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Biological scaling analyses are more than statistical line fitting
Douglas S. Glazier*

ABSTRACT
The magnitude of many biological traits relates strongly and regularly
to body size. Consequently, a major goal of comparative biology is to
understand and apply these ‘size-scaling’ relationships, traditionally
quantified by using linear regression analyses based on log-
transformed data. However, recently some investigators have
questioned this traditional method, arguing that linear or non-linear
regression based on untransformed arithmetic data may provide
better statistical fits than log-linear analyses. Furthermore, they
advocate the replacement of the traditional method by alternative
specific methods on a case-by-case basis, based simply on best-fit
criteria. Here, I argue that the use of logarithms in scaling analyses
presents multiple valuable advantages, both statistical and
conceptual. Most importantly, log-transformation allows biologically
meaningful, properly scaled (scale-independent) comparisons of
organisms of different size, whereas non-scaled (scale-dependent)
analyses based on untransformed arithmetic data do not.
Additionally, log-based analyses can readily reveal biologically and
theoretically relevant discontinuities in scale invariance during
developmental or evolutionary increases in body size that are not
shown by linear or non-linear arithmetic analyses. In this way, log-
transformation advances our understanding of biological scaling
conceptually, not just statistically. I hope that my Commentary helps
students, non-specialists and other interested readers to understand
the general benefits of using log-transformed data in size-scaling
analyses, and stimulates advocates of arithmetic analyses to show
how they may improve our understanding of scaling conceptually, not
just statistically.
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Introduction
The magnitude of many biological structures and processes relates
strongly to organismal size. Simply knowing how big an organism
is can tell us much about what it looks like and how it functions.
Therefore, as a first step in attempting to understand variation in a
biological trait, comparative biologists often estimate how that
variation relates to body size. This undertaking is made simpler if
the magnitude of a trait varies proportionately (isometrically; see
Glossary) in a 1:1 way with total body size. This may occur for some
traits, but often the mass of a body part (e.g. brain mass) or the rate
of an activity (e.g. metabolic rate) varies disproportionately
(allometrically) with total body mass (Peters, 1983; Calder, 1984;
Schmidt-Nielsen, 1984; Hoppeler and Weibel, 2005). That is, as an
organism grows in size through development or evolution, the
magnitude of a body part or rate process may increase faster or

slower (respectively, hypermetrically or hypometrically; see
Glossary) than total body mass. These surprisingly regular body
size scaling patterns have invoked debate concerning two major
questions. First, why do allometric scaling patterns occur? Second,
how should one quantify them mathematically?

The first question has been discussed for decades, especially
concerning the scaling of the rate of various biological processes,
such as growth and metabolism. This debate has been especially
contentious since the recent demise of the classic 3/4 power law,
which dictated that the rates of most biological processes of virtually
all organisms scale with body mass according to a hypometric 3/4
slope in log–log space. For example, we now know that the body
mass scaling of metabolic rate, a major indicator of the pace of life,
varies considerably in response to various intrinsic biological and
extrinsic ecological factors (e.g. Riisgård, 1998; Bokma, 2004;
Glazier, 2005, 2010, 2014, 2018b, 2020; White et al., 2007;
DeLong et al., 2010; White and Kearney, 2013, 2014).

The second question has also generated contentious discussion
in many scientific journals, including Journal of Experimental
Biology, and I believe considerable confusion, especially during the
last two decades. In my Commentary, I hope to help resolve some
aspects of this controversy by clarifying the rationale for the
traditional, most commonly used method to quantify scaling
relationships. The traditional method involves log-transformation
of the data before comparing the magnitude of a specific trait
(log Y ) against some measure of body size, such as body mass
(log X ) (e.g. Huxley, 1932; Peters, 1983; Sibly et al., 2012; and
several articles in a special issue of Journal of Experimental Biology
introduced by Hoppeler and Weibel, 2005). This procedure often
linearizes the data, allowing one to use linear regression (see
Glossary) to calculate the equation log Y=loga+b(logX ), where a is
the antilog of the Y intercept or scaling coefficient (see Glossary)
and b is the slope or scaling exponent (see Glossary). One can also
represent this log-linear relationship as a power function Y=aXb.
Using log-transformed data in scaling analyses has many additional
advantages, as discussed below.

However, some scientists have questioned the traditional method
of quantifying scaling relationships and have promoted the use of
other methods (e.g. linear or non-linear regression) based on the
untransformed arithmetic numbers (see Glossary; i.e. using
ordinary Cartesian coordinates) for four major reasons. First,
arithmetic scaling analyses may produce better fits to the data, and
thus are said to be superior to methods using log-transformed data
(e.g. Thompson, 1942; Smith, 1980; Lovett and Felder, 1989; Hui
and Jackson, 2007; Packard, 2012; De Giosa and Czerniejewski,
2016; Geraert, 2016; Chen et al., 2020). Second, they may be more
appropriate when measurement and (or) biological error is additive,
rather than multiplicative (see Glossary; e.g. Xiao et al., 2011;
Pélabon et al., 2018). Third, some critics of the traditional scaling
method claim that non-linear scaling analyses based on arithmetic
data may be more appropriate when scaling relationships are non-
linear (curvilinear), as they often are, in either arithmetic or
logarithmic space (e.g. Packard, 2012, 2017, 2019). Fourth, some
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critics even claim that log-transformation distorts the ‘original
arithmetic’ data, thus creating spurious relationships (Zar, 1968;
Sartori and Ball, 2009; Packard, 2012, 2014, 2017, 2019; Packard
et al., 2011; Chen et al., 2020). However, although scaling analyses
based on arithmetic data may be statistically advantageous in special
cases, these specific benefits should be weighed against the

numerous, often over-arching general benefits of using scaling
analyses based on logarithmic data (including increased theoretical
and biological relevance), as I describe next.

Special value of logarithms in biological scaling analyses
A major purpose of my Commentary is to point out the general
conceptual advantages of using logarithmic numbers (see Glossary)
in scaling studies (for discussions of other issues regarding the use
of specific regression techniques, including those that incorporate
phylogenetic information, see Riska, 1991; Warton et al., 2006;
Smith, 2009; White et al., 2019). These advantages are often
forgotten when focusing on finding the best statistical model to
fit specific datasets, which often varies idiosyncratically among
studies. As McMahon and Bonner (1983, p. 28) remark in their
classic, popular book On Size and Life, logarithms ‘have many
worthwhile properties’, which distinguishes log-transformation
from other kinds of mathematical transformation. Unfortunately,
however, confusion about logarithms is common in biology
(Gingerich, 2000; Menge et al., 2018). Some or all of the several
practical and theoretical advantages of using logarithms are ignored
or dismissed without adequate justification by critics of the
traditional method (e.g. Lovett and Felder, 1989; Packard, 2017,
2020a,b; Geraert, 2016; Chen et al., 2020). Two widely recognized,
statistically important advantages (among others) include
normalizing data with multiplicative error (or heteroscedastic
variation) and unequal body mass spacing (though it is also
possible to incorporate multiplicative error into non-linear analyses
based on arithmetic data: e.g. Marshall et al., 2013; Packard, 2017),
and converting arithmetic curvilinear relationships into more easily
analyzed and comparable log-linear relationships (Gaddum, 1945;
Calder, 1984; LaBarbera, 1989; Lovett and Felder, 1989; Keene,
1995; Kerkhoff and Enquist, 2009; Packard et al., 2011; Xiao et al.,
2011; Niklas and Hammond, 2014). In addition, log-transformation
allows one to compress a huge spread of sizes into a smaller, more
easily analyzed and graphed range (Bagnold, 1941; McMahon and
Bonner, 1983; Burton, 1998; Mahajan, 2018; Menge et al., 2018), a
useful general property exploited by many scientists, including
astronomers and geographers faced with quantitative analyses
involving immense spatial distances (Clark and Montelle, 2012).
Additional important properties of logarithmic data are discussed in
more detail below.

Logarithms allow scale-independent comparisons of data
I emphasize here that the most important, often unrecognized or
underappreciated useful property of logarithms with respect to
scaling analyses is that they facilitate meaningful, scale-independent
comparisons of various features of systems that differ markedly in
size (also see Gaddum, 1945; Keene, 1995; Kerkhoff and Enquist,
2009). Indeed, they are essential for carrying out scaling analyses
(see Glossary) that allow one to analyze small and large systems
together in a proportional, scale-invariant way (also see Reich,
2001). Power functions derived from logarithmic data are also well
suited for representing scale invariance, where the size of a trait
varies in the same relative way with system size for systems of all
sizes (Gisiger, 2001; Marquet et al., 2005; Stumpf and Porter,
2012). As Gisiger (2001, p. 165) aptly stated, one can ‘zoom in’ or
‘zoom out’ and the form of the functional relationship between Y
and X stays the same.

Size variation of small traits in small organisms is not directly
comparable in a biologically plausible way to that of large traits in
large organisms (Kerkhoff and Enquist, 2009; Cawley and Janacek,
2010; Glazier, 2013; Gingerich, 2019). For example, a young

Glossary
Additive error (variation)
Arithmetic variation of a trait is unrelated to the mean value of the trait or
the size of the system of which it is a part.
Allometric analyses
Analyses of how themagnitude of a trait (structure or process) varies with
system size. In biology, system size usually refers to body size, but may
also refer to cell size or size of a body part. Typically, allometric analyses
involve scaling systems of different size by using proportional
(logarithmic, multiplicative or geometric) scales.
Arithmetic number
A counted amount based on simple integers or their fractions. This is the
definition understood by the public, and used by most scientists.
However, mathematical number theory uses a more complex definition
not considered here.
Arithmetic space
A graphical scale of additive arithmetic numbers (mathematical sums).
Geometric space
A graphical scale of multiplicative numbers (mathematical products),
often represented by logarithms.
Hypermetric
When the relative magnitude of a trait increases as system size
increases, and thus the scaling exponent is >1 (also called ‘positive
allometry’)
Hypometric
When the relative magnitude of a trait decreases as system size
increases, and thus the scaling exponent is <1 (also called ‘negative
allometry’)
Isometric
When the magnitude of a trait varies proportionately in a 1:1 way with
system size, and thus the scaling exponent is 1.
Isomorphic
Objects with the same shape, regardless of their size.
Logarithmic number
A mathematical figure of how many times a specific base number (e.g.
10) must be multiplied to equal a specific arithmetic number. Logarithms
are used to scale quantities in geometric (multiplicative) space, rather
than simple arithmetic (additive) space. Logarithms indicate proportional
quantities, whereas arithmetic numbers indicate absolute quantities.
Multiplicative error (variation)
Arithmetic variation of a trait increases with the mean value of the trait or
the size of the system of which it is a part. Logarithmic transformation
converts multiplicative variation in arithmetic space (see Glossary) into
additive variation in geometric space.
Regression
Statistical analysis of how a dependent variable (Y ) relates quantitatively
to an independent variable (X ).
Scaling analyses
Proportional comparisons of the magnitude (variation) of a trait (structure
or process) among systems of different size.
Scaling coefficient
Y-intercept in a log-linear scaling regression.
Scaling exponent
Slope in a log-linear scaling regression.
Slide rule
A calculator tool that uses a logarithmic scale mainly for multiplication
and division of numbers.
Weber–Fechner law
A psychological law concerning the logarithmic relationship between the
strength of a stimulus and the intensity of its perception by humans.
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mouse weighing 10 g may grow 1 g in 10 days. By contrast, a young
elephant weighing 100,000 g may grow 1000 g in 10 days. The
elephant is growing much faster than a mouse in an absolute
arithmetic sense. However, this comparison is not biologically
meaningful because one has not used proper size-specific scaling. It
is impossible for a mouse to grow 1000 g, and it is insignificant for
an elephant to grow 1 g.What is biologically relevant is howmuch a
mouse or elephant grows in proportion to its own original body
mass, not that of another species with a very different size. One way
to do this would be to use ratios or percentages. For example, the
mouse grows by 10%, whereas the elephant grows by 1%. Looked at
this way, the mouse is actually growing faster than the elephant in a
more comparable, scale-independent way than that observed in an
absolute sense (see Fig. 1 for an example that uses real data). This
kind of relative comparison uses proper scaling.
However, what if one wants to compare growth rate among

several mammalian species with different body sizes? One could
again use ratios or percentages, but a more sound, convenient
method that is amenable to continuous line fitting and also avoids
the confounding effect of including the X variable (body mass) in
the Y variable (trait magnitude/body mass) is to use logarithms. As
Keene (1995, p. 813) stated: ‘A log-transformation weights
observations automatically according to a ratio scale’. Indeed,
Napier (1614) coined the word ‘logarithm’ to mean ‘ratio number’
or ‘proportional number’, by using the Greek words ‘logos’ (which
can mean ratio or proportion) and ‘arithmos’ (number). Therefore,
logarithms specifically allow one to compare relative (proportional)
changes in the size of a trait as the size of an organism increases in a
continuous way, which is what allometric analyses (see Glossary)
are fundamentally about (Huxley, 1932; Kerkhoff and Enquist,
2009; Glazier, 2013), at least in the ‘narrow sense’ originally
proposed (Pélabon et al., 2014). In fact, Osborn (1925) originally
conceived of the ‘principle of allometry’ as referring to proportional

changes in animal evolution. As Gingerich (2019, p. 48) further
states: ‘Allometry is the biological equivalent of geometry in
mathematics – each is given a name to distinguish it from simple
additive arithmetic’. In essence, log-transformation represents a
way of making trait variation (differences) in small systems
quantitatively equivalent (and thus comparable) to trait variation
in large systems. This simple mathematical method of achieving
scale independence is comparable to portraying a mouse and
elephant as being the same size by using proportional spatial
magnification and/or reduction, thus allowing comparisons of trait
variation at the same dimensional scale. As such, log-transformation
allows scaled (scale-independent) comparisons of growth (or the
magnitude of other traits) between systems of different size,
unlike non-scaled (scale-dependent) comparisons based on
untransformed arithmetic data (Fig. 1). Properly scaled analyses
focus on ‘proportions’, not ‘amounts’ (cf. Gingerich, 2000, 2019;
Reich, 2001).

Logarithmic transformation can reveal the mechanisms
underlying scaling relationships
Another important advantage of log-transformation is that it allows
one to compare relative size-dependent changes in a trait with those
predicted by geometric or elasticity models, thus increasing our
understanding of the mechanistic causes of scaling relationships.
For example, surface area tends to scale with body volume to the 2/3
power for organisms that are isomorphic (see Glossary). Therefore,
it is often reasonable to explain scaling relationships with an
exponent ∼2/3 in terms of surface area to volume relationships. In
fact, surface area scaling was invoked in the first proposed
explanation of the body mass scaling of metabolic rate in
homeothermic animals. According to the so-called ‘surface law’,
because heat loss is proportional to body surface area, which scales
to the 2/3 power, then maintaining a constant body temperature

Larger system
shows more

absolute growth

Smaller system
shows more

relative growth 

0.33 g day–1 420 g day–1

0.00350.19

Scaled (scale-independent) comparison of growth

Non-scaled (scale-dependent) comparison of growth

Fig. 1. Schematic depiction of how scaling systems of
different size to the same size allows relative
(proportional) changes in growth (or other traits) to be
readily discerned. Blue areas represent original sizes,
whereas red areas represent additional growth in size.
Upper panel, non-scaled comparisons of systems of
different size depict differences in absolute growth (or other
traits). Lower panel, logarithms allow for scaled
comparisons of proportional change. This difference helps
to explain why biological (allometric) scaling studies often
use log-transformation (see text for other reasons).
Numbers refer to actual data for deer mice (Peromyscus
maniculatus) and female African elephants (Loxondonta
africanus) taken from Case (1978). Numbers in the upper
panel are absolute postnatal growth rates, whereas those in
the lower panel are relative growth rates (absolute growth
rate divided by birth mass), where the mean birth masses
are 1.7 and 120,000 g for the mice and elephants,
respectively.
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requires that metabolic heat production also scales to the 2/3 power
(Sarrus and Rameaux, 1839; Rubner, 1883), as observed in many
birds and small mammals (reviewed by Glazier, 2014, 2018a).
Other biologists have extended this approach to aquatic skin-
breathing animals, where the ontogenetic scaling of metabolic rate
relates strongly to the scaling of surface area, which varies with
developmental changes in body shape (Hirst et al., 2014; Glazier
et al., 2015; Tan et al., 2019). A focus on using non-scaled (scale-
dependent) arithmetic data can make it difficult for investigators to
see such associations. For example, inspired by critics of the
traditional approach, Starostová et al. (2013) improperly tested
metabolic scaling theory based on scaled proportional relationships
between cell size/number and body mass by using non-scaled
(scale-dependent) arithmetic data. Using log-transformed (scale-
independent) data would have made a more direct test possible
(Glazier, 2013).

Logarithmically transformed data are more
biologically relevant
Packard (2012, 2017, 2019) has argued that the traditional method is
inapplicable to cases where non-linear scaling occurs in log–log
space, even though it has been repeatedly adopted for this purpose
by using segmented or polynomial (quadratic) regression
techniques (examples cited in Glazier, 2005, 2013; Mascaro et al.,
2014). He argues that alternative methods (e.g. non-linear
regression) should be used that rely on untransformed arithmetic
data. Moreover, he claims that biphasic or other forms of complex
logarithmic scaling are a distortion created by the traditional method
and that, actually, linear or smooth curvilinear relationships occur
when regression methods based on arithmetic data are used (e.g.
Packard, 2012, 2017, 2019; Geraert, 2016). For example, by using
the traditional method, Tsuboi et al. (2018) showed that brain mass
exhibits distinctly biphasic ontogenetic scaling with body mass in
many kinds of vertebrate animals. However, Packard (2019) claims
that this biphasic scaling is an artifact of log-transformation. Non-
linear regression analyses based on untransformed arithmetic data
show an approximately continuous curvilinear relationship between
brain mass and body mass with no sharp breaks.
However, contrary to Packard’s (2019) claims, I argue that his

analyses actually validate the traditional method by showing that it
is better able to detect biologically significant ontogenetic shifts in
size scaling than can alternative methods based on untransformed
arithmetic data (see also Glazier, 2013; Tsuboi, 2019). As already
noted, regression methods based on arithmetic data do not properly
scale systems of varying size. They focus only on absolute,
not relative changes in trait sizes (see Fig. 1). Therefore, they are
inappropriate for detecting shifts in relative (proportional) scaling
relationships that may occur within a species during ontogeny
or among species occupying different portions of the body size
range of a taxonomic group. By contrast, the traditional method
based on log-transformation is well suited for detecting biphasic,
curvilinear and other non-linear scaling patterns that represent
fundamental breaks or transitions in scale invariance as system size
increases. As evidence, ontogenetic scaling shifts in metabolic rate
detected by the traditional method often coincide with biologically
and/or ecologically significant developmental changes. These
discontinuities include shifts from larval to adult life phases,
pelagic to benthic lifestyles, prenatal to postnatal development,
ectothermy to endothermy, one mode of locomotion to another, and
from life inside to outside of a marsupial pouch (e.g. Huxley, 1932;
Riisgård, 1998; Glazier, 2005; Glazier et al., 2015; Snelling et al.,
2015, 2019; Tsuboi, 2019; Echavarria-Heras et al., 2020).

For example, metabolic scaling is isometric (slope ∼1) in thin,
flat phyllosoma larvae of spiny lobsters that grow mainly in two
dimensions, whereas it is allometric (slope <1) in thicker, adult-like
juveniles that grow in three dimensions (Fig. 2A), as predicted by
surface area theory (Glazier et al., 2015). This biologically
significant discontinuity in ontogenetic metabolic scaling
(coinciding with a major metamorphic transition: Ventura et al.,
2015) goes undetected when a linear regression of the arithmetic
data is used (Fig. 2B). Although the arithmetic regression is very
tight and highly significant (r2=0.995, P<0.00001), using
arithmetic coordinates does not allow adequate spacing and
scaling of the data, resulting in all of the data points for the
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Fig. 2. Comparison of bivariate size relationships using logarithmic
versus arithmetic coordinates. (A) Linear relationships between metabolic
rate (mg O2 h−1) and wet body mass (g), both log10-transformed, in
phyllosoma larvae and juveniles of the spiny lobster, Sagmariasus verreauxi
(H. Milne-Edwards 1851) (data from Jensen et al., 2013a,b; Glazier et al.,
2015). Each point represents a different size group and is based on 4–11
replicate measurements. Linear regression equations and statistics for
phyllosoma and juveniles are, respectively, Y=−0.773+1.002X, r2=0.995,
P<0.00001; and Y=−0.673+0.829X, r2=0.993, P=0.00353. The scaling
exponents (slopes, b) are significantly different, as the 95% confidence
intervals for each ontogenetic stage (±0.081 and ±0.157, respectively) do
not overlap the slope of the other (Glazier et al., 2015). This slope difference
is also depicted by a linear extrapolation of the phyllosoma relationship,
which does not coincide with the juvenile relationship (dashed line).
(B) Linear relationship between metabolic rate and body mass using
arithmetic coordinates. Linear regression equation and statistics are
Y=0.468+0.068X, r2=0.995, P<0.00001. Comparisons of the relationships in
A and B illustrate that logarithmic analyses permit clearer detection of
ontogenetic changes in scaling relationships than do arithmetic analyses.
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phyllosoma larvae being highly clumped (Fig. 2B). As a result, the
data points for the larger juveniles, which are more widely spaced,
dominate and thus distort this non-scaled analysis. One could also
employ non-linear arithmetic regression analyses on these data, but
again, as in the case of the ontogenetic scaling of vertebrate brain
mass mentioned above, sharp discontinuities in scaling (i.e. breaks
in scaling invariance) would go undetected.
Current evidence supports the view that non-linear biological

scaling is not an artifact of log-transformation but rather the result of
significant size or age-related changes in various biological
properties and (or) ecological influences (see also Mascaro et al.,
2014; Tsuboi, 2019). These patterns suggest that not only is the
traditional methodmore appropriate for scaling analyses but also it is
more biologically relevant than alternative methods based on simple
arithmetic data. Non-linear analyses based on unscaled arithmetic
data may be used to show developmental or evolutionary changes in
scaling relationships, but they do not readily reveal biologically and
theoretically relevant discontinuities in scale invariance shown by
proportional, properly scaled, log-transformed data.

Problems with critiques of the traditional method of
biological scaling
In my opinion, a narrow focus on statistical line fitting without
regard to proper scaling procedures, biological relevance or
theoretical significance is not just unproductive but may even be
counterproductive to advancing our understanding of biological
scaling (also see Kerkhoff and Enquist, 2009; Glazier, 2013; Niklas
and Hammond, 2014; Lemaître et al., 2015; Pélabon et al., 2018). I
have nothing against the investigation of alternative methods of
describing part–whole size relationships, but I do object to studies
that propose alternative methods without fairly evaluating their
merits and demerits with respect to the traditional method, not only
statistically but also conceptually and theoretically. Some recent
studies criticizing the traditional approach have one or more of the
problems discussed below.
First, they propose alternative methods that do not properly scale

systems of different size. Without ensuring scale independence,
one cannot compare the magnitude of traits among organisms of
different size in a biologically meaningful way (Keene, 1995;
Kerkhoff and Enquist, 2009).
Second, they neglect to mention how log-transformation facilitates

scaling analyses, not only statistically but also conceptually
(especially with regard to ensuring scale independence among the
systems compared). Packard (2017) has claimed incorrectly that
logarithmic transformation is unnecessary because one can establish
proportional relationships by using non-linear regression to calculate
power functions from untransformed arithmetic data. Unfortunately,
this method does not properly scale the underlying data in geometric
(logarithmic) space (see Glossary; Kerkhoff and Enquist, 2009). As a
result, power functions derived from arithmetic versus logarithmic
data are often quite different (Zar, 1968; Hui and Jackson, 2007;
Packard et al., 2011; Xiao et al., 2011; Lai et al., 2013; Starostová
et al., 2013; Marchi, 2019; Chen et al., 2020). In my opinion, size-
scaling analyses should involve two steps. First, the data should be
properly scaled, and log-transformation is an easy, excellent way to
do this. Second, a statistical model should be chosen that best fits the
data. I see potential problems with skipping the first step and
proceeding immediately to the second step. To be sure, non-linear
analyses based on arithmetic data may be employed for specific
advantageous statistical reasons (including to deal with additive or
multiplicative error, by incorporating that error structure in the model
used), but the underlying data may still not be properly scaled.

Furthermore, at present, incorporating phylogenetic information into
scaling analyses can only be done with linear models, as made
possible by log-transformation (e.g. White et al., 2019). Future
research is needed to explore whether phylogenetic information can
be incorporated into non-linear arithmetic analyses.

Third, critics of the traditional logarithmic approach do not justify
their controversial assumption that ordinary arithmetic numbers
are inherently more valid than logarithmic numbers, even though
they represent the same data. Many scientists, including leaders
in biological scaling, regard this assumption as untenable and
misguided (e.g. Bagnold, 1941; Gaddum, 1945; McMahon and
Bonner, 1983; Peters, 1983; Gingerich, 1993, 2000; Kerkhoff
and Enquist, 2009; Glazier, 2013). To quote Bagnold (1941, p. 2):
‘The linear scale, since it was first cut on the wall of an Egyptian
temple, has come to be accepted by man almost as if it were the one
unique scale with which Nature builds and works. Whereas it is
nothing of the sort. Its sole value lies in giving due prominence to
the differences and sums of quantities, when these are what we want
to display. But Nature if she has any preference, probably takes more
interest in the ratios between quantities; she is rarely concerned with
size for the sake of size’ (also see McMahon and Bonner, 1983;
Gingerich, 1993, 2000).

Indeed, one could argue that logarithmic thinking is more
intuitive than arithmetic thinking, because animals and young
children think in terms of proportions and not absolute amounts
(e.g. Roberts, 2006; Beran et al., 2008; Dehaene, 2009; Yi, 2009;
Opfer and Siegler, 2012; Ditz and Nieder, 2016; Kim, 2019). They
have a ‘logarithmic sense of approximate numerosity’ (Dehaene,
2009, p. 254), i.e. they assess quantities using a non-linearly
compressed logarithmic number scale (Fig. 3). Only later in life do
children adopt linear arithmetic thinking, which appears to be
culturally imposed by mathematical education (Siegler and Booth,
2004; Merten and Nieder, 2009; Berteletti et al., 2010).
Furthermore, people of all ages in some cultures (e.g. Amazonian
indigenes) estimate quantities as logarithmic proportions, not as
linear amounts (Dehaene et al., 2008; Dehaene, 2011). McMahon
and Bonner (1983, p. 30) point out how we naturally perceive our
environment in logarithmic ways: ‘when we hold something small
up close to our eyes and when we step back to get a whole view of
something big. Similarly, our ears are more sensitive to small
variations in faint sounds than to small variations in large sounds’.
Neuronal activity related to number detection is optimally tuned to
operate on a logarithmic scale (Nieder, 2016, 2020), and human
memories and time perception appear to be encoded logarithmically
as well (Singh et al., 2018; Ren et al., 2020). In other words, the
human mind uses an ‘internal slide rule’ (Dehaene, 2003, p. 147;
see Glossary). Logarithmic thinking may reduce the risk of
perceptual error, and thereby increase evolutionary fitness, as
favored by natural selection (Sun et al., 2012). Minimizing relative
error may be more important than minimizing absolute error, and
neuronal systems tuned to a logarithmic scale do this better than
those tuned to an arithmetic scale. For example, ‘being off by four
matters much more if the question is whether there are one or five
hungry lions in the tall grass around you than if the question is
whether there are 96 or 100 antelope in the herd you’ve just spotted’
(Hardesty, 2012). Therefore, one cannot regard arithmetic measures
as more fundamental than logarithmic measures. Indeed,
logarithmic quantification appears to be more innate in humans
and animals than is arithmetic quantification, which is a cultural
contrivance.

Unfortunately, however, a belief in the primacy of arithmetic
numbers or additive models (implicit or explicit) has engendered the
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unjustified view that if back-transformation from logarithmic
numbers predicted by traditional (multiplicative) models does not
exactly match predictions by arithmetic models, the traditional
models must be incorrect. These differences obviously occur
because the traditional approach uses scale-independent logarithmic
data, thus automatically correcting for multiplicative error, whereas
arithmetic models use scale-dependent data that do not (though
non-linear arithmetic models may incorporate multiplicative error).
As a result, back-transformation from traditional models yields
geometric means for Y, whereas arithmetic models predict arithmetic
means. This is useful, because geometric means are actually more
appropriate than arithmetic means when multiplicative error occurs
(Galton, 1879; Gaddum, 1945; Gingerich, 2000; contra Hayes and
Scott Shonkwiler, 2006; Packard, 2013), as is typical in scaling
relationships (Kerkhoff and Enquist, 2009; Xiao et al., 2011; Niklas
andHammond, 2014; Gingerich, 2019).Whenmeasurement and (or)
biological error is additive, investigators may wish to use arithmetic
data for their scaling analyses (e.g. Xiao et al., 2011; Pélabon et al.,
2018), but the benefits of doing so should beweighed against whether
this results in the absence of a biologically and theoretically
meaningful scaling perspective, otherwise obtained in log-based
geometric space.
Given a belief in the primacy of arithmetic numbers, it is also not

surprising that some critics assume that practitioners of the
traditional method routinely use back-transformed data to derive
scaling exponents in the ‘original arithmetic’ coordinates (e.g.
Packard, 2020b). However, this assumption is untrue. One can
easily derive scaling exponents (slopes) directly from logarithmic

analyses. In practice, the primary equation that most investigators
use to carry out scaling analyses is the relationship between logY and
logX, not the power function of Y in relation to X (see Gingerich,
2000; contra Packard, 2017). Furthermore, generally adopting the
unjustified assumption that arithmetic numbers are superior to
logarithms would undermine valuable scientific analyses of many
kinds of natural phenomena. These include the quantification of
entropy, information content, radioactive decay, voltage amplitudes,
sound, sensation–stimulus relationships (Weber–Fechner law; see
Glossary), brightness of starlight, magnitude of earthquakes
(Richter scale), chemical acidity, relative rates of growth and
evolution, relative measures of species abundance, life-table
survivorship curves, population growth and economic price
elasticity relationships, and many more (also see Burton, 1998;
Menge et al., 2018). One cannot regard arithmetic numbers as
inherently more foundational than logarithmic numbers, even for
measurement units (e.g. consider that decibels, nepers, nats, octaves
and pH units are on a log scale) (also see Gaddum, 1945). Their
validity depends on the scientific purpose for which they are used
(e.g. comparing proportions versus amounts). If one is interested in
scaling systems of different size, logarithms are more useful than
arithmetic numbers.

Fourth, some critiques misrepresent the motivations and acumen
of those who use the traditional scaling method. For example, many
investigators (e.g. McMahon and Bonner, 1983; Peters, 1983;
Kerkhoff and Enquist, 2009; Cawley and Janacek, 2010; Xiao et al.,
2011; Glazier, 2013; Mascaro et al., 2014; Niklas and Hammond,
2014; White and Kearney, 2014; Lemaître et al., 2015; Pélabon

1

5

5x

(0.70)

11

15

21

25

1.4x

(0.14)

1.2x

(0.08)

Fig. 3. Birds and mammals have an
innate tendency to assess quantity
logarithmically, not arithmetically.
The species for which this is shown
are pigeons, crows, rats, rhesus
monkeys and human children. The
depicted self-test shows that mental
discrimination of numerical differences
depends on the total quantity of points
(numerosity). Although the numerical
difference is 4 between the top and
bottom groups of mice for each
vertical pair, this difference is not as
readily apparent for groups with larger
numbers of mice. Our innate ability to
quickly understand amounts is tuned
more to ratios or proportions (e.g. 5,
1.4 and 1.2, respectively, for the ratios
of number of mice in the bottom group
over those in the top group) or
equivalent logarithmic differences
(0.70, 0.14 and 0.08, respectively)
than to absolute amounts.
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et al., 2018) have not used the traditional method ‘uncritically’ or by
‘rote’, as claimed by some (e.g. Smith, 1980; Lovett and Felder,
1989; Packard, 2013, 2017, 2020a,b). Packard (2017, p. 116) also
states without evidence or adequate justification that proponents of
the traditional method have used ‘ill-defined arguments’ and
‘misunderstanding of various statistical methods’, merely to
protect ‘a large body of published research’.
Fifth, some critiques are based on intraspecific analyses

involving relatively narrow body mass ranges (often less than one
order of magnitude) that result in large errors in regression
parameters (e.g. Smith, 1980; Packard, 2020a,b). These large
errors weaken the argument made in these studies that alternative
methods based on arithmetic data provide line fits just as good as (or
better than) those based on traditional logarithmic analyses. The
scaling value of logarithmic transformations increases as the range
of sizes considered increases (see also Harvey, 1982).
Sixth, several critiques neglect to cite or fairly evaluate studies

criticizing approaches based on untransformed arithmetic data (e.g.
Harvey, 1982; Keene, 1995; Kerkhoff and Enquist, 2009; Cawley
and Janacek, 2010; Xiao et al., 2011; Glazier, 2013; Lai et al., 2013;
Mascaro et al., 2014; Lemaître et al., 2015; Pélabon et al., 2018;
Tsuboi, 2019; but see limited attempts made by Packard, 2014,
2017).
Seventh, no recent critiques offer useful, generally applicable

theoretical framework(s) supporting or emanating from their
idiosyncratic use of alternative methods. In addition, some
alternative arithmetic models that have been proposed include
parameters with no obvious biological meaning (e.g. Lemaître et al.,
2015; Tsuboi, 2019). Without appropriate biological meaning
and theoretical frameworks, the arbitrary adoption of alternative
methods will result in scientific chaos, and undermine the
development of theory in the field of biological scaling. The
choice of scaling models should depend on theoretical context and
biological relevancy, and not just on statistics (Houle et al., 2011;
Tsuboi, 2019). One example of how non-linear analyses based on
arithmetic data may be biologically relevant includes the use of a
three-parameter power function where the data are not expected to
pass through the origin, as for blood pressure in relation to body
mass (White and Seymour, 2014, 2015).

Perspectives and conclusions
Many recent studies criticizing the traditional approach to
performing scaling analyses have engaged in a largely one-way
conversation, whereby specific alternative methods are advocated
over the traditional method without adequate justification or
attention to valid counterarguments. We shall not have a useful
debate about which mathematical methods are best for quantifying
scaling relationships until there is a more balanced two-way
conversation between critics of the traditional approach and the
majority of biologists who routinely use log-transformation in their
scaling analyses. This has become an important problem in and of
itself, because many kinds of biological journals have published and
are continuing to publish one-sided critiques of the traditional
method that convey essentially the same negative message, but
based on analyses of different published datasets. In the process,
these biased critiques have impugned many legitimate studies
incorrectly. Interested readers and especially editors and reviewers
of biological journals should be aware of this problem.
In conclusion, recent critics of the traditional scaling approach

fail to appreciate fully the multiple ‘worthwhile properties’ of
logarithms and their critical role in scaling analyses. The ongoing
discussion by critics and proponents of the traditional method has

resulted in both positive and negative outcomes. On the one hand,
the critiques have prompted practitioners in the field of biological
scaling, including myself, to clarify the rationale underlying the
methods that they use. On the other hand, the critiques have created
some unnecessary confusion about proper methodology, especially
for newcomers and others not well versed in scaling analyses.
Statistical line-fitting analyses that do not use logarithms or other
measures of relative size are not true scaling analyses because they
do not allow meaningful scale-independent comparisons among
systems of different size. Non-scaled (scale-dependent) methods
based on untransformed arithmetic data can produce idiosyncratic
results that are not biologically meaningful. The authors who
promote these methods should show why they are biologically and
theoretically useful, and not merely in a descriptive statistical sense.
The scientific significance of a method is just as important, if not
more so, than its mathematical significance. As noted by a leader in
biological scaling, ‘Highly significant statistics do not signify
equally high biological significance’ (Schmidt-Nielsen, 1984,
p. 22). By recognizing this, we can then have a more meaningful
debate than simply which line fit is best.
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