
RESEARCH ARTICLE

Role of the G protein-coupled receptors GPR84 and GPR119
in the central regulation of food intake in rainbow trout
Cristina Velasco1,2, Marta Conde-Sieira1, Sara Comesan ̃a

1, Mauro Chivite1, Jesús M. Mıǵuez1 and
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ABSTRACT
We evaluated the role of the G protein-coupled receptors GPR84
and GPR119 in food intake regulation in fish using rainbow trout
(Oncorhynchus mykiss) as a model. In the first experiment,
we assessed the effects on food intake of intracerebroventricular
treatment with agonists of these receptors. In the second experiment,
we assessed the impact of the same treatments on mRNA
abundance in the hypothalamus and hindbrain of neuropeptides
involved in the metabolic control of food intake (npy, agrp1, pomca1
and cartpt) as well as in changes in parameters related to signalling
pathways and transcription factors involved in the integrative
response leading to neuropeptide production. Treatment with
both agonists elicited an anorectic response in rainbow trout
attributable to changes observed in the mRNA abundance of the
four neuropeptides. Changes in neuropeptides relate to changes
observed in mRNA abundance and phosphorylation status of the
transcription factor FOXO1. These changes occurred in parallel with
changes in the phosphorylation status of AMPKα and Akt, the mRNA
abundance of mTOR as well as signalling pathways related to PLCβ
and IP3. These results allow us to suggest that (1) at least part of the
capacity of fish brain to sense medium-chain fatty acids such as
octanoate depends on the function of GPR84, and (2) the capacity of
fish brain to sense N-acylethanolamides or triglyceride-derived
molecules occurs through the binding of these ligands to GPR119.
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INTRODUCTION
Free fatty acids (FFAs) are ligands for a group of G protein-coupled
receptors (GPCRs). These include FFA receptors (FFARs) and
other GPCRs not classified as FFARs. Each FFAR can act as sensor
with selectivity for a particular fatty acid carbon chain length
(Husted et al., 2017). Thus, FFA1 and FFA4 sense long-chain fatty
acids (LCFA, more than 12 carbons) while FFA2 and FFA3 sense
short-chain fatty acids (SCFA, fewer than 6 carbons). In brain
regions such as the hypothalamus and hindbrain, the sensing of
fatty acids (FAs) through FFAR relates to regulation of food intake

and energy homeostasis (Hara et al., 2014; Husted et al., 2017;
Kimura et al., 2020). However, most available information about
FA sensing in brain relates to other mechanisms (Magnan et al.,
2015; Efeyan et al., 2015; Bruce et al., 2017). All these mechanisms
detect changes in FAs to relate them to the modulation of
food intake through changes in the mRNA abundance of two
pairs of co-expressed neuropeptides: agouti-related protein (AgRP)/
neuropeptide Y (NPY) and pro-opio melanocortin (POMC)/cocaine
and amphetamine-related transcript (CART) (Blouet and
Schwartz, 2010). The connection between FA-sensing systems
and neuropeptide expression is not clear though two steps are
apparent (Morton et al., 2014). In a first step, nutrient-sensing
activation induces changes in the level and/or phosphorylation
status of different molecules involved in signalling pathways
such as AMP-activated protein kinase (AMPK), mechanistic
target of rapamycin (mTOR) and protein kinase B (Akt). In a
second step, the signalling pathways induce changes in the levels
and/or phosphorylation status of transcription factors (López et al.,
2007; Diéguez et al., 2011) such as phosphorylated cAMP
response-element binding protein (CREB), brain homeobox
transcription factor (BSX), and forkhead box protein O1 (FOXO1).

Other GPCRs not classified as FFARs sense changes in the levels
of FFAs or FFA-related molecules (Kimura et al., 2020). Thus,
GPR84 is responsive to medium-chain fatty acids (MCFA, between 6
and 12 carbons) (Luscombe et al., 2020). GPR84 is mainly found in
immune-related tissues such as splenic T and B cells and bone
marrow cells (Venkataraman and Kuo, 2005), and circulating
granulocytes, monocytes and macrophages (Wang et al., 2006),
evidencing that GPR84 predominantly relates to the immune system
and the inflammatory response. However, other tissues including
the brain express GPR84 (Wang et al., 2006; Wittenberger et al.,
2001; Falomir-Lockhart et al., 2019). An increase in Gpr84
mRNA expression occurred in the adipose tissue of mice fed a fat-
enriched diet (Nagasaki et al., 2012). Thus, GPR84 plays a role in
metabolism though no available study supports its involvement in
central mechanisms involved in food intake control. In contrast,
GPR119 is responsive to N-acylethanolamides (NAEs) such as
oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) as
well as to 2-monoacylglycerols (2-MAGs) resulting from triglyceride
hydrolysis such as 2-oleolyglycerol (Hansen et al., 2012). GPR119 is
predominantly expressed in enteroendocrine and pancreatic β cells,
but also in other tissues including the brain (Yang et al., 2018;
Falomir-Lockhart et al., 2019). Available studies evidence that
endogenous ligands of GPR119 such as OEA reduce food intake and
body weight gain in mammals (Azari et al., 2014; Romano et al.,
2015). Besides a direct central action, this might also occur through
modulation of release of gastrointestinal hormones such as glucagon-
like peptide-1 (Hansen et al., 2012; Ekberg et al., 2016).

In fish, several studies demonstrated the presence of central
FA-sensing mechanisms, as observed in rainbow trout (Librán-Received 1 February 2021; Accepted 7 June 2021
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Pérez et al., 2012, 2013, 2014, 2015; Velasco et al., 2016, 2020;
Roy et al., 2020), zebrafish (Liu et al., 2017), grass carp (Li et al.,
2016; Tian et al., 2017), blunt snout bream (Dai et al., 2018),
Senegalese sole (Conde-Sieira et al., 2015) and Chinese perch (Luo
et al., 2020). These mechanisms are comparable to those observed
in mammals (Lipina et al., 2014; Magnan et al., 2015), though fish
are also sensitive to MCFA such as octanoate (C8) and poly-
unsaturated FA such as α-linolenate. In a recent study in rainbow
trout (Velasco et al., 2020), we obtained evidence supporting the
involvement of hypothalamic FFA1 and FFA4 in the anorectic
response to LCFA. Evidence in fish is scarce regarding GPR84
(Huang et al., 2014; Wang et al., 2019) and GPR119 (Fredriksson
et al., 2003). However, their presence and functioning in brain
areas involved in food intake control such as the hypothalamus and
hindbrain is a reasonable hypothesis. In the case of GPR84, this is
supported by the fact that octanoate (a MCFA) treatment in
rainbow trout elicited an anorectic response, which occurred in
parallel with activation in the hypothalamus and hindbrain of
nutrient-sensing systems and integrative mechanisms eliciting
changes in neuropeptide expression (Librán-Pérez et al., 2012,
2014). Indirect evidence supporting a role for GPR84 in metabolic
regulation comes from zebrafish, where GPR84 is involved in the
accumulation of lipid droplets and increased mRNA abundance of
gpr84 occurred in the intestine during food deprivation (Huang
et al., 2014). In the case of GPR119, its role is supported by the
anorectic response elicited in goldfish by treatment with OEA
(Gómez-Boronat et al., 2016) or PEA (Gómez-Boronat et al., 2020).
In a preliminary study, we carried out amino acid sequence

alignment for GPR84 and GPR119 comparing sequences available
from rainbow trout (GPR84: XM_021609929.2 and GPR119: XM_
036989345.1), mouse (GPR84: NM_030720.2 and GPR119: NM_
181751.2) and human (GPR84: NM_020370.3 and GPR119: NM_
178471.3). We also validated mRNA expression of gpr84 and
gpr119 in hypothalamus and hindbrain of rainbow trout as shown in
Fig. S1. These results allowed us to suggest the presence of these
receptors in brain areas of rainbow trout. Therefore, we aimed to
elucidate the role of GPR84 and GPR119 in the modulation of food
intake in fish. First, we evaluated whether intracerebroventricular
(i.c.v.) treatment of rainbow trout with agonists of these receptors
elicits an anorectic response. Then, we assessed the impact of the
same treatments on the mRNA abundance in the hypothalamus and
hindbrain of the four neuropeptides involved in the metabolic
control of food intake as well as in changes in parameters related to
signalling pathways and transcription factors involved in the
integrative response leading to neuropeptide production (Soengas,
2021).

MATERIALS AND METHODS
Fish
Immature rainbow trout, Oncorhynchus mykiss (Walbaum 1792),
obtained from a local fish farm (A Estrada, Spain) were maintained
for 1 month in 100 litre tanks under laboratory conditions, and a
12 h light:12 h dark photoperiod (lights on at 08:00 h, lights off at
20:00 h) in dechlorinated tap water at 15°C. Fish mass was 97±2 g.
Fish were fed once daily (10:00 h) to satiety with commercial dry
fish pellets (proximate food analysis: 44% crude protein, 2.5%
carbohydrates, 21% crude fat and 17% ash; 20.2 MJ kg−1 of feed;
Biomar, Dueñas, Spain). The experiments described comply with
the Guidelines of the European Union Council (2010/63/UE) and of
the Spanish Government (RD 55/2013) for the use of animals in
research, and were approved by the Ethics Committee of the
Universidade de Vigo (ref. 00013-19JLSF).

Experimental design
Experiment 1: effects of i.c.v. administration of GPR84 and GPR119
agonists on food intake
Following the 1 month acclimation period, fish were randomly
assigned to 100 litre experimental tanks. On the day of the
experiment, fish were anaesthetized with 2-phenoxyethanol
(0.02% v/v; Sigma Chemical Co., St Louis, MO, USA), and
weighed to carry out i.c.v. administration as previously described
(Polakof and Soengas, 2008). Briefly, fish were placed on a
Plexiglas board with Velcro straps adjusted to hold them in place. A
29½ gauge needle attached through a polyethylene cannula to a
10 µl Hamilton syringe was aligned with the sixth preorbital bone at
the rear of the eye socket, and from this point the syringe was moved
through the space in the frontal bone into the third ventricle. The
plunger of the syringe was slowly depressed to dispense
1 µl 100 g−1 body mass of DMSO-saline (1:3) alone (control), or
containing 2 mmol l−1 3,3′-diindolylmethane (GPR84 agonist,
Sigma) or 2 mmol l−1 AR231453 (GPR119 agonist, Abcam,
Cambridge, UK). No effects occurred as a result of the vehicle
alone (data not shown). The agonists and their doses were selected
based on studies carried out in mammals for GPR84 (Mahmud
et al., 2017; Chen et al., 2020) and GPR119 (Tough et al., 2018;
Bashetti et al., 2019; Panaro et al., 2020). We registered food intake
for 7 days before treatment (to define baseline data) and then 2, 6
and 24 h after treatment. After feeding, the uneaten food at the
bottom of the tank (conical tanks) and feed waste were withdrawn,
dried and weighed. We calculated the amount of food consumed by
all fish in each tank as previously described as the difference from
the amount of feed offered (De Pedro et al., 1998; Polakof et al.,
2008a,b). We used 10 fish per treatment and repeated the same
experiment 3 times (n=30 fish per treatment).

Experiment 2: effects of i.c.v. administration of GPR84 and GPR119
agonists on mechanisms involved in food intake control
Following acclimation, fish were randomly assigned to 100 litre
experimental tanks (8 fish per tank), and fasted for 24 h before
treatment to ensure basal hormone and metabolite levels were
achieved. On the day of the experiment, fish were anaesthetized in
their tanks with 2-phenoxyethanol (0.02% v/v; Sigma-Aldrich),
weighed and i.c.v. injected as described above with DMSO-saline
(1:3) alone (control, n=8) or containing the GPR84 agonist (n=8) or
GPR119 agonist (n=8), using the same concentrations as described
above. After 2 h (time selected based on prior studies on FA sensing
in the same species; see Conde-Sieira and Soengas, 2017) fish were
anaesthetized in tanks with 2-phenoxyethanol (0.02% v/v; Sigma-
Aldrich). Blood was collected by caudal puncture with ammonium-
heparinized syringes, and plasma samples were obtained after blood
centrifugation, deproteinized immediately (using 0.6 mol l−1

perchloric acid) and neutralized (using 1 mol l−1 potassium
bicarbonate) before freezing and storage at −80°C until further
assay. We killed fish by decapitation. The hypothalamus and
hindbrain were taken, snap-frozen and stored at −80°C. We used
the hypothalamus and hindbrain to assess changes in the levels
of proteins of interest by western blot and for the assessment
of mRNA abundance of transcripts by quantitative real-time PCR
(RT-qPCR).

Assessment of metabolite levels
Levels of metabolites in plasma were enzymatically assessed using
commercial kits adapted to microplate format from Spinreact
(Barcelona, Spain) for glucose, lactate and triglyceride, and from
Fuji (Neuss, Germany) for FA levels.
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Western blot analysis
Total protein of samples was extracted using Trizol reagent (Life
Technologies, Grand Island, NY, USA) following the
manufacturer’s protocol for protein isolation. The protein obtained
was solubilized in 100 μl of buffer containing 150 mmol l−1 NaCl,
10 mmol l−1 Tris-HCl, 1 mmol l−1 EGTA, 1 mmol l−1 EDTA
(pH 7.4), 100 mmol l−1 sodium fluoride, 4 mmol l−1 sodium
pyrophosphate, 2 mmol l−1 sodium orthovanadate, 1% Triton X-
100, 0.5% NP40-IGEPAL and 1.02 mg ml−1 protease inhibitor
cocktail (Sigma-Aldrich). We kept tubes on ice during the whole
process to prevent protein denaturation, and stored them at −80°C at
the end of the process. The concentration of protein in each sample
was determined using the Bradford assay with bovine serum
albumin as standard. Hypothalamus and hindbrain protein lysates
(20 μg) were western blotted using the following antibodies: 1:1000
anti-phospho Akt (Ser473, reference #4060), 1:1000 anti-carboxyl
terminal Akt (reference #9272), 1:250 anti-phospho AMPKα
(Thr172, reference #2531), 1:250 anti-AMPKα (reference #2532),
1:500 anti-phospho CREB (Ser133, reference #9198), 1:500
anti-CREB (reference #9197), 1:250 anti-phospho-FOXO1

(Thr24, reference #9464), 1:250 anti-FOXO1 (reference #9454)
and 1:1000 anti-β-tubulin (reference #2146) (all from Cell Signaling
Technology, Leiden, The Netherlands) and 1:500 anti-BSX
(reference #56092; Abcam). All these antibodies cross-react
successfully with rainbow trout proteins of interest (Skiba-Cassy
et al., 2009; Kamalam et al., 2012; Velasco et al., 2016; Conde-
Sieira et al., 2018). After washing, membranes were incubated with
an IgG-HRP secondary antibody (reference #2015718; Abcam) and
bands were quantified by Image Lab software version 5.2.1 (Bio-
Rad, Hercules, CA, USA) in a Chemidoc Touch imaging system
(Bio-Rad). Bands were assessed by LC-MS/MS in CACTI
(Universidade de Vigo), and then compared with available
sequences using Uniprot software.

mRNA abundance analysis by RT-qPCR
Total RNA was extracted using Trizol reagent (Life Technologies)
and subsequently treated with RQ1-DNAse (Promega, Madison,
WI, USA), 2 µg total RNA was then reverse transcribed using
Superscript II reverse transcriptase (Promega) and random
hexamers (Promega) in a final volume of 20 µl. Gene expression

Table 1. Nucleotide sequences of the PCR primers used to evaluate mRNA abundance by RT-qPCR

Gene Forward/reverse primer Annealing temp. (°C) Amplicon size (bp) Database/accession no.

actb F: GATGGGCCAGAAAGACAGCTA 59 105 GenBank/NM_ 001124235.1
R: TCGTCCCAGTTGGTGACGAT

agrp1 F: ACCAGCAGTCCTGTCTGGGTAA 60 87 GenBank/NM_001146677
R: AGTAGCAGATGGAGCCGAACA

bsx F: CATCCAGAGTTACCCGGCAAG 60 169 GenBank/MG310161
R: TTTTCACCTGGGTTTCCGAGA

cartpt F: ACCATGGAGAGCTCCAG 60 275 GenBank/NM_001124627
R: GCGCACTGCTCTCCAA

creb1 F: CGGATACCAGTTGGAGGAGGA 60 124 GenBank/MG310160
R: AGCAGCAGCACTCGTTTAGGC

eefla1 F: TCCTCTTGGTCGTTTCGCTG 59 188 GenBank/AF498320
R: ACCCGAGGGACATCCTGTG

foxo1 F: AACTCCCACAGCCACAGCAAT 60 118 GenBank/MG310159
R: CGATGTCCTGTTCCAGGAAGG

gpr84 F: GTTTCGTGGGCTGTTTTGTC 57.5 109 GeneBank/XM_021609929.2
R: CTGTTGAGCCAGGTGAGGTT

gpr119 F: CCTCATCATCTCCACCAACC 57.8 84 GenBank/XM_036989345.1
R: ACGAAGCACCAGCTCTGACT

itpr3 F: GCAGGGGACCTGGACTATCCT 60 64 GenBank/XM_021616029.1
R: TCATGGGGCACACTTTGAAGA

mtor F: ATGGTTCGATCACTGGTCATCA 60 81 GenBank/EU179853
R: TCCACTCTTGCCACAGAGAC

npy F: CTCGTCTGGACCTTTATATGC 58 247 GenBank/NM_001124266
R: GTTCATCATATCTGGACTGTG

plcb1 F: GGAGTTGAAGCAGCAGAAGG 60 83 GenBank/XM_021611355.1
R: GGTGGTGTTTCCTGACCAAC

plcb2 F: GGATTGCTGGAAGGGAAAACC 60 134 GenBank/XM_021584705.1
R: CGGGGTACTGTGACGTCTTGA

plcb3 F: ATAGTGGACGGCATCGTAGC 62 120 GenBank/XM_021577635.1
R: TGTGTCAGCAGGAAGTCCAA

plcb4 F: ACCTCTCTGCCATGGTCAAC 60 89 GenBank/XM_021600840.1
R: CGACATGTTGTGGTGGATGT

pomca1 F: CTCGCTGTCAAGACCTCAACTCT 60 118 Tigr/TC86162
R: GAGTTGGGTTGGAGATGGACCTC

prkaa1 F: ATCTTCTTCACGCCCCAGTA 60 131 GenBank/HQ40367
R: GGGAGCTCATCTTTGAACCA

prkaa2 F: GGGCTACCATTAAAGACATTAGGG 58 147 GenBank/HQ403673.1
R: ACTCGGTGCTCTCAAACTTG

actb, beta-actin; agrp1, agouti-related protein 1; bsx, brain homeobox transcription factor; cartpt, cocaine- and amphetamine-related transcript; creb1, cAMP
response-element-binding protein; eefla1, elongation factor 1α; foxo1, forkhead boxO1; gpr84, G protein-coupled receptor 84; gpr119, G protein-coupled
receptor 119; itpr3, inositol 1,4,5-trisphosphate receptor type 3; mtor, mechanistic target of rapamycin; npy, neuropeptide y; plcb1, phospholipase C β1; plcb2,
phospholipase C β2; plcb3, phospholipase C β3; plcb4, phospholipase C β4; pomca1, pro-opio melanocortin a1; prkaa1, protein kinase AMP-activated catalytic
subunit α1; prkaa2, protein kinase AMP-activated catalytic subunit α2.
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levels were determined by qPCR performed on 1 µl cDNA using
MAXIMA SYBRGreen qPCRMastermix (Life Technologies), in a
total PCR reaction volume of 15 µl, containing 50–500 nmol l−1 of
each primer using the iCycler iQ (Bio-Rad). mRNA abundance of
transcripts was determined as previously described in the same
species (Panserat et al., 2000; Geurden et al., 2007; Kolditz et al.,
2008; Lansard et al., 2009;Wacyk et al., 2012; Velasco et al., 2020).
A fragment of each sequence containing the amplicon was
amplified by conventional PCR and run on a 1.2% agarose gel.
The corresponding bands were cut from the gel, purified with
the QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany)
and sequenced in an Applied Biosystems 3130 Genetic Analyzer
(Foster City, CA, USA) by Servicio de Determinación Estructural,
Proteómica y Genómica (CACTI-Universidade de Vigo). The

obtained sequences satisfactorily matched the reference GenBank
sequences. Forward and reverse primers used for expression
analysis of each gene are shown in Table 1. For gpr84 and
gpr119 (Fig. S1), thermal cycling was initiated with incubation at
95°C for 180 s using hot-start iTaq DNA polymerase activation
followed by 40 cycles of heating at 95°C for 30 s, specific annealing
for 30 s and extension at 72°C for 1 min. For the remaining
transcripts, relative quantification of the target gene transcript was
done using actb (β-actin) and eef1a1 (elongation factor 1α) gene
expression as a reference, which were stably expressed in this
experiment. Thermal cycling was initiated with incubation at 95°C
for 90 s using hot-start iTaq DNA polymerase activation followed
by 35 cycles of heating at 95°C for 20 s, and specific annealing and
extension temperatures for 20 s. Following the final PCR cycle,
melting curves were systematically monitored (55°C temperature
gradient at 0.5°C s−1 from 55 to 94°C) to ensure that only one
fragment was amplified. Samples without reverse transcriptase and
samples without RNA were run for each reaction as negative
controls. Relative quantification of the target gene transcript with
the actb and eef1a1 reference gene transcripts was made following
the Pfaffl (2001) method.

Statistical analysis
In the first experiment, comparisons among groups were carried out
using two-way ANOVAwith treatment and time as main factors. In
the second experiment, comparisons were carried out using one-
way ANOVA. Shapiro–Wilk and Levene tests were used to confirm
normality and homoscedasticity of the data, respectively.

When necessary, data were transformed to logarithmic or square
root scale to fulfil the conditions of normality and homoscedasticity.
The Bonferroni correction method was used. In the case of a
significant effect (P<0.05), post hoc comparisons using Student–
Newman–Keuls (SNK) test were employed. Comparisons were
carried out with the SigmaStat (Systat Software, San José, CA,
USA) statistical package.

RESULTS
Experiment 1
Central administration of GPR84 and GPR119 agonists resulted in a
significant decrease of food intake post-treatment after 2 h (84.6%
and 59.8%), 6 h (55% and 49.1%) and 24 h (30.2% and 68.9%),
compared with the control group (Fig. 1).
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Fig. 1. Average food intake in rainbow trout after GPR84 and GPR119
agonist treatment. Food intake in rainbow trout 2, 6 and 24 h after i.c.v.
administration of 1 µl 100 g−1 body mass of DMSO-saline alone (control) or
containing 2 mmol l−1 3,3′-diindolylmethane (GPR84 agonist) or 2 mmol l−1

AR231453 (GPR119 agonist). Food intake is displayed as the percentage of
food ingested with respect to baseline levels (calculated as the average food
intake in the 7 days prior to the experiment) and was normalized to the control
group intake (100%). Data are shown as means±s.e.m. of the results obtained
in three different experiments in which 10 fish were used per group in each tank
(n=30). Different letters indicate significant differences (P<0.05) between
treatments at the same time point.
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Fig. 2. Metabolite levels in the plasma of rainbow trout
after GPR84 and GPR119 agonist treatment. Plasma fatty
acid (A), triglyceride (B), glucose (C) and lactate (D) levels in
plasma of rainbow trout 2 h after i.c.v. administration of
1 µl 100 g−1 body mass of DMSO-saline alone (control) or
containing 2 mmol l−1 3,3′-diindolylmethane (GPR84
agonist) or 2 mmol l−1 AR231453 (GPR119 agonist). Data
are means±s.e.m. of n=8 fish per treatment. Different letters
indicate significant differences (P<0.05) between treatments.
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Experiment 2
Plasma FA levels (Fig. 2A) decreased in GPR84 and GPR119
agonists groups compared with control, whereas triglyceride
levels (Fig. 2B) increased in the agonist groups. Glucose
(Fig. 2C) and lactate (Fig. 2D) levels did not display any
significant variation.
The mRNA abundance of neuropeptides is displayed in Fig. 3.

pomca1 mRNA abundance increased after treatment with GPR84
and GPR119 agonists in the hypothalamus (Fig. 3A). cartptmRNA
abundance increased after treatment with the GPR84 agonist in the
hypothalamus (Fig. 3B) and hindbrain (Fig. 3F) and after treatment
with the GPR119 agonist in the hypothalamus (Fig. 3B). npy
mRNA abundance decreased after treatment with the GPR84
agonist in both the hypothalamus (Fig. 3C) and hindbrain (Fig. 3G).
agrp1mRNA abundance decreased after treatment with the GPR84
agonist in the hypothalamus (Fig. 3D).
Fig. 4 depicts the mRNA abundance of transcription factors

following i.c.v. administration of specific agonists of GPR84 and
GPR119. Agonist treatment did not alter the mRNA abundance of
creb1 (Fig. 4A,D). Both treatments increased mRNA abundance of
foxo1 in the hypothalamus (Fig. 4B) and hindbrain (Fig. 4E). bsx
levels decreased in the hindbrain after treatment with the GPR119
agonist (Fig. 4F).

Fig. 5 shows levels and phosphorylation status of transcription
factors. The original western blots are shown in Fig. S2. The i.c.v.
administration of GPR84 and GPR119 agonists resulted in a
significant decrease in the phosphorylation status of FOXO1 in the
hypothalamus (Fig. 5C). No significant changes occurred for BSX
or CREB.

The mRNA abundance of molecules involved in cellular
signalling is shown in Fig. 6. Treatment with specific agonists of
GPR84 and GPR119 receptors did not alter the mRNA abundance
of protein kinase AMP-activated catalytic subunit alpha 1 (prkaa1)
(Fig. 6A,D), whereas prkaa2 mRNA levels decreased 2 h after
treatment with both agonists in the hindbrain (Fig. 6E).mtormRNA
levels increased after GPR84 agonist treatment in both the
hypothalamus (Fig. 6C) and hindbrain (Fig. 6F).

Fig. 7 shows levels and phosphorylation status of proteins
involved in cellular signalling. The original western blots are shown
in Fig. S2. The phosphorylation status of Akt in the hypothalamus
increased after treatment with agonists of both receptors (Fig. 7A).
The phosphorylation status of AMPKα decreased after treatment
with GPR84 and GPR119 agonists in the hypothalamus (Fig. 7B)
and hindbrain (Fig. 7D).

Finally, Fig. 8 depicts the mRNA abundance of parameters
related to the intracellular transduction of extracellular signals.
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1-Phosphatidylinositol-4,5-bisphosphate phosphodiesterase beta-1
( plcb1) mRNA levels increased 2 h after treatment with the GPR84
agonist in the hypothalamus (Fig. 8A) and after GPR119 agonist
treatment in the hypothalamus (Fig. 8A) and hindbrain (Fig. 8F).
Inositol 1,4,5-trisphosphate receptor type 3 (itpr3) mRNA levels
increased after treatment with both receptor agonists in the
hypothalamus (Fig. 8E). No significant changes occurred in the
mRNA abundance of plcb2, plcb3 and plcb4.

DISCUSSION
The absolute plasma levels of glucose and lactate, and their lack of
change in response to treatment indicate the absence a significant
stress induced by treatments based on the role of these metabolites as
markers of secondary stress responses in fish (Wendelaar Bonga,
1997). In contrast, unexpectedly, changes occurred in the level of both
FA and triglyceride. Considering that GPR84 putatively responds to
levels of MCFA and GPR119 to those of 2-MAGs derived from
triglyceride, we cannot discard that at least some of the changes
observed in the hypothalamus and hindbrain are not the result of the
direct action of treatments but were induced indirectly by altered levels
of these metabolites in plasma. Moreover, 3,3′-diindolylmethane is
reported to have an oestrogenic effect in rainbow trout (Shilling et al.,
2001). As oestrogens have been suggested to be involved in the
regulation of food intake in mammals (Frank et al., 2014) and fish
(Leal et al., 2009), we cannot exclude the possibility that at least some
of the effects elicited by treatment with this agonist may result from a
putative oestrogenic effect on the parameters assessed.

Specific GPR84 and GPR119 agonists decrease food intake
of rainbow trout
The inhibition of food intake elicited by the GPR84 agonist was
comparable to previous observations in the same species after i.c.v.

treatment with the MCFA octanoate (Librán-Pérez et al., 2014),
which makes sense assuming GPR84 is involved in MCFA detection
in fish as in mammals (Luscombe et al., 2020). However, we must
consider the different behaviour elicited by octanoate when
comparing its impact on food intake regulation in mammals and
fish. In mammals, despite octanoate not being obesogenic in
comparison with LCFA (Du Toit et al., 2018), a recent study
suggests that octanoate induces a rapid and transient anorexigenic
effect, resulting in decreased food intake. However, in mammals,
FFA4 (and not GPR84) appears to mediate this effect (Haynes et al.,
2020). The distinct expression profile of GPR84 compared with that
of FFARs in mammals does not support the hypothesis that its
primary role is detecting MCFA centrally for regulation of energy
metabolism including food intake (Luscombe et al., 2020). In
contrast, in fish, octanoate effects are perfectly comparable to those of
LCFA such oleate (Librán-Pérez et al., 2012, 2014; Velasco et al.,
2017). We therefore suggest that a significant difference between the
two groups of vertebrates exists. In fish, MCFA is involved in the
regulation of food intake, probably through the action of GPR84,
though this receptor would also probably be involved in immune
function, as recently observed in zebrafish (Wang et al., 2019). In
contrast, in mammals, GPR84 is probably involved in other processes
not related to food intake, such as inflammatory and immune
responses (Bouchard et al., 2007; Wei et al., 2017; Luscombe et al.,
2020). This difference between mammals and fish might relate to the
higher MCFA levels present in the diet of fish (Davis et al., 1999;
Trushenski, 2009) versus that ofmammals (Chen et al., 2020; Haynes
et al., 2020). In this regard, it is interesting tomention that duringmilk
suckling in newborn mammals, a situation in which high MCFA
levels are present, high levels of GPR84were observed in their gastric
mucosa in comparison with that of weaned animals (Widmayer et al.,
2017)
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The anorectic response elicited by treatment with the GPR119
agonist in the present study is similar to that characterized in other
fish species after treatment with putative ligands of this receptor
such as OEA (Gómez-Boronat et al., 2016) and PEA (Gómez-
Boronat et al., 2020). In mammals, although GPR119 knockout did
not cause changes in food intake when compared with wild-type
animals (Higuchi et al., 2020), a reduction in food intake was also
evident after treatment with OEA (Serrano et al., 2011; Azari et al.,
2014; Romano et al., 2015) or PEA (Rodríguez de Fonseca et al.,
2001; Mattace Raso et al., 2014).

Neuropeptide modulation by GPR84 and GPR119 agonists
The anorectic effects of GPR84 and GPR119 agonists are consistent
with the changes in mRNA abundance of the two pairs of orexigenic
and anorexigenic peptides involved in the metabolic regulation of
food intake both in mammals (Blouet and Schwartz, 2010) and in
fish (Soengas, 2014; Conde-Sieira and Soengas, 2017; Delgado

et al., 2017; Soengas et al., 2018). Treatment with the GPR84
agonist increased the mRNA abundance in the hypothalamus of the
anorexigenic peptides pomca1 and cartpt and decreased npy and
agrp1mRNA abundance while comparable changes occurred in the
hindbrain for cartpt and npy. These changes are also comparable to
those observed in the same species subjected to octanoate treatment
(Librán-Pérez et al., 2012, 2014; Velasco et al., 2017). Indirect
evidence supporting a role for GPR84 comes from zebrafish, where
increased mRNA abundance occurred in the intestine during food
deprivation (Huang et al., 2014). In comparison, treatment with the
GPR119 agonist only affected anorexigenic neuropeptides, with
increased mRNA abundance of pomca1 and cartpt. This is the first
time in any vertebrate species that changes in neuropeptide mRNA
abundance have been assessed in response to agonists of these
GPCRs. Finally, the changes described are comparable to those
elicited by activation of FFA1 and FFA4 in the same species
(Velasco et al., 2020), which also resulted in an anorectic response.
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represent the ratio between the phosphorylated protein and the
total amount of the target protein. Data are means±s.e.m. of n=8
fish per treatment. Different letters indicate significant differences
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Role of GPR84 and GPR119 in the regulation of mechanisms
involved in the control food intake at the central level
The mechanisms involved in the connection between FA-sensing
systems and the expression of neuropeptides are partially
known, both in mammals (Diéguez et al., 2011) and in fish
(Soengas, 2021). They are apparently dependent on modulation
of FOXO1, CREB and BSX. Thus, decreased expression of BSX
and CREB and increased expression of FOXO1 occurred in
response to increased FA levels (Nogueiras et al., 2008; Varela
et al., 2011). These responses are also comparable to those observed
in the hypothalamus of the same species after exposure to oleate
(Conde-Sieira et al., 2018) or octanoate (Velasco et al., 2017). In
the present study, we observed no relevant changes in CREB
and BSX, whereas foxo1 mRNA abundance increased after

treatment with both agonists in the hypothalamus and hindbrain.
However, this change did not parallel with phosphorylation status
of FOXO1, which decreased in the hypothalamus after treatment
with both agonists. As a whole, the changes observed suggest
that the effects of both GPCRs on neuropeptide mRNA abundance
might relate to changes observed in FOXO1 but not to the
other transcription factors evaluated. This behaviour is different
from that observed in these brain areas after exposure to oleate
(Conde-Sieira et al., 2018; Velasco et al., 2017), octanoate (Velasco
et al., 2017), or FFA1 and FFA4 agonists (Velasco et al., 2020) in
which changes occurred in BSX and CREB. Therefore, the
integrative mechanisms involved in the food intake response
elicited by different GPCRs appear to be specific of the receptor
involved.
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Changes observed in transcription factors might relate to the
activity of the different FA-sensing systems, including GPCRs,
through different mechanisms including modulation by AMPK,
mTOR and Akt (Diéguez et al., 2011; Morton et al., 2014). We
observed in the present study that treatment with agonists of both
receptors resulted in decreased phosphorylation of AMPKα as well
as increased phosphorylation of Akt while only the GPR84 agonist
increased mRNA abundance of mtor. These changes are similar to
those described in mammalian nervous tissue for Akt after FFAR
activation (Falomir-Lockhart et al., 2019) though no evidence is
available regarding GPR84 and GPR119. The effects of the GPR84
agonist are comparable to those observed in the hypothalamus of the
same species after treatment with octanoate (Velasco et al., 2017),
further supporting the putative activation of this receptor by MCFA
in fish. Furthermore, the effects of both agonists on Akt and AMPK
are also comparable to the effects observed in rainbow trout
hypothalamus after treatment with FFA1 and FFA4 agonists
(Velasco et al., 2020), suggesting a comparable pathway of
integrative mechanisms for all these GPCRs.
Changes in AMPKα, Akt and mTOR should relate to changes

in the signalling mechanisms activated by GPCRs, and this
might include 1,4,5-inositol triphosphate (IP3) or PLCβ (Kimura
et al., 2020). No studies have assessed the impact on these
pathways of activation of GPR84 and GPR119 in brain before. We
evaluated changes in the mRNA abundance of four different
forms of PLCβ. Only plcb1 displayed changes in response to
treatments, suggesting that this is the form involved in mediating
GPR84 and GPR119 actions in fish brain. This pattern of response
is the same as that observed previously in the same species after
treatment with agonists of FFA1 and FFA4 (Velasco et al., 2020),
suggesting similar extracellular mechanisms are involved in the
response irrespective of the GPCR activated. We also observed
changes in the mRNA abundance of itpr3, which changed in a
way comparable to that of plcb1. This is not surprising considering
that IP3 is downstream of PLCβ in the signalling cascade
(Kimura et al., 2020). Changes in other signalling pathways not
assessed in the present study might be involved in signalling in the
hindbrain as no changes in itpr3 mRNA abundance occurred in
this area.

Conclusions
In summary, we obtained evidence in rainbow trout brain areas
related to food intake control, such as the hypothalamus and
hindbrain, for a lipid-sensing role for GPR84 and GPR119. The
i.c.v. treatment with agonists of these receptors elicited an anorectic
response in rainbow trout attributable to changes observed in the
mRNA abundance of the four neuropeptides npy, agrp1, pomca1
and cartpt. Changes in neuropeptides also relate to changes
observed in mRNA abundance and phosphorylation status of the
transcription factor FOXO1. These changes occurred in parallel
with changes in the phosphorylation status of AMPKα and Akt,
mRNA abundance of mTOR as well as in signalling pathways
related to PLCβ and IP3 that might be involved in the action of both
GPCRs. These results suggest that at least part of the capacity of fish
brain to sense MCFA such as octanoate might relate to the function
of GPR84, and this is reflected in decreased food intake. In a similar
way, the changes observed also suggest the capacity of fish brain to
sense NAE or triglyceride-derived molecules through binding of
these ligands to GPR119, also eliciting an anorectic response.
However, further studies assessing the effects of MCFA or NAE or
triglyceride-derived molecules, and/or using other pharmacological
tools (such as antagonists of these two receptors or knock-out

models) are required to characterize the role of these GPCRs in the
central regulation of food intake in fish.
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Soengas, J. L. (2012). Evidence of a metabolic fatty acid-sensing system in the
hypothalamus and Brockmann bodies of rainbow trout: implications in food intake
regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R1340-R1350.
doi:10.1152/ajpregu.00070.2012

Librán-Pérez, M., López-Patin ̃o, M. A., Mıǵuez, J. M. and Soengas, J. L. (2013).
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Widmayer, P., Kusumakshi, S., Hägele, F. A., Boehm, U. and Breer, H. (2017).
Expression of the fatty acid receptors GPR84 andGPR120 and cytodifferentiation
of epithelial cells in the gastric mucosa of mouse pups in the course of dietary
transition. Front. Physiol. 8, 601. doi:10.3389/fphys.2017.00601

Wittenberger, T., Schaller, H. C. and Hellebrand, S. (2001). An expressed
sequence tag (EST) data mining strategy succeeding in the discovery of new G-
protein coupled receptors. J. Mol. Biol. 307, 799-813. doi:10.1006/jmbi.2001.4520

Yang, J. W., Kim, H. S., Choi, Y.-W., Kim, Y.-M. and Kang, K. W. (2018).
Therapeutic application of GPR119 ligands in metabolic disorders. Diabetes
Obes. Metab. 20, 257-269. doi:10.1111/dom.13062

12

RESEARCH ARTICLE Journal of Experimental Biology (2021) 224, jeb242360. doi:10.1242/jeb.242360

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

https://doi.org/10.1152/ajpregu.90476.2008
https://doi.org/10.1152/ajpregu.90476.2008
https://doi.org/10.1152/ajpregu.00176.2008
https://doi.org/10.1152/ajpregu.00176.2008
https://doi.org/10.1152/ajpregu.00176.2008
https://doi.org/10.1152/ajpregu.00176.2008
https://doi.org/10.1038/35102582
https://doi.org/10.1038/35102582
https://doi.org/10.1038/35102582
https://doi.org/10.1038/35102582
https://doi.org/10.3389/fphar.2015.00137
https://doi.org/10.3389/fphar.2015.00137
https://doi.org/10.3389/fphar.2015.00137
https://doi.org/10.3389/fphar.2015.00137
https://doi.org/10.1016/j.fsi.2020.05.044
https://doi.org/10.1016/j.fsi.2020.05.044
https://doi.org/10.1016/j.fsi.2020.05.044
https://doi.org/10.1016/j.fsi.2020.05.044
https://doi.org/10.1016/j.fsi.2020.05.044
https://doi.org/10.1016/j.neuropharm.2010.12.007
https://doi.org/10.1016/j.neuropharm.2010.12.007
https://doi.org/10.1016/j.neuropharm.2010.12.007
https://doi.org/10.1016/j.neuropharm.2010.12.007
https://doi.org/10.1006/taap.2000.9100
https://doi.org/10.1006/taap.2000.9100
https://doi.org/10.1006/taap.2000.9100
https://doi.org/10.1006/taap.2000.9100
https://doi.org/10.1152/ajpregu.00312.2009
https://doi.org/10.1152/ajpregu.00312.2009
https://doi.org/10.1152/ajpregu.00312.2009
https://doi.org/10.1152/ajpregu.00312.2009
https://doi.org/10.1016/j.ygcen.2014.01.015
https://doi.org/10.1016/j.ygcen.2014.01.015
https://doi.org/10.1016/j.ygcen.2014.01.015
https://doi.org/10.3389/fnins.2021.653928
https://doi.org/10.3389/fnins.2021.653928
https://doi.org/10.1530/JME-17-0320
https://doi.org/10.1530/JME-17-0320
https://doi.org/10.1530/JME-17-0320
https://doi.org/10.1007/s10695-017-0342-7
https://doi.org/10.1007/s10695-017-0342-7
https://doi.org/10.1007/s10695-017-0342-7
https://doi.org/10.1007/s10695-017-0342-7
https://doi.org/10.1007/s10695-017-0342-7
https://doi.org/10.1210/en.2017-03172
https://doi.org/10.1210/en.2017-03172
https://doi.org/10.1210/en.2017-03172
https://doi.org/10.1210/en.2017-03172
https://doi.org/10.1577/A09-001.1
https://doi.org/10.1577/A09-001.1
https://doi.org/10.1577/A09-001.1
https://doi.org/10.1677/JME-10-0068
https://doi.org/10.1677/JME-10-0068
https://doi.org/10.1677/JME-10-0068
https://doi.org/10.1530/JOE-15-0391
https://doi.org/10.1530/JOE-15-0391
https://doi.org/10.1530/JOE-15-0391
https://doi.org/10.1530/JOE-15-0391
https://doi.org/10.1530/JME-17-0148
https://doi.org/10.1530/JME-17-0148
https://doi.org/10.1530/JME-17-0148
https://doi.org/10.1530/JME-17-0148
https://doi.org/10.1242/jeb.227330
https://doi.org/10.1242/jeb.227330
https://doi.org/10.1242/jeb.227330
https://doi.org/10.1242/jeb.227330
https://doi.org/10.1016/j.imlet.2005.05.010
https://doi.org/10.1016/j.imlet.2005.05.010
https://doi.org/10.1016/j.imlet.2005.05.010
https://doi.org/10.1016/j.aquaculture.2012.05.013
https://doi.org/10.1016/j.aquaculture.2012.05.013
https://doi.org/10.1016/j.aquaculture.2012.05.013
https://doi.org/10.1016/j.aquaculture.2012.05.013
https://doi.org/10.1016/j.aquaculture.2012.05.013
https://doi.org/10.1074/jbc.M608019200
https://doi.org/10.1074/jbc.M608019200
https://doi.org/10.1074/jbc.M608019200
https://doi.org/10.1016/j.fsi.2018.11.023
https://doi.org/10.1016/j.fsi.2018.11.023
https://doi.org/10.1016/j.fsi.2018.11.023
https://doi.org/10.1186/s12974-017-0970-y
https://doi.org/10.1186/s12974-017-0970-y
https://doi.org/10.1186/s12974-017-0970-y
https://doi.org/10.1186/s12974-017-0970-y
https://doi.org/10.1152/physrev.1997.77.3.591
https://doi.org/10.1152/physrev.1997.77.3.591
https://doi.org/10.3389/fphys.2017.00601
https://doi.org/10.3389/fphys.2017.00601
https://doi.org/10.3389/fphys.2017.00601
https://doi.org/10.3389/fphys.2017.00601
https://doi.org/10.1006/jmbi.2001.4520
https://doi.org/10.1006/jmbi.2001.4520
https://doi.org/10.1006/jmbi.2001.4520
https://doi.org/10.1111/dom.13062
https://doi.org/10.1111/dom.13062
https://doi.org/10.1111/dom.13062

