
The abundance of gpx1 mRNA in the gill was 2-fold higher in
fish acclimated to 23 and 25°C than in those at 15°C and below
(Fig. 1A; one-way ANOVA, F5,59=5.735, P<0.001). Conversely, the
abundance of hsp90ab1 mRNA in the fish gill was not significantly
elevated until the acclimation temperature reached 25°C,with a 2-fold
increase in comparison to the three coldest temperature treatments
(Fig. 1B; one-way ANOVA, F5,59=4.321, P=0.002).The abundance
of nkcc1a mRNA in the gill of fish held at 23 and 25°C was 3-fold
lower than at 5 and 10°C (Fig. 1C; one-way ANOVA, F5,59=5.069,
P<0.001).
In liver tissue, the mRNA abundance of fives genes displayed

significant responses (Fig. 2). The mRNA abundance of heat shock
proteins hspa8 (hsc70) and hsp90ab1 in the liver was significantly
elevated in fish acclimated to 23 and 25°C, with a 4-fold (Fig. 2C;
one-way ANOVA, F5,59=8.828, P<0.001) and 6-fold increase
(Fig. 2D; one-way ANOVA, F5,59=15.14, P<0.001), respectively,
than at 15°C and below. The mRNA abundance of gpx1 in the liver
was elevated 4-fold in fish acclimated to 5°C compared with

those at 20°C and above (Fig. 2B; one-way ANOVA, F5,59=4.924,
P=0.001). The mRNA abundance of g6pc in the liver was highest in
fish acclimated to 20°C and 3-fold higher than in those at 5°C
(Fig. 2A; one-way ANOVA, F5,59=3.123, P=0.016). Lastly, nupr1
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Fig. 1. Transcript abundance of thermal stress biomarkers in gill tissue
for juvenile brook trout (Salvelinus fontinalis) acclimated to temperatures
spanning their thermal distribution (n=10). Relative mRNA abundance of
(A) glutathione peroxidase-like peroxiredoxin, gpx1; (B) heat shock protein 90-
beta-1, hsp90ab1; and (C)Na+/K+/2Cl− co-transporter-1-a, nckcc1a. Fish were
held for 21 days at the respective acclimation temperature, with the exception
of those from the 25°C treatment, which were sampled after 11 days (see
Materials and Methods for details). Groups that do not share a letter are
significantly different from one another (one-way ANOVA, P<0.05; see
Table S2). Horizontal bars in the boxplot represent the median response value
and the 75% and 25% quartiles. Whiskers represent ±1.5 times the
interquartile range, and each dot represents an individual response value.
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mRNA abundance in the liver tissue was significantly elevated by
2-fold in fish acclimated to 20°C versus 25°C (Fig. 2E; one-way
ANOVA; F5,59=4.918; P=0.001).

Chronic temperature exposure effects on the acute
stress response
Chasing followed by air exposure had a significant effect on
physiological variables associated with the stress response in

juvenile brook trout. Regardless of the acclimation temperature,
muscle lactate was elevated 30 min following stressor exposure by
an average of 1.8 times compared with that of fish sampled directly
out of the acclimation tanks (i.e. unhandled) (Fig. 3A; two-way
ANOVA, treatment×temperature, F8=0.513, P<0.001; see Table S3
for further statistical details). Muscle lactate levels returned to or fell
below (for 23°C) pre-stressed levels following 24 h of recovery
across all acclimation temperatures. Fish held at 23°C exhibited the
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Fig. 2. Transcript abundance of thermal stress biomarkers in liver tissue for juvenile brook trout acclimated to temperatures spanning their thermal
distribution (n=10). Relative mRNA abundance of (A) glucose-6-phosphatase, gcpc; (B) glutathione peroxidase-like peroxiredoxin, gpx1; (C) heat shock
cognate 71 kDa protein, hspa8; (D) heat shock protein 90-beta-1, hsp90ab1; and (E) nuclear protein 1, nupr1. Fish were held for 21 days at the respective
acclimation temperature, with the exception those from the 25°C treatment, which were sampled after 11 days (seeMaterials andMethods for details). Groups that
do not share a letter are significantly different from one another (one-way ANOVA, P<0.05; see Table S2). Horizontal bars in the boxplot represent the median
response value and the 75% and 25% quartiles. Whiskers represent ±1.5 times the interquartile range, and each dot represents an individual response value.
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lowest muscle lactate levels after 24 h of recovery from the stressor
(6.2±0.8 µmol g−1) compared with those in the recovery groups at
the other temperatures.
Acclimation temperature also had a significant effect on both the

plasma cortisol and glucose response to an acute stressor. For fish
exposed to colder temperatures (5 and 10°C), exposure to the acute
stressor had no significant effect on either plasma cortisol (Fig. 3C)
or glucose (Fig. 3B) levels 30 min post-stressor exposure or
following 24 h of recovery. However, fish exposed to warmer
temperatures (15, 20 and 23°C) exhibited significantly elevated
plasma cortisol and glucose levels following stressor exposure.
Plasma cortisol levels remained elevated 24 h post-stressor exposure
in fish exposed to warmer temperatures, whereas comparisons
across temperatures showed that following recovery, fish at 23°C
exhibited significantly higher cortisol levels than those at 5°C (two-
way ANOVA, treatment×temperature, F8=4.31, P=0.001; see
Table S3 for further statistical details). Plasma glucose levels
returned to pre-stress levels (i.e. unhandled) following 24 h of
recovery for fish held at 20 and 23°C, but not for those held at 15°C
(two-way ANOVA, treatment×temperature, F8=6.929, P<0.001;
see Table S3 for further statistical details). Comparisons across
acclimation temperatures within the acute stress group showed
significant elevation of plasma glucose in fish acclimated to 20 and
23°C versus 5, 10 and 15°C.

Similarly, plasma osmolality did not differ significantly among
groups (i.e. unhandled, acute stress, acute recovery) for fish held at
colder acclimation temperatures (5 and 10°C; Fig. 3D, Table 2).
Plasma osmolality increased by approximately 1.1- and 1.2-fold in
response to stressor exposure for fish acclimated to 15 and 20°C,
respectively (Table 2). At 23°C, fish had significantly lower plasma
osmolality 24 h post-stressor exposure, but levels did not differ
significantly between the unhandled fish and fish exposed to the
acute stressor (Table 2).

Chronic temperature exposure effects on metabolic rate
Mean SMR of juvenile brook trout was not different between
temperature treatments (0.0817, 0.1164 and 0.1119 mg O2 g

−1 h−1

for 5, 10 and 15°C acclimation, respectively) until acclimation
temperature reached 20°C (Fig. 4A; Kruskal–Wallis, χ24,40=30.43,
P<0.001; see Table S4 for further statistical details). Mean SMR
increased to 0.174±0.875 mg O2 g−1 h−1 for fish acclimated to
20°C and increased 1.4 times further to 0.247±0.538 mg O2 g−1 h−1

in fish held at 23°C. MeanMMRwas highest in juvenile brook trout
acclimated to 23°C (0.514±0.916 mg O2 g−1 h−1) and lowest for
fish held at 5°C (0.292±2.311 mg O2 g−1 h−1; Fig. 4B; one-way
ANOVA, F4,40=8.84, P<0.001; see Table S4 for further statistical
details). Mean AS was not significantly affected by acclimation
temperature, being lowest at 5°C (0.210±0.014 mg O2 g−1 h−1) and
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highest at 10°C (0.301±0.043 mg O2 g−1 h−1; Fig. 4D; one-way
ANOVA, F4,40=1.29, P=0.292; see Table S4 for further statistical
details). Mean FAS was highest for juvenile brook trout acclimated
to 5 and 10°C (3.8±0.3 and 4.0±0.5 mg O2 g−1 h−1, respectively)
compared with those held at 20 and 23°C (2.4±0.2 and 2.1±0.1 mg
O2 g−1 h−1, respectively; Fig. 4E; one-way ANOVA, F4,40=7.6,
P<0.001; see Table S4 for further statistical details). Recovery time
was approximately twice as long for fish acclimated to 5, 15 and 20°
C (10.9, 13.9 and 13.6 h respectively) compared with those at 10
and 23°C (7.8 and 4.7 h respectively; Fig. 4C; one-way ANOVA,
F4,40=27.69, P<0.001; see Table S4 for further statistical details).

DISCUSSION
Our study assessed the ability of juvenile brook trout to acclimate to
temperatures that span the thermal distribution of the species. We
found that the physiology of juvenile brook trout was impacted at
acclimation temperatures ≥20°C as indicated by the suite of indices
and variables assessed in this study (Fig. 5). Several markers of
thermal stress increased (i.e. mRNA abundance of gpx1 and
hsp90ab1 in gill, along with hsp90ab1 and hspa8 in liver, and
glucose and cortisol responses post-acute stress event) or decreased
(i.e. mRNA abundance of nkcc1a in gill and gpx1 in liver) with
increasing temperature. Further, we found a non-linear response
pattern with mRNA abundance of g6pc and nupr1 in liver tissue and
the osmolality response, where the peak level at 20°Cwas higher than
that at 23 and 25°C. We also generally found significantly higher
SMR and significantly lower FAS at acclimation temperatures≥20°C
when compared with the 5°C and 10°C treatments, indicating a
metabolic effect at the higher acclimation temperatures.
Transcripts involved in heat stress and regulatory responses (i.e.

hsp90ab1, hspa8, gpx1, nkcc1a and nupr1) exhibited differential
abundance at 20°C and higher, suggesting a thermal threshold at the

transcript level. Elevated levels of plasma cortisol and glucose after
the exhaustive exercise and air exposure stressor suggest increased
activation of the HPI axis at 20°C and higher. Increases in muscle
lactate post-exercise also suggest increased reliance on anaerobic
metabolism at 20°C and higher, though this may be due to slower
metabolism at cooler temperatures. It is important to note that
regardless of acclimation temperature, all blood parameters were
sampled 30 min post-stressor or 24 h following recovery; therefore,
we did not necessarily observe the peak change in these variables.
Finally, SMR was higher at elevated temperatures (≥20°C), and
fish experienced extended recovery times at high acclimation
temperatures (15 and 20°C), indicating a more pronounced response
to the acute stressor at elevated temperatures. Overall, the ability of
juvenile brook trout to acclimate to temperatures beyond 20°C
appears to be reduced.

Cellular-level response to chronic temperature exposure
Juvenile brook trout at temperatures above 20°C showed a cellular
heat shock response in gill and liver tissues. Heat shock proteins are
part of a ‘classic’ temperature-induced cellular stress response and
play a critical role in reducing and repairing damage to cellular
proteins that arise from physical or chemical stress (Iwama et al.,
1998; Somero, 2010; Currie, 2011). When temperatures begin to
approach a species’ thermal limit [brook trout upper thermal limit
(ULT)=25.3°C; Fry et al., 1946; Fry, 1951; Wehrly et al., 2007],
heat shock protein expression is often increased (Currie, 2011). In
the present study, mRNA levels of both hsp90ab1 and hspa8
(hsc70) were significantly elevated at 23 and 25°C compared with
those at ≤15°C. Similarly, in the gill tissue there was a significant
increase in abundance of hsp90ab1 mRNA at 25°C compared with
that at ≤15°C. Other salmonid species, such as arctic char
(Salvelinus alpinus; ULT= 21.5–22.7°C; Baroudy and Elliott,
1994), sockeye salmon (Oncorhynchus nerka; ULT=24.9–25.1°C;
Orsi, 1971; Brett, 1952) and pink salmon (Oncorhynchus
gorbuscha; ULT=23.9°C; Brett, 1952), have elevated mRNA
levels of hsp90ab1 and hspa8 at temperatures ≥19°C (Quinn
et al., 2011; Jeffries et al., 2012a, 2014; Akbarzadeh et al., 2018).
As both hsp90ab1 and hspa8 are constitutive isoforms (Iwama
et al., 1998), changes in their expression would be expected in
chronic events such as thermal acclimation, and our results further
suggest that brook trout are activating a chronic cellular stress
response above 20°C, as evidenced by increased mRNA abundance
at these temperatures.

As temperature surpassed 20°C, an apparent thermal threshold
was reached for genes involved in the oxidative stress response in
gill and liver tissues. Glutathione peroxidase 1 is responsible for
catalysing the reduction of H2O2 into H2O or alcohol and thereby
prevents damage caused by reactive oxygen species (ROS; Sattin
et al., 2015). As metabolic rate increases with temperature, there is
an increase in oxidative phosphorylation in the mitochondria,
potentially resulting in the elevated production of ROS (Davidson
and Schiestl, 2001). The SMR of brook trout increased significantly
at higher temperatures in the present study, potentially resulting in
elevated ROS production, and thus may be responsible for the
increase in abundance of gpx1 mRNA observed in the gill at
temperatures above 20°C. In contrast, a significant increase in
the abundance of gpx1 mRNA in the liver was observed at
cooler temperatures (i.e. 5 and 10°C) compared with that in fish held
at 20°C. Multiple Antarctic fishes (e.g. Champsocephalus gunnari,
Chaenocephalus aceratus, Pseudchaenichthys georgianus,
Dissostichus eleginoides and Notothenia rossi) exhibit higher
levels of glutathione peroxidase in the heart and liver tissues

Table 2. Results of the generalized linearmodel for plasmaosmolality of
juvenile brook trout acclimated to different temperatures and exposed
to acute stress

Coefficients Estimate s.e. t-value P-value

Intercept 0.0030 0.0000 64.96 <0.001
Treatment Acute-Recovery 0.0000 0.0000 1.201 0.232
Treatment Acute-Stress 0.0000 0.0000 0.491 0.624
Temperature 10 −0.0000 0.0000 −0.921 0.359
Temperature 15 0.0002 0.0000 3.043 0.003
Temperature 20 0.0002 0.0000 3.601 <0.001
Temperature 23 0.0000 0.0000 0.254 0.799
Treatment Acute-Recovery
×Temperature 10

0.0001 0.0001 1.359 0.177

Treatment Acute-Stress
×Temperature 10

−0.0000 0.0000 −0.834 0.406

Treatment Acute-Recovery
×Temperature 15

−0.0000 0.0001 −0.629 0.530

Treatment Acute-Stress
×Temperature 15

−0.0004 0.0001 −3.611 <0.001

Treatment Acute-Recovery
×Temperature 20

−0.0001 0.0001 −1.099 0.274

Treatment Acute-Stress
×Temperature 20

−0.0005 0.0001 −5.055 <0.001

Treatment Acute-Recovery
×Temperature 23

0.0003 0.0001 2.630 0.010

Treatment Acute-Stress
×Temperature 23

−0.0000 0.0001 −0.723 0.471

Fish were acclimated to one of five temperatures (5, 10, 15, 20 and 23°C) and
exposed to one of three treatments (unhandled, acute stress and acute stress
recovery). Coefficients denote the groups being compared (i.e. treatment
group×temperature); significant P-values are in bold.
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compared with the gills and muscle tissues (Ansaldo et al., 2000).
The increased glutathione peroxidase response in the liver of brook
trout in the present study suggests that gpx1 is important for tissue-
specific cold acclimation. An increase of glutathione peroxidase in
the liver may also be due to the dependence of aerobic metabolism
on the oxidation of unsaturated fats in the liver, fats that are
susceptible to oxygen radical attack (Roberfroid and Calderon,
1995). Previous work on this same group of brook trout found that
hepatosomatic index (ratio of liver mass to body mass) was lowest at
23 and 25°C and higher at cooler temperatures (5°C), indicating a

higher fat content at cooler temperatures (Morrison et al., 2020). The
relationship between higher fat content in the liver and higher ROS
attack is supported by results from Morrison et al. (2020) and may
explain why liver tissue exhibited increased abundance of gpx1
mRNA in our study. Overall, gpx1 mRNA abundance differed
across gill and liver tissue, where increased abundance was
observed at warmer temperatures for the gill tissue in contrast to
increased abundance at cooler temperatures for the liver tissue.

The mRNA abundance of genes involved in cellular processes
(e.g. cell growth) and metabolic processes (e.g. glycogen production)
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Fig. 4. Metabolic and recovery parameters collected from juvenile brook trout acclimated to temperatures spanning their thermal distribution (n=8 per
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exhibited peak levels at 20°C that subsequently decreased at higher
temperatures. Because some cellular responses can exhibit a peak
near or prior to detrimental physiological changes (Jeffries et al.,
2014, 2018; Schulte, 2015), the peak mRNA transcript levels at 20°C
may suggest that it is near a sub-lethal threshold. Nuclear protein 1 is
involved in the regulation of cell growth and apoptosis (Mallo et al.,
1997) and plays a role as a transcription factor (Momoda et al., 2007).
nupr1 mRNA abundance in the liver was highest in juvenile brook
trout held at 20°C, and then decreased by 2-fold in fish held at 25°C in
the present study. This decline in nupr1 mRNA abundance in fish
held at 25°C compared with 15 and 20°C suggests a potential sub-
lethal threshold for nupr1 at temperatures above 20°C. Additionally,
higher mortality rates were observed in fish held at 25°C, further
supporting the shutdown of certain cellular processes at temperatures
beyond 23°C. This increased abundance of mRNA at 20°C was also
observed for liver g6pc, which plays a role in glycogen metabolism,
where levels peaked at 20°C. Therefore, elevation of nupr1 and g6pc
abundance at 20°C and decreased abundance at 25°C is consistent
with a shift in the cellular processes being activated at the highest
acclimation treatments.

Whole-animal responses to chronic temperature exposure
Acclimation temperature may have affected the ability of the
juvenile brook trout to mount a stress response to an acute stressor.
Plasma cortisol and glucose levels typically increase in fish
30–60 min following exposure to an acute stressor (Biron and
Benfey, 1994; Wendelaar Bonga, 1997; Benfey and Biron, 2000),
though this is dependent on environmental temperature, where
higher temperatures result in a faster increase than at colder
temperatures (Milligan, 1996; Van Ham et al., 2003; Chadwick and
McCormick, 2017; Louison et al., 2017). In our study, the cortisol
and glucose response to an acute stressor was impaired or delayed in
fish exposed to lower temperatures (5 and 10°C), as there was no
apparent increase in plasma cortisol and glucose levels 30 min
following stressor exposure (acute stress group) or after 24 h of
recovery (acute recovery group). In other studies, peak plasma

cortisol levels for fish exposed to lower temperatures were also
significantly delayed, possibly due to reduced enzymatic activity
at cold temperatures (Van Ham et al., 2003; Louison et al.,
2017). Additionally, as cortisol is synthesized de novo and not
stored in the body like catecholamines, its release into the
bloodstream results in increased levels throughout the body and
is slightly delayed compared with other endocrine responses
(Pickering, 1981; Milligan, 1996). Conversely, plasma cortisol
levels were significantly elevated 30 min after exhaustive exercise
and air exposure in fish held at temperatures ≥15°C. Notably,
plasma cortisol levels remained above 100% of pre-stressed levels
(i.e. unhandled group) 24 h post-stressor exposure (20 and 23°C),
suggesting that fish had not fully recovered from the stressor at
higher temperatures. A doubling of cortisol to the observed values
of 100–300 ng ml−1 could result in decreased growth and loss of
mass for organisms (Chadwick and McCormick, 2017). Plasma
glucose levels also showed similar increases post-stressor exposure
in fish held at temperatures ≥15°C (33–100% increase), with the
exception that glucose levels returned to pre-stress levels for fish
acclimated to 20 and 23°C. Elevated circulating cortisol levels at
higher temperatures post-exposure to an exhaustive exercise stressor
have been found in several other studies (e.g. Jain and Farrell, 2003;
Suski et al., 2003, 2006; Meka and McCormick, 2005; McLean
et al., 2016). For example, rainbow trout (Oncorhynchus mykiss) in
southwest Alaska that were angled during a warmer year compared
with a cooler year (13.2 versus 9.8°C) exhibited significantly
increased plasma cortisol concentrations post-angling event
(Meka and McCormick, 2005). Our data suggest that at higher
temperatures, especially post-stressor exposure, there was an
elevated stress response in brook trout, demonstrated by increased
plasma cortisol and glucose. However, possibly because of enzyme
kinetics, it is unclear whether the 30 min sampling time was
sufficient for plasma cortisol and glucose to reach peak values at the
cooler temperatures (5 and 10°C).

Lactate is a by-product of anaerobic metabolism and therefore
increased concentrations of lactate in white muscle in fish can be
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caused by extensive exercise and activity (Wood et al., 1983).
Across all acclimation temperatures, the exhaustive exercise and air
exposure stressor led to a significant transient increase (100–150%
greater) in lactate in the white muscle 30 min post-stressor exposure,
that returned to or below pre-stress (i.e. unhandled) levels 24 h
later. Several studies on a range of fishes, including brook trout,
have demonstrated increased muscle lactate or plasma lactate
concentrations when fish were subjected to exercise and air
exposure (Beggs et al., 1980; Ferguson and Tufts, 1992; Booth
et al., 1995; Milligan, 1996; Farrell et al., 2001; Kieffer et al., 2011;
Landsman et al., 2011). Interestingly, the fish held at 23°C showed a
70% decrease in muscle lactate below pre-stress levels after 24 h
recovery. A decrease in muscle lactate can be caused by a release of
lactate into the blood or because the lactate in the muscle is recycled
in situ for glycogenesis (Milligan and Wood, 1986; Milligan and
Girard, 1993; Kieffer et al., 1994; Milligan, 1996). Therefore, the
observed decrease in muscle lactate after 24 h recovery in the 23°C
group may be a result of its release into the bloodstream or recycling
through glycogenesis to help the fish return its energy stores to pre-
stress levels. Our results suggest that the exhaustive exercise and air
exposure induced anaerobic metabolism, as exhibited by the
increase in muscle lactate across all temperature groups.
We found some evidence that osmoregulation in brook trout was

impacted at elevated temperatures, as shown by increased levels of
plasma osmolality and changes in mRNA abundance of nkcc1a.
Plasma osmolality can be used to estimate the osmoregulatory
ability of fishes as an indicator of ion balance, particularly for
circulating concentrations of Na+ and Cl− (McDonald andMilligan,
1997). For the brook trout that were subjected to the exhaustive
exercise and air exposure stressor, we observed a significant
transient increase (13–16% higher) in plasma osmolality 30 min
post-stressor exposure that returned to pre-stress levels (i.e.
unhandled) in fish held at 15 and 20°C. After exposure to an
acute stressor, increased cardiac output would lead to increased
blood perfusion at the gill (Mazeaud and Mazeaud, 1981; Sopinka
et al., 2016). However, there is a trade-off between increasing
oxygen uptake at the expense of increasing gill permeability to
water and ions, which is termed the osmorespiratory compromise
(Randall et al., 1972; Nilsson, 2007; Onukwufor and Wood, 2018)
and may contribute to alterations in plasma osmolality. This
compromise may lead to haemodilution and aid in explaining why
there was no peak in osmolality after 1 h in the acute stress group at
23°C and there were significantly lower osmolality levels after 24 h
of recovery. At a molecular level, nkcc1a, a gene involved in ion
regulation, showed increased mRNA abundance in the gill at low
temperatures, with decreased abundance at higher temperatures. As
the Na+/K/Cl− cotransporter is involved in active ion absorption or
secretion across cellular membranes in gills (Hiroi et al., 2008), this
may further suggest that brook trout osmoregulatory ability was
potentially impacted by increased temperatures.
Both SMR and MMR increased with acclimation temperature in

juvenile brook trout, with the highest levels evident in fish held at 23°
C. There is a strong relationship between water temperature and
metabolic rate in ectotherms (Fry, 1971; Hulbert and Else, 2004;
Brett, 1964; Beamish, 1978) and therefore increased SMR at higher
temperatures was expected in brook trout. AS was not significantly
affected by acclimation temperature, likely because of the significant
increase in SMRwith rising temperature and a similar trend inMMR.
Our finding of a stable AS across temperatures is similar to results
seen in a study run concurrently on the same batch of fish by Durhack
et al. (2021) that found maximumMMR and AS to occur at 15°C. A
major difference between the two studies was the chase protocol to

estimate MMR; while our study used a standardized 2 min chase
followed by 5 min air exposure, Durhack et al. (2021) used an
exhaustive chase protocol with minimal air exposure. The main
difference between the results of the two studies was the temperature
when peak MMR and AS occurred, with Durhack et al. (2021)
finding highest MMR and AS estimates at 15°C, while our study
found highest MMR at 23°C. A maximum AS at or near 15°C would
be expected based on previous literature that found this to be the
optimal growth and preferred temperature for brook trout (Smith and
Ridgway, 2019). A possible reason why our MMR and AS estimates
did not agree with those of other studies may be that our air exposure
was longer, which could have led to increased oxygen consumption
as a response to increased oxygen demand during recovery at the
higher temperatures. Stable AS values were also observed in Nile
perch (Lates niloticus) that were acclimated for 3 weeks at 27, 29 and
31°C (Nyboer and Chapman, 2017). A similar trend of stable AS
across temperatures has also been observed in chinook salmon
(Oncorhynchus tshawytscha; Poletto et al., 2017) and pink salmon
(O. gorbuscha; Clark et al., 2011). The maintenance of similar AS in
fish acclimated to different temperatures may be evidence for
metabolic compensation (Donelson and Munday, 2012). If the
energy available to allocate to other processes (AS) remains constant,
the body may have to adjust and metabolically compensate to
maintain energy, oxygen, heart rate and other vital processes (Eliason
and Farrell, 2016). Conversely, there was a change in FAS, where we
observed highest FAS at 5 and 10°C and a significant decrease at 20
and 23°C, a similar decrease at high temperatures to that seen by
Poletto et al. (2017). FAS is a useful tool to indicate how energy
allocation may be affected by environmental conditions, such as
temperature (Eliason and Farrell, 2016). Therefore, our results
suggest that energy allocation is affected by temperatures greater
than 15°C, further suggesting that 15°C is where metabolic capacity
is optimized for brook trout (Smith and Ridgway, 2019) and energy
allocation is decreased at these higher temperatures. Overall, our
metabolic data reflect an increase in metabolic activity at higher
temperatures with possible metabolic compensation as indicated by
constant AS across all temperatures.

The fish acclimated to 23°C exhibited the shortest recovery time,
despite having the highest SMR estimates and evidence of cellular
impairment. In contrast, time to recovery was highest at 15 and 20°C.
The short recovery time at 23°C does not seem to be due to this group
having a higher SMR, as the AS between all groups across the study
was not significantly different. Considering the constant AS across
groups, it is possible that this quick recovery time in the 23°C group
may be due to respiratory alkalosis and/or active suppression of
metabolic rate. Metabolic rate suppression is a strategy used by other
animals to combat adverse environmental conditions (Hochachka and
Guppy, 1987). For example, goldfish (Carassius auratus) can
suppress their metabolism to up to 30% of the aerobic metabolic
rate at elevated environmental temperatures (Van Waversveld et al.,
1988). Post-exhaustive exercise and air exposure, there may be
elevated blood carbon dioxide levels and lower blood pH (Wang
et al., 1994; Milligan, 1996) and this can be exacerbated at high
temperatures. Suppression of metabolic rate may also be used to limit
further carbon dioxide build up in the blood (i.e. acidosis) to regulate
the blood pH of fishes (Claiborne, 1998). Therefore, one possible
explanation for the short recovery time in the fish from the 23°C
acclimation group could be metabolic suppression.

Conclusion
We demonstrated that the acclimation ability of brook trout to
temperatures ≥20°C is impaired as shown by changes in mRNA
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transcript abundance, metabolic processes and responses to
exhaustive exercise and air exposure. Our findings are consistent
with previous work that suggested that upper temperatures limiting
habitat use in brook trout are around 21–23.5°C (reviewed in Smith
and Ridgway, 2019). Our study indicated that there is a sub-lethal
threshold between 20 and 23°C when chronic temperatures may
begin to adversely impact the physiological performance of brook
trout. Previous work on this same group of brook trout also showed
that between 20 and 23°C, fish were no longer able to increase their
critical thermal maxima with acclimation temperature and there
were increased plasma lactate levels indicating anaerobic
metabolism (Morrison et al., 2020). Furthermore, Chadwick and
McCormick (2017) demonstrated that brook trout growth is limited
by higher temperatures, especially those above 23°C, and this may
play a role in driving their distribution. Collectively, these studies in
combination with the present study suggest that there is a limitation
to the ability of brook trout to cope with chronic temperatures
≥20°C, which can potentially provide a benchmark for
understanding the ability of some brook trout populations to
persist in the wild in the future. In summary, our study demonstrates
how brook trout respond during acclimation to higher temperatures
at multiple scales of biological organization and how integration of
whole-organism physiology and molecular techniques can aid in
understanding the sublethal temperature thresholds of a species.
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Pörtner, H.-O., Bock, C. and Mark, F. C. (2017). Oxygen- and capacity-limited
thermal tolerance: bridging ecology and physiology. J. Exp. Biol. 220, 2685-2696.
doi:10.1242/jeb.134585

Quinn, N. L., McGowan, C. R., Cooper, G. A., Koop, B. F. and Davidson, W. S.
(2011). Ribosomal genes and heat shock proteins as putative markers for
chronic, sublethal heat stress in Arctic charr: applications for aquaculture and wild
fish. Physiol. Genomics 43, 1056-1064. doi:10.1152/physiolgenomics.00090.
2011

Raby, G. D., Vandergoot, C. S., Hayden, T. A., Faust, M. D., Kraus, R. T.,
Dettmers, J. M., Cooke, S. J., Zhao, Y., Fisk, A. T. and Krueger, C. C.
(2018). Does behavioural thermoregulation underlie seasonal movements in

Lake Erie walleye? Can. J. Fish. Aquat. Sci. 75, 488-496. doi:10.1139/cjfas-2017-
0145

Rahel, F. J. (2002). Using current biogeographic limits to predict fish distributions
following climate change. In American Fisheries Society Symposium, pp. 99-112,
Bethesda, MD, USA

Randall, D. J., Baumgarten, D. and Malyusz, M. (1972). The relationship between
gas and ion transfer across the gills of fishes. Comp. Biochem. Physiol. A Physiol.
41, 629-637. doi:10.1016/0300-9629(72)90017-5

Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J.,
Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J. et al. (2019).
Emerging threats and persistent conservation challenges for freshwater
biodiversity. Biol. Rev. 94, 849-873. doi:10.1111/brv.12480

Roberfroid, M. B. and Calderon, P. B. (1995). Free Radicals and Oxidation
Phenomena in Biological Systems. New York, New York: Dekker.

Sattin, G., Bakiu, R., Tolomeo, A. M., Carraro, A., Coppola, D., Ferro, D.,
Patarnello, T. and Santovito, G. (2015). Characterization and expression of a
new cytoplasmic glutathione peroxidase 1 gene in the Antarctic fish Trematomus
bernacchii. Hydrobiologia 761, 363-372. doi:10.1007/s10750-015-2488-6

Schreck, C. B. and Tort, L. (2016). The concept of stress in fish. InBiology of Stress
in Fish (ed. C. B. Schreck, L. Tort, A. P. Farrell and C. J. Brauner), pp. 1-34.
Academic Press.

Schulte, P. M. (2014). What is environmental stress? Insights from fish living in a
variable environment. J. Exp. Biol. 217, 23-34. doi:10.1242/jeb.089722

Schulte, P. M. (2015). The effects of temperature on aerobic metabolism: towards a
mechanistic understanding of the responses of ectotherms to a changing
environment. J. Exp. Biol. 218, 1856-1866. doi:10.1242/jeb.118851

Smith, D. A. and Ridgway, M. S. (2019). Temperature selection in brook charr: lab
experiments, field studies, and matching the Fry curve. Hydrobiologia 840,
143-156. doi:10.1007/s10750-018-3869-4

Somero, G. N. (2005). Linking biogeography to physiology: evolutionary and
acclimatory adjustments of thermal limits. Front. Zool. 2, 1. doi:10.1186/1742-
9994-2-1

Somero, G. N. (2010). The physiology of climate change: how potentials for
acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’.
J. Exp. Biol. 213, 912-920. doi:10.1242/jeb.037473

Sopinka, N. M., Donaldson, M. R., O’Connor, C. M., Suski, C. D. and Cooke, S. J.
(2016). Stress indicators in fish. In Biology of Stress in Fish (ed. C. B. Schreck, L.
Tort, A. P. Farrell and C. J. Brauner), pp. 405-462. Academic Press.

Sopinka, N. M., Jeffrey, J. D., Burnett, N. J., Patterson, D. A., Gilmour, K. M. and
Hinch, S. G. (2017). Maternal programming of offspring hypothalamic–pituitary–
interrenal axis in wild sockeye salmon (Oncorhynchus nerka). Gen. Comp.
Endocrinol. 242, 30-37. doi:10.1016/j.ygcen.2015.12.018

Stitt, B. C., Burness, G., Burgomaster, K. A., Currie, S., McDermid, J. L. and
Wilson, C. C. (2014). Intraspecific variation in thermal tolerance and acclimation
capacity in brook trout (Salvelinus fontinalis): physiological implications for climate
change. Physiol. Biochem. Zool. 87, 15-29. doi:10.1086/675259

Suski, C. D., Killen, S. S., Morrissey, M. B., Lund, S. G. and Tufts, B. L. (2003).
Physiological changes in largemouth bass caused by live-release angling
tournaments in southeastern Ontario. N. Am. J. Fish. Manag. 23, 760-769.
doi:10.1577/M02-042

Suski, C. D., Killen, S. S., Kieffer, J. D. and Tufts, B. L. (2006). The influence of
environmental temperature and oxygen concentration on the recovery of
largemouth bass from exercise: implications for live–release angling
tournaments. J. Fish Biol. 68, 120-136. doi:10.1111/j.0022-1112.2006.00882.x

Sutherland, B. J. G., Prokkola, J. M., Audet, C. and Bernatchez, L. (2019). Sex-
specific co-expression networks and sex-biased gene expression in the salmonid
brook charr Salvelinus fontinalis. G3 9, 955-968. doi:10.1534/g3.118.200910

Swirplies, F., Wuertz, S., Baßmann, B., Orban, A., Schäfer, N., Brunner, R. M.,
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