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Navigational strategies underlying temporal phototaxis
in Drosophila larvae
Maxwell L. Zhu1,2, Kristian J. Herrera2, Katrin Vogt1,3 and Armin Bahl2,3,4,*

ABSTRACT
Navigating across light gradients is essential for survival for many
animals. However, we still have a poor understanding of the
algorithms that underlie such behaviors. Here, we developed a
novel closed-loop phototaxis assay for Drosophila larvae in which
light intensity is always spatially uniform but updates depending on
the location of the animal in the arena. Even though larvae can only
rely on temporal cues during runs, we find that they are capable of
finding preferred areas of low light intensity. Further detailed analysis
of their behavior reveals that larvae turn more frequently and that
heading angle changes increase when they experience brightness
increments over extended periods of time. We suggest that temporal
integration of brightness change during runs is an important – and so
far largely unexplored – element of phototaxis.

KEY WORDS: Drosophila melanogaster larvae, Animal behavior,
Posture tracking, Navigation, Decision making, Modeling

INTRODUCTION
Many animals have evolved behaviors to find favorable locations in
complex natural environments. Such behaviors include chemotaxis
to approach or avoid chemical stimuli, thermotaxis to find cooler or
warmer regions, and phototaxis to approach or avoid light (Gepner
et al., 2015; Gomez-Marin and Louis, 2014; Gomez-Marin et al.,
2011; Kane et al., 2013; Klein et al., 2015; Luo et al., 2010).
Drosophila larvae are negatively phototactic, preferring darker

regions (Sawin et al., 1994). To navigate, larvae alternate between runs
and turns. During runs, larvae move relatively straight. During turns,
they slow down and perform head-casts (Lahiri et al., 2011) to sample
their environment for navigational decisions (Gomez-Marin and Louis,
2012; Humberg and Sprecher, 2018; Humberg et al., 2018; Kane et al.,
2013). However, it is unclear whether such local spatial sampling is
necessary to perform phototaxis. Zebrafish larvae, for example, can
perform phototaxis even when light intensity is uniform across space
but changes over time with the animal’s position (Chen and Engert,
2014). In a purely temporal phototaxis assay, spatial contrast
information is absent, so navigationmust depend on other sensory cues.
Previous work indicates that as brightness increases, Drosophila

larvae make shorter runs and bigger turns (Humberg et al., 2018;
Kane et al., 2013). This is reminiscent of chemotactic strategies,

where decreasing concentrations of a favorable odorant increase the
likelihood of turning (Gomez-Marin et al., 2011). While it has been
shown that temporal sampling of olfactory cues is sufficient to guide
chemotaxis (Schulze et al., 2015), it remains unclear whether larvae
can use a purely temporal strategy for visual navigation.

Using a virtual landscape in which brightness is always spatially
uniform but depends on the location of the animal in the arena, we
confirm that larvae can perform phototaxis by modulating run
length and heading angle. Our data indicate that larvae achieve this
by integrating brightness change during runs (Movie 1).

MATERIALS AND METHODS
Experimental setup
All experiments were performed using wild-type second-instar
Drosophila melanogaster (Canton-S) larvae collected 3–4 days
after egg-laying. This age was chosen to ensure consistent
phototactic behavior because older larvae might change their light
preference (Sawin-McCormack et al., 1995). Larvae were raised on
agarose plates with grape juice and yeast paste, with a 12 h:12 h
light:dark cycle at 22°C and 60% humidity. Before experiments,
larvae were washed in droplets of deionized water. All experiments
were carried out between 14:00 and 19:00 h to avoid potential
circadian effects (Mazzoni et al., 2005). Each experiment lasted for
60 min. For all stimuli, animals were presented with constant gray
during the first 15 min, allowing them to distribute in the arena.

Larvaewere placed in the center of a custom-made circular acrylic
dish (6 cm radius) filled with a thin layer of freshly made 2%
agarose (Fig. 1A). As previously described (Bahl and Engert,
2020), spatially uniform whole-field illumination was presented
via a projector (60 Hz, AAXA P300 Pico Projector) from below.
The projected light was white, using three spectrally overlapping
standard RGB LEDs, with a wavelength range from ∼420 to
∼650 nm. Brightness was set by the computer and ranged from
values 0 to 255. Respective light intensity was measured using an
Extech Instruments Light Meter LT300 and ranged from 41 to
2870 lux (Fig. S1A). We did not attempt to linearize this curve as
it is unclear how the larval visual system processes contrast.
Therefore, for all brightness-dependent behavioral analyses, the
original pixel brightness value, as set by the program, was used.

Three virtual light intensity landscapes were tested: a ‘valley’
stimulus, a ‘ramp’ stimulus and a ‘constant’ stimulus. For the valley
and ramp stimuli, the spatially uniform light brightness (λ) was
updated in closed-loop according to λ=255·(r–3)2/9 (Fig. 1B;
Fig. S1D) and l ¼ 255 � 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r=6
p� �

(Fig. S2A), respectively,
where r is the larva’s radial distance to the center of the arena. Both
profiles ensure that brightness levels near the wall are high, decreasing
the edge preference of larvae and reducing boundary effects. For
the constant stimulus, brightness values remained gray (λ=128)
regardless of the larva’s position.

For online tracking, the scenewas illuminated using infrared LED
panels (940 nm panel, 15-IL05, Cop Security). A high-speedReceived 11 February 2021; Accepted 29 April 2021
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camera (90 Hz, USB3 Grasshopper3-NIR, FLIR Systems) with an
infrared filter (R72, Hoya) was used to track the larva’s centroid
position in real-time. Eight independent arenas were operated in
parallel, making the system medium to high throughput and
relatively cost-effective. The position of the animal was determined
by spatially filtering the background-subtracted image and then
searching for the largest contour. The procedure provides a reliable
estimate of the animal’s centroid position but cannot determine the
precise location of the head or the tail. Using the centroid as a
closed-loop position signal significantly simplifies the experimental
procedure and is justified as larvae are small in size relative to the
slowly changing and always spatially uniform virtual brightness
landscapes. The spatial precision of our tracking was in the order of
±0.01 cm per ∼10 ms, resulting in a nearly noise-free presentation
of the stimulus profiles (Fig. S1B). In addition to the online-
tracking, a video of the animal was stored for offline posture analysis
(Movie 2).
In our system, the closed-loop latency between the detection of

the animal’s position and the update of the visual stimulus is
100 ms. This value was determined using the following protocol.
Infrared filters were removed from the cameras, allowing for direct
measurements of the brightness from the projector. Arena
brightness starts at a high level but is set to a dark state after a few
seconds. When the camera detects such an event, the computer sets
the brightness back at a high level. The length of the resulting dark
period is the closed-loop delay. Using this strategy, the resulting
value contains the sum of all delays of the system (camera image
acquisition, image buffering, data transport to the USB 3.0 hub,

PCI-express to CPU transport, CPU image analysis, command to
the graphics card, graphics buffering, and buffering and image
display on the projector). It is challenging to use such systems to
reach closed-loop delays below 100 ms (Stowers et al., 2017),
simpler systems with direct LED control allow for delays as short as
30 ms (Tadres and Louis, 2020).

Control experiments
Notably, animals navigating the constant stimulus were always
analyzed as if they navigated the respective experimental stimulus
(valley or ramp), using the same binning, naming conventions
and analysis methods. For example, control animals that spend
time in the ‘dark’ ring (gray open circles in Fig. 1D) actually
perceive constant gray during the entire experiment. This analysis
was chosen to control for the spatial arrangement of our stimulus
and boundary effects. The best example where this strategy is
important can be seen for the turn-triggered brightness change
(Fig. 2G): even though control animals always perceive gray, the
turn-triggered brightness dynamics indicate a complex dependency
on the spatial arrangement of the arena. Only by using this control
analysis is it possible to appreciate the dynamics in the experimental
group.

Data analysis and statistics
All data analysis was performed using custom-written Python code
on the 45 min period after acclimatization. To avoid tracking
problems and minimize boundary effects, data were excluded where
larvae were within 0.1 cm distance to the edge.
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Fig. 1. Drosophila melanogaster larvae can
perform temporal phototaxis. (A) Setup for
tracking freely crawling D. melanogaster larvae. (B)
Whole-field pixel brightness versus larval position for
the valley and control stimuli. (C) Raw trajectories.
Dashed circles delineate the bright center, the dark
ring and the bright ring. (D) Percentage of time spent
in regions (left to right: P=0.045, P=0.001, P<0.001;
two-sided t-tests). (E) Crawling speed in regions (left
to right: P=0.304, P=0.891, P=0.479; two-sided t-
tests). Error bars represent means±s.e.m. Blue solid
lines and dots indicate valley stimulus larvae; gray
solid lines and dots indicate constant stimulus
larvae. N=27 larvae for both groups. Open small
circles represent individual animals. n.s., not
significant; *P<0.05; **P<0.01; ***P<0.001.
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The circular arena was binned in three concentric regions
depending on the radius r: 0–2, 2–4 and 4–6 cm. These regions
were named the ‘bright’ center, the ‘dark’ ring and the ‘bright’ ring
for the valley stimulus (Fig. 1B) and the ‘dark’ center, the ‘gray’ ring
and the ‘bright’ ring for the ramp stimulus (Fig. S2A). Animal speed
was computed by interpolating the trajectory to 1 s bins and then by
taking the average distance of consecutive points (Fig. 1E).
For the turn event-based offline analysis (Fig. 2), a pose

estimation toolbox, DeepPoseKit (Graving et al., 2019), was used.
To this end, 100 frames were manually annotated (head, centroid
and tail) to train the neural network, which was then used to predict
animal posture across all frames from all animals. Body curvature
was defined as the angle between the tail-to-centroid vector and the
centroid-to-head vector (Fig. 2A). The pose estimation algorithm
occasionally had difficulties distinguishing between the head and
the tail. However, this problem was not relevant for the curvature
measurement as the angle between these two body parts does not
change when they are flipped. In a few frames, the algorithm placed
the head and the tail at the same location, leading to the transient
detection of large body curvatures. These events were discarded by

low-pass filtering traces with a Butterworth filter (cut-off frequency:
3 Hz). Turn events were defined as a local curvature peak above
30 deg and needed to be separated from the previous event by at
least 2 s in time and 0.2 cm in space. The value for the curvature
threshold was chosen such that the identified curvature peaks clearly
stood out from the curvature fluctuations in between events
(Fig. 2A).

Turn angles were defined as the angle between the location in the
arena 2 s before a turn event and 2 s after. Run length was defined as
the time between consecutive turn events. Each turn event was
labeled as ‘dark’ or ‘bright’, based on the brightness equations and
binning described above (dark: pixel brightness less than 29; bright:
otherwise), and as ‘darkening’ or ‘brightening’ based on the sign in
brightness change since the last turn event (Fig. 2E,F). As turn
events are short and spatially confined, by stimulus design, the
whole-field brightness change during such events is nearly zero
(Fig. 2D). Notably, our curvature-based turn event identification
procedure does not allow for precise labeling of the beginning and
the end of the event. Therefore, the brightness change during turns
was defined as the brightness difference 0.5 s before and 0.5 s after

25 sB
od

y 
cu

rv
at

ur
e 

(d
eg

)
1 cm

A B

3 cm
0

30

60

Posture tracking

Detected
event

Virtual valley

0

30

60

A
bs

ol
ut

e 
tu

rn
 a

ng
le

 (
de

g)

**

Dar
k a

t t
ur

n

Brig
ht

 a
t t

ur
n

0

30

60 n.s.

0

25

50 *

0

25

50

R
un

 le
ng

th
 (

s)

*

GE

curvature

Endpoints

Dar
k a

t t
ur

n

Brig
ht

 a
t t

ur
n

0

30

60

A
bs

ol
ut

e 
tu

rn
 a

ng
le

 (
de

g)

***

0

30

60 n.s.

F

0

25

50 **

0

25

50

R
un

 le
ng

th
 (

s)

n.s.

Dar
ke

nin
g

Brig
ht

en
ing

du
rin

g 
ru

n

du
rin

g 
ru

n

Dar
ke

nin
g

Brig
ht

en
ing

du
rin

g 
ru

n

du
rin

g 
ru

n

–180 –90 0 90 180

Turn angle (deg)

P
ro

ba
bi

lit
y

0 30 60

Run length (s)

P
ro

ba
bi

lit
y

–80 –40 0 40 80

Brightness change
during runs

P
ro

ba
bi

lit
y

C D

–80 –40 0 40 80

Brightness change
during turns

P
ro

ba
bi

lit
y

–20 –10 0 10 20

Time relative to
turn event (s)

–5.0

–2.5

0

2.5

B
rig

ht
ne

ss
 r

el
at

iv
e 

to
 tu

rn
 e

ve
nt

Control stimulus = always gray

but analyzed as if valley

Centroid

Fig. 2. Brightness and brightness history modulate navigational decisions. (A) Posture tracking for estimating larval body curvature (angle between
solid and dashed blue lines). Turns (orange circles) are curvature peaks above a threshold (30 deg). (B) Example trajectory with detected turns for an inset view
(top) and the entire arena (bottom). (C,D) Probability density distributions for turn angles and run length (C) and respective brightness changes (D). (E,F) Turn
angle and run length as a function of light intensity (dark: <29; bright: otherwise; see brightness profile, Fig. 1B) and as a function of brightness change since the
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As usual, we analyze the constant gray control group as if it would navigate the valley stimulus. The non-flatness of this curve indicates that the geometry of the
dish significantly influences our analysis. Hence, interpretation of the results for the valley stimulus should best be done in relation to this control. N=27 larvae for
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the event. This time range often includes brief periods of runs,
explaining the small residual width of the reported brightness
distribution (Figs 2D and 3E). The brightness change during runs
was defined as the difference in brightness between two consecutive
turn events (Figs 2D and 3E).
Two-sample t-tests were used for pairwise comparisons between the

experimental and control data. Paired-sample t-tests were used for
pairwise comparisons within groups. Statistics for the linear regression
fits (Fig. S3) were based on a bootstrapping approach. To disconnect
data points while keeping their individual distributions intact, data
vectors were randomly rearranged. The linear regression analysis
was then performed on the new dataset. The procedure was repeated
1000 times, allowing for the creation of a distribution of R2 values.
Comparing the actual R2 obtained from the original dataset with that
distribution allowed for the calculation of the probability (P-value) that
the observed correlation might have simply arisen by chance.
Larvae were discarded if they spent more than 99% of the

experimental time in a single region or if their speed was zero. All
data analysis was perfomed automatically in the same way for the
experimental and control groups.

Modeling
Simulations (Fig. 3, Figs S2E–G and S3C,D) were customwritten in
Python 3.7, using the high-performance Python compiler numba.
Simulations were performed using Euler’s method with a timestep
of dt=0.01 s. Model larvae were initialized with a random position
and orientation. At each time step, larvae stochastically chose one
of two possible actions: they could either move forward, with a
speed of 0.04 cm s−1 (parameter was taken directly from the
experiment, Fig. 1E), or turn. The baseline probability for turning
was P=0.00066. This value was directly computed from the
experiment to match the measured average run length of T=15 s
(Fig. 2E,F), following p=dt/T. When making turns, turn angles were
drawn from a Gaussian distribution with a baseline standard
deviation of 32 deg, matching the experimental value (Fig. 2C,E,F).
Whenmodel larvae reached the edge, a new random direction vector
was chosen, preventing them from leaving the arena.
In correspondencewith our experimental findings (Fig. 2E,F), the

model was equipped with four additional navigational rules
(Fig. 3A). Rule 1: when the environment is dark (brightness
smaller than 29), turn angles decrease; when it is bright (brightness
larger than 29), turn angles increase. Rule 2: when the environment
is dark (brightness smaller than 29), run lengths increase; when it is
bright (brightness larger than 29), run lengths decrease. Rule 3:
when the environment is darkening (change since previous turn
smaller than zero), turn angles decrease; when it is brightening
(change since previous turn larger than zero), turn angles increase.
Rule 4: when the environment is darkening (change since previous
turn smaller than zero), run lengths increase; when it is brightening
(change since previous turn larger than zero), run lengths decrease.
Changes in absolute turn anglewere accomplished by adjusting the

standard deviation of the Gaussian turn angle distribution by ±30%,
the effect size observed in our experiments (Fig. 2E,F). Under all
conditions, we used a mean of zero for the distribution, as turns
should equally often go to the left and to the right. We modulated run
length (T ) by scaling them by ±30%, thereby modulating the
probability of turning (p=dt/T ). When combinations of those rules
were tested (Fig. 3A), effects were concatenated.
A performance index (PI) (Fig. 3A) was used to characterize how

well animals or models performed temporal phototaxis. The metric
was based on the difference between the experimental and control
group for the fraction of time spent in the dark ring. To compute this

value, bootstrapping was used to average 1000 samples of randomly
chosen differences between experimental and control conditions.

For the parameter grid search (Fig. 3A), the absolute turn angle
and the run length were varied systematically. To this end,
respective baseline parameter values (taken from the experiment;
Fig. 2E,F) were changed by scaling them with two multipliers (run
length multiplier and turn angle multiplier).

Data generated from model larvae were analyzed and displayed
using the exact same scripts that were used to analyze experimental
data, allowing for easy comparison between model and animal
behavior.

RESULTS
Fly larvae can navigate a virtual brightness gradient
We first asked whether fly larvae can perform temporal phototaxis,
i.e. navigate a virtual light landscape lacking spatial contrast
information. We placed individual animals in an agarose-filled
arena, allowed them to freely explore, and tracked their position in
real-time (Fig. 1A). We presented spatially uniform light from
below, with brightness levels following a quadratic dependence of
the larva’s distance from the center (valley stimulus, Fig. 1B) or
constant gray as a control (constant stimulus). For both groups, we
analyzed how animals were distributed across three concentric
regions: the bright center, the dark ring and the bright ring.
Notably, throughout this study, control animals were always
analyzed as if they navigated the experimental stimulus even
though they in fact perceived constant gray. This analysis is
important to control for the spatial arrangement of our stimulus and
boundary effects.

Larvae that navigated the valley stimulus spent a significantly
higher fraction of time in the dark ring than those that navigated
the constant stimulus (Fig 1C,D; Fig. S2B). This behavior was
most pronounced between minutes 10 and 40 of the experiment
(Fig. S1F). To verify that this behavior was not an artifact of our
specific stimulus design, we also tested a gradient where brightness
monotonically ‘ramps’with radial distance (Fig. S2A) and observed
that larvae also navigated to dark regions under these conditions
(Fig. S2B,C).

Because larvae lacked spatial brightness cues in our setup, it was
unclear which behavioral algorithms they employ. One basic, yet
potentially sufficient, algorithm would be to reduce movement in
darker regions. However, speed was independent of brightness
(Fig 1E; Fig. S3D), suggesting that larvae employ more complex
navigational strategies.

We conclude that D. melanogaster larvae are capable of
performing phototaxis in the absence of any spatial contrast cues.
We also find that this behavior cannot be explained by a simple
brightness-dependent modulation of crawling speed. Hence, larvae
must use either the momentary luminance or luminance information
across time to modulate other aspects of their sensory-motor
decision-making.

Larval temporal phototaxis depends on brightness
change over time
In spatially differentiated light landscapes, fly larvae make
navigational decisions by sampling brightness differences during
head-casts. In our setup, by design, larvae experience no brightness
fluctuations during head-casts. Hence, they have to use whole-field
brightness or brightness history information to modulate the
magnitude and/or frequency of turns. To explore this possibility,
we segmented trajectories into runs and turns. We applied a deep
learning-based package, DeepPoseKit (Graving et al., 2019), to
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extract the larvae’s head, centroid and tail positions from the
experimental video (Fig. 2A; Movie 2). From there, we calculated
the animal’s body curvature to identify head-casting events and to
quantify turn angles and run lengths (Fig. 2A–C).
As expected, brightness changes during the spatially confined

turns were negligible compared with those measured during runs
(Fig. 2D). To quantify the effect of brightness on heading angles
and run lengths, we checked how these parameters varied with the
larva’s position. During the valley but not the constant stimulus,
turns in the dark region led to smaller heading angle changes than in

the bright regions (Fig. 2E). Similarly, runs before a turn in the dark
region of the valley stimulus were slightly longer compared with
runs ending in the bright region. However, this also partly occurred
with the constant stimulus, suggesting that the effect might not arise
from a visuomotor transformation.

Next, we explored whether brightness history affects behavior.
As run lengths were highly variable, ranging from ∼3 to ∼40 s
(Fig. 2C), we focused our analysis on the brightness change
between consecutive turns. We classified turns by whether larvae
experienced a decrease or increase in whole-field brightness
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during the preceding run. We found that heading angle changes
were smaller and that run lengths were longer when larvae had
experienced a brightness decrease compared to an increase
(Fig. 2F). We did not observe these effects in control animals.
To further quantify the effects of brightness and brightness

change on heading angle change, we performed regression analysis
directly on individual events (Fig. S3A,B). This analysis revealed a
weak positive correlation where turn angles slightly scale with
brightness and brightness change.
These observations led us to hypothesize that larvae might

integrate information about the change in brightness during runs and
that this integration period might span several seconds. To obtain
an idea about time-scales, we computed a turn event-triggered
brightness average (Fig. 2G). We observed that, on average, turns
performed in the valley stimulus are preceded by an extended period
of >20 s of brightening, suggesting that long-term brightness
increases drive turns.
In summary, our analysis of turns and runs confirms that, first,

brightness levels modulate heading angle change and, second,
changes in brightness prior to turns modulate heading angle change
as well as run-length.

A simple algorithmic model can explain larval temporal
phototaxis
We next wanted to test whether the identified behavioral features are
sufficient to explain larval temporal phototaxis. Based on our
experimental findings (Fig. 2), we propose four rules as navigational
strategies (Fig. 3A). For rules 1 and 2, the instantaneous brightness
modulates the heading angle change and run length, respectively.
By contrast, for rules 3 and 4, the brightness change since the last
turn modulates the heading angle changes and run lengths.
To test these navigational rules, we simulated larvae as particles

that could either move straight or make turns. To compare the
performances of different models, we calculated a phototaxis index
(difference of time spent in the dark ring between experimental and
control groups; Fig. 3A). For all permutations of our rules, we
explored a set of multipliers for the heading angle change and run
length, with a multiplier of 1 corresponding to the experimental
averages (Fig. 2E,F). This allowed us to assess the robustness of our
model to parameter choice. As expected, with no active rules, the
larval distribution was comparable between the valley and constant
stimulus. Activating rules 1 or 2 did not improve performance,
suggesting that modulation of behavior based on instantaneous
brightness is insufficient to perform temporal phototaxis. After
activating rules 3 or 4, phototaxis emerged for small run lengths and
large turn angle multipliers. However, for multipliers set to 1, the
resulting phototaxis index was weaker than in experiments (=14%).
Only when combining rules 3 and 4 did phototaxis performance
match the experimental values. Combining all four rules yielded
minimal improvements. Therefore, for further analysis, we focused
on a combination of rules 3 and 4, with both multipliers set to 1.
Like real larvae (Fig. 1C–E), simulated larvae navigating the

valley stimulus spent more time in the dark ring than larvae
navigating the constant stimulus (Fig. 3B,C) without modulating
speed (Fig. 3D). Furthermore, distributions of turn angle changes,
run lengths and brightness changes were comparable to
experimental data (compare Figs 2C,D and 3E,F). Residual
differences in those distributions are likely due to additional
mechanisms used by the animal, such as a refractory period for turn
initiation, which we did not incorporate in our model. When we
examined the effects of instantaneous brightness and brightness
change on turn angle amplitude and run length (Fig. 3G,H), we

observed similar patterns as in the experimental data (Fig. 2E,F). As
found in experiments (Fig. 2G), turns are preceded by long stretches
of increasing brightness (Fig. 3I), supporting our hypothesis
that larvae integrate brightness change over several seconds.
Moreover, in the event-based regression analysis, we found results
to be in agreement with experimental data as well (Fig S3C,D).
Finally, to verify that our model generalizes to other visual stimulus
patterns, we simulated larvae exploring the ramp stimulus and
observed phototaxis performance comparable to that of real larvae
(Fig. S2E–G).

In summary, after implementing our experimentally observed
navigational rules in a simple computational model, we propose
that the most critical element of larval temporal phototaxis is the
ability to integrate brightness change over extended time periods.
Modulating turn angle amplitude and run length based on such
measurement is sufficient to perform temporal phototaxis.

DISCUSSION
Using a closed-loop behavioral assay, we show that D. melanogaster
larvae find the darker regions of a virtual brightness gradient that
lacks any spatial contrast cues. Temporal phototaxis behavioral
algorithms have already been dissected in open-loop configurations,
where stimuli are decoupled from an animal’s actions. Following a
global brightness increase, larvae are known to modify both their
heading angle magnitude and their run length (Gepner et al., 2015;
Kane et al., 2013), which is in agreement with our findings. We were
able to demonstrate that these navigational strategies are in fact
sufficient for phototactic navigation. Given that brightness
fluctuations in our assay are slow and negligibly small during head-
casts, we suggest that animals integrate brightness change during runs
to make decisions about the strength and timing of turns. Previous
work has shown that larvae can navigate olfactory or thermal
gradients using only temporal cues (Luo et al., 2010; Schulze et al.,
2015). Together with our findings, this should enable future
exploration of the shared computational principles and neural
pathways across these sensory modalities.

Closed-loop systems are powerful tools to dissect an animal’s
sensorimotor transformation. They have been employed in many
models including adult Drosophila (Bahl et al., 2013), larval
zebrafish (Bahl and Engert, 2020; Chen and Engert, 2014; Štih
et al., 2019) and Caenorhabditis elegans (Kocabas et al., 2012;
Leifer et al., 2011). Recent work in Drosophila larvae used LED-
based devices to study closed-loop temporal chemotaxis in virtual
optogenetic environments (Tadres and Louis, 2020). Such systems
are cheaper and have shorter stimulus refresh times, but cannot
easily be used to present animals with spatially differentiated
landscapes. By utilizing a projector, our setup overcomes this
limitation. With the drawback of slightly longer delays and higher
component costs, the ability to present any type of visual stimulus
adds important flexibility and versatility.

Future studies could use our paradigm to study, for example,
specific behavioral differences between animals navigating a true
luminance gradient compared with when they navigate the exact
same one virtually. Moreover, our system makes it possible to
explicitly investigate navigational strategies exclusively using
spatial contrast cues. This has already been achieved in zebrafish
larvae (Chen et al., 2021; Huang et al., 2013) by always locking
a sharp contrast edge to the center of the animal’s head. Testing
such stimuli in Drosophila larvae will, however, require more
precise real-time position, orientation and posture measurements,
improvements that can be added to our setup. The result from
such experiments could be used to construct a spatial phototaxis
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model which could then be combined with our proposed temporal
phototaxis model.
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