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Thermal robustness of biomechanical processes
Jeffrey P. Olberding1,* and Stephen M. Deban2

ABSTRACT
Temperature influences many physiological processes that govern
life as a result of the thermal sensitivity of chemical reactions. The
repeated evolution of endothermy and widespread behavioral
thermoregulation in animals highlight the importance of elevating
tissue temperature to increase the rate of chemical processes.
Yet, movement performance that is robust to changes in body
temperature has been observed in numerous species. This thermally
robust performance appears exceptional in light of thewell-documented
effects of temperature on muscle contractile properties, including
shortening velocity, force, power and work. Here, we propose that the
thermal robustness of movements in which mechanical processes
replace or augment chemical processes is a general feature of any
organismal system, spanning kingdoms. The use of recoiling elastic
structures to power movement in place of direct muscle shortening is
one of the most thoroughly studied mechanical processes; using these
studies as a basis, we outline an analytical framework for detecting
thermal robustness, relying on the comparison of temperature
coefficients (Q10 values) between chemical and mechanical
processes. We then highlight other biomechanical systems in which
thermally robust performance that arises from mechanical processes
may be identified using this framework. Studying diverse movements in
the context of temperature will both reveal mechanisms underlying
performance and allow the prediction of changes in performance in
response to a changing thermal environment, thus deepening our
understanding of the thermal ecology of many organisms.

KEY WORDS: Thermal sensitivity, Performance, Movement,
Locomotion, Feeding, Temperature, Muscle

Introduction
Environmental temperature is one of the most important drivers of
biological evolution. For example, organismal function can be
disrupted by protein denaturation at extremely high temperatures or
by freezing at extremely low temperatures. Although spectacular
adaptations in some organisms push thermal limits, such as Taq
polymerase in thermophiles (Chien et al., 1976) or antifreeze
compounds in fish, amphibians and arthropods (DeVries and
Wohlschlag, 1969; Duman, 2015), most life must operate within the
relatively narrow temperature range (approximately 0–40°C). Within
this range, physiological processes that involve chemical reactions
proceed at a rate that is directly related to temperature, reducing the
performance of many biological functions at lower temperatures. A
long history of research has explored the diverse effects of temperature
on biological functions and the ways in which organisms are suited to

their thermal environment (Angilletta and Angilletta, 2009; Huey and
Stevenson, 1979). Physiological adaptation can shift thermal optima
of processes to better suit environmental conditions over long time
scales, but cannot remove sensitivity to temperature entirely (Autumn
et al., 1994; Hochachka and Somero, 2002; Johnston and Altringham,
1985). Instead, endothermy and behavioral thermoregulation have
repeatedly evolved to compensate for the effects of low temperatures
on chemical processes by raising reaction temperature. However, the
underlying thermal sensitivity of these processes persists when
reaction temperature cannot be controlled. Organismal functions that
maintain performance regardless of temperature therefore appear
exceptional.

Movement in animals is accomplished through the coordinated
function of many systems – respiratory, circulatory, sensory, nervous
and musculoskeletal – all of which involve temperature-sensitive
chemical processes. Gas exchange across respiratory surfaces and
through tissue is strongly dependent on temperature for many animals
(Mortola and Frappell, 2000). In systems with active pumping,
rates of circulation of air, water, blood or hemolymph depend on
temperature through thermal effects on muscular pumps (Bennett,
1984), but even passive diffusion relies on Brownian motion and is
temperature dependent. Synaptic processes and nerve conduction
velocity also decrease at lower temperature, even in cold-specialized
species (Abramson et al., 1966; Chatfield and Battista, 1948;
Katz and Miledi, 1965a,b; Montgomery and Macdonald, 1990;
Rosenberg and Sugimoto, 1925; Weight and Erulkar, 1976). Finally,
strong temperature effects on muscle contractile properties are well
documented (Bennett, 1984; James, 2013; Olberding and Deban,
2017), even in lineages that have evolved in low-temperature
environments (Huey et al., 1989; Wakeling and Johnston, 1998).

The temperature-dependent function of these physiological
processes can limit performance of movements in terms of their
rate, responsiveness, efficiency and endurance, and define the thermal
ecology of organisms. At lower temperatures, decreased rates of
oxygen and nutrient delivery and carbon dioxide and waste
elimination can limit endurance in movements that are maintained
for long durations (John-Alder andBennett, 1981;Weinstein and Full,
1994). Additionally, movement efficiency could decrease at lower
temperatures if anaerobic respiration is used instead of aerobic
respiration, which produces more ATP for a given amount of fuel. The
ability to respond to the environment with appropriate movements and
behavior (Montgomery and Macdonald, 1990) and the ability to
modulate performance during movement through feedback control
may be impacted by the reduced ability of sensory cells and neurons to
sense, process and respond to external stimuli at colder temperatures
(Hodgkin and Katz, 1949). Finally, temperature effects on movement
performance in animals have long been linked to the thermal
sensitivity of muscle shortening, the source of mechanical work in
many movements (e.g. Else and Bennett, 1987; Swoap et al., 1993).

Despite these physiological limitations, movement performance
is maintained across temperature ranges from nearly 0 to 30°C in
numerous ectotherms (Box 1). This performance is said to be
thermally robust and includes both impressively high performance
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and relatively mundane performance that can be reproduced reliably
under different temperature conditions. This movement
performance is not maintained by elevation of body temperature
via endothermy or behavioral thermoregulation and there is no
evidence of adaptations in the chemical processes underlying
muscle shortening to alter the effects of temperature. Instead, these
movements are powered by recoiling elastic structures rather than
muscle shortening, removing direct influences of some muscle
contractile properties by shifting power demands from muscle
shortening to elastic recoil (Deban et al., 2007; Longo et al., 2019;
Roberts and Azizi, 2011).
Here, we argue that thermally robust performance is not a

unique feature of elastic recoil, but is instead a widespread

phenomenon that emerges when a mechanical process replaces or
augments a chemical process (Fig. 1). We first define the principle
of thermal robustness and describe a general analytical framework
for identifying thermally robust performance by comparing
temperature effects on whole-system function with those of
underlying physiological processes. We then highlight a number
of biomechanical systems with diverse functions in which thermal
robustness that is conferred by mechanical processes may be
revealed when this framework is applied.

What is thermal robustness?
Thermal robustness of performance is distinct from simply producing
high performance at challenging temperatures; it is a reduced response

Box 1. Evidence for thermal robustness using elastic recoil
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Thermally robust performance has been observed in several disparate taxa that are hypothesized to use elastic recoil to power movement. Movement velocity
that is thought to be driven by elastic recoil (mean±s.e.m., blue) is less sensitive to changes in temperature compared with muscle-poweredmovements in the
same species (red). Ballistic tongue projection in plethodontid salamanders is robust to changing temperatures (Deban et al., 2020). For example, peak
tongue projection velocity is independent of a 2–24°C temperature change in Hydromantes platycephalus (Deban and Richardson, 2011), is unaffected by
temperature from 9 to 24°C in Eurycea guttolineata (Anderson et al., 2014) and shows only a minor decreases from 1.73m s−1 at 25°C to 0.96 m s−1 at 5°C
(45% drop) in Ensatina eschscholtzii (Deban and Scales, 2016) and from 2.34m s−1 at 25°C to 1.61m s−1 at 5°C (32% drop) in Bolitoglossa franklini (Scales
et al., 2016). In chameleons (Chamaeleo calyptratus), tongue projection velocity decreases by only 23% with a 20°C decrease in body temperature
(Anderson and Deban, 2010). In toads (Bufo terrestris), peak velocity of ballistic mouth opening and tongue projection do not change significantly from 20 to
35°C (Deban and Lappin, 2011), and a similar pattern is seen in frogs (Rana pipiens) (Sandusky and Deban, 2012). For C. calyptratus, B. franklini, Thorius
macdougalli, H. platycephalus, E. eschscholtzii and E. guttolineata, peak tongue projection velocity (blue) is compared with peak tongue retraction velocity
(red). For B. terrestris and R. pipiens, ballistic mouth opening velocity (blue) is compared with jaw closing velocity (red).

For many of these thermally robust movements, power that exceeds what has been measured from isolated muscle tissue under ideal conditions (300–
900 W kg−1 muscle) (Askew et al., 2001; Curtin et al., 2005; Lutz and Rome, 1996; Olberding and Deban, 2017) points to a more powerful actuator of
movement, such as a recoiling spring. Thermally robust salamander tongue projection has a muscle mass-specific power output ranging from 1284 to
6765 W kg−1, although salamander tongue projector muscles have contractile properties similar to those of other vertebrate muscles (Deban et al., 2007,
2020; Olberding et al., 2018). Similarly high peak power outputs are seen in chameleon (2900 W kg−1) and toad feeding mechanisms (9600 W kg−1)
(Anderson and Deban, 2010; Lappin et al., 2006). For tongue projection in salamanders, chameleons and toads, electromyography recordings reveal muscle
activity hundreds of milliseconds prior to any external movement, indicating the stretching of elastic structures (Anderson and Deban, 2012; Anderson et al.,
2014; Deban and Dicke, 1999, 2004; Deban and Lappin, 2011; Lappin et al., 2006; Roberts and Marsh, 2003; Scales et al., 2017). Finally, in all of these
cases, structures have been identified that could serve as springs and latches (Astley and Roberts, 2012; Bennet-Clark and Lucey, 1967; Deban et al., 1997;
de Groot and van Leeuwen, 2004; Scales et al., 2016, 2020).
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to changes in temperature (Fig. 2). For example, adding muscle
mass or increasing the energy density of muscle could improve
the performance of a muscle-driven movement, but not confer
thermal robustness (Fig. 2, compare lines A and C). Alternatively, a
movement may have thermally robust performance across a range of
temperatures, yet still have lower performance compared with another
movement at any one temperature (Fig. 2, compare lines B and C).
The potential benefit of thermal robustness is the ability to produce
consistent output in the face of changing temperatures, but not
necessarily elevated performance at all temperatures.
Identifying thermal robustness requires quantifying movement

performance across an ecologically relevant range of temperatures. By
definition, temperature-independent performance can be identified
statistically by finding no significant effects of temperature. However,
evenwhen effects of temperature are significant, a movement may still
be described as thermally robust if the strength of the temperature
effect is less than would be expected if it were driven by chemical
processes. In animal movements, this often involves a comparison of
temperature effects on movement performance with those on muscle-
driven movement (Box 1). However, other physiological processes,
such as oxygen delivery or metabolic rate, could be limiting factors
expected to determine temperature effects on performance depending
on the temporal and spatial complexity of a movement. For organisms

that lack muscle, such as plants, temperature effects on movement
performance can be compared with cellular mechanisms of motion,
such as active solute transport.

A customary way to represent effects of temperature on a biological
process is the temperature coefficient, orQ10. This expresses the factor
by which a rate property changes across a 10°C temperature increase,
and can be calculated over any temperature increase. A Q10 value can
be calculated via linear regression of log10-transformed variables in
order to obtain a significance level associated with temperature effects
using 10 times the base-10 antilogarithm of the partial regression
coefficient (PRC) of the temperature effect on the dynamic variable of
interest: Q10=10

(10×PRC) (Deban and Richardson, 2011). A biological
response to a broad range of temperatures is complex; therefore, it is
important to measure responses at a number of different temperatures
and calculateQ10 values acrossmultiple temperature intervals to reveal
the shape of this relationship. Reporting a single Q10 value for a wide
range of temperatures may conceal this shape (Deban and Lappin,
2011; Deban and Richardson, 2011; Oertli, 1989), which is typically
non-linear and has a plateau of performance at medium-high
temperatures in muscle-driven movements and other chemical
processes (Huey and Kingsolver, 2011).

The use of Q10 values to identify thermal robustness relies on
the choice of an appropriate comparison to measured performance.
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Fig. 1. Thermally robust mechanical processes can replace or
augment temperature-sensitive chemical processes. Thermal
robustness schemata for the examples of a frog jumping from a
compliant substrate (A) and a fish swimming in a Kármán vortex
street (B). Chemical processes, such as sensory transduction,
synaptic transmission, nerve conduction, gas exchange, circulation
and muscle shortening are sensitive to temperature. Mechanical
processes, such as inertia and viscoelastic properties of tissues,
body parts and the substrate, fluid energy and gravitational
acceleration are less thermally sensitive. By storing energy in elastic
structures, a jumping frog (A) may temporally redistribute work done
by muscles so performance depends on the temperature-insensitive
rate of elastic recoil rather than the temperature-sensitive rate of
muscle shortening. A swimming fish (B) can exploit the energy
contained in vortices to reduce muscle activity and shift to
mechanical processes, such as force transmission by inactive
muscle and connective tissue, which may provide thermal
robustness to endurance if gas exchange, circulation or metabolism
is thermally sensitive. Small graphs depict the approximate thermal
dependence of each process (performance versus temperature) with
blue/green graphs representing thermally robust processes and red
graphs representing relatively strong effects of temperature on the
processes.
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To avoid spurious conclusions, comparisons should ideally differ in
only the presence or absence of the mechanical process of interest.
Therefore, the mechanism under study must be well understood to
arrive at the best comparison for experimentally derivedQ10 values.
Predicted temperature effects on movement performance may not
simply be effects of temperature on underlying chemical properties,
which may be measured under laboratory conditions that do not
accurately replicate in vivo use. For example, muscle contractile
properties are usually quantified under conditions of fixed length
(isometric) or constant force (isotonic) during in vitro or in situ
experiments, but muscles rarely experience these simple mechanical
conditions in vivo. Therefore, temperature effects on in vitromuscle
contractile properties do not necessarily represent temperature
effects on muscle-driven movement performance, and can show
different Q10 values from movements powered by these muscles
in vivo.
A useful approach to identify thermally robust performance is to

compare performance between systems that differ in the presence of the
mechanical process of interest. For example, thermal robustness
conferred by elastically powered tongue projection in some
plethodontid salamanders is clearly demonstrated through
comparisons with closely related species that lack sufficient elastic
structures in their tongue apparatus (Deban et al., 2020). Alternatively,
thermal robustness can be identified by comparing the Q10 values of
different phases of movement in the same behavior, such as elastically
powered tongue projection versus muscle-powered tongue retraction in
chameleons and salamanders (Box 1) (Anderson and Deban, 2010;
Deban and Richardson, 2011). When such comparisons are difficult to
find, an alternative or complementary approach would be to construct a
model of the mechanism (physical, computational or analytical) with
underlying physiological parameters modeled with values appropriate
for the temperature conditions of interest. Such models can be used to
generate predicted temperature effects on movement performance
without the presence of a mitigating mechanical process.

It is critical to recognize that comparison of measured Q10 values
with predictions is most useful when coupled with consideration of
the ecological consequences of a change in the performance measure
of interest. When measured Q10 values are lower than predictions
based on chemical processes, yet not thermally independent (Q10=1),
we would need to understand the relationship between performance
and ecology to interpret the functional significance of the temperature
effect. For example, relatively low Q10 values may not indicate
thermally robust performance if the resulting change in performance
would still impact fitness in an ecological setting.

Where do we find thermal robustness?
Thermally robust performance is a consequence of any system that
replaces a temperature-sensitive chemical process with a mechanical
process less sensitive to changes in temperature. This phenomenon
has been observed primarily in small ectothermic animals using
stored elastic energy to actuate burst acceleratory movements when
facing below-optimal temperatures, but the principles of thermal
robustness are not exclusive to organisms meeting this description.
Numerous organisms rely on mechanical processes to effect
movement and any of these have the potential to show movement
performance that is robust to changes in temperature in an
ecologically beneficial way. These may not be adaptations for
thermally robust performance; other possible benefits, such as an
absolute performance advantage, simplified control requirements or
decreased risk of injury, could conceivably drive the evolutionary
elaboration of mechanical processes in movement systems.
Nonetheless, thermal robustness may be ecologically important
once the mechanism is in place, expanding niche breadth through
expanded active temperatures, geographical ranges and access to
microhabitat and novel resources. Thermally robust movement could
also reduce the need for thermoregulation and its associated costs,
such as water loss, high metabolic rate or exposure to predators
(Feder, 1983; Huey, 1974).

Although most research has focused on performance that is robust
to decreasing temperatures, the same principles may apply to
movement performance that is compromised by warmer
temperatures. The mechanisms by which lower temperature affects
the physiology of movement are clearer than those determining the
effects ofwarmer temperatures. For example, muscle power decreases
at lower temperatures because rates of actin–myosin cross-bridge
formation in sarcomeres are slower (Wang and Kawai, 2001) and
these cross-bridges are less likely to form in a high-force generating
state (Bershitsky and Tsaturyan, 2002; Decostre et al., 2005; Piazzesi
et al., 2003); however, it is not clear why muscle power may decrease
at temperatures above optimal. Performance may be reduced not
through a single rate-limiting chemical process at higher temperatures
but rather through a mismatch of rates in a network of many
temperature-sensitive processes (Vornanen, 2020). Mechanical
processes could possibly ameliorate performance decreases by
replacing one or more of these temperature-sensitive chemical
processes. However, some decreases in performance at warmer
temperatures may result from structural changes in tissues, which
could also affect mechanical processes.

Thermal robustness is also not limited to small ectotherms.
Endothermy may be an important adaptation for reducing the effect
of temperature on chemical processes, but many endotherms are in
fact regionally heterothermic. For example, circulatory heat
exchangers keep blood temperature low in extremities to avoid heat
loss to the environment and reduce the metabolic costs ofmaintaining
core body temperature (Midtgard, 1981; Scholander and Schevill,
1955). The extremities of some endotherms match environmental
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Fig. 2. Thermal robustness is distinct from absolute performance
advantage. Compared with a condition (A) that shows both low performance
and high thermal sensitivity of that performance, a systemmayhave (B) greater
thermal robustness and a modest performance advantage, (C) a large
performance advantage but high thermal sensitivity or (D) a dramatic
performance advantage with a high degree of thermal robustness. Condition D
characterizes many organisms that make use of elastic recoil (Box 1).
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temperature despite a relatively constant core body temperature
(Irving and Krog, 1955; Midtgard, 1981; Rummel et al., 2019;
Scholander and Krog, 1957; Scholander and Schevill, 1955).
Because these extremities are often the structures interacting with
the environment to produce motion, thermally robust mechanisms
may be ecologically important even in large endotherms.
Finally, evidence for thermally robust performance is currently

focused on measures of peak capacity during burst acceleratory
movements, where mechanisms are relatively easy to understand
and the thermal sensitivity of all relevant processes can be explored.
However, sub-maximal movements and those with more spatial and
temporal complexity, like cyclical locomotion, which rely on
multiple physiological processes, could still benefit from the
principles of thermal robustness. When organisms are not moving
at peak capacity, greater exertion could potentially offset negative
effects of temperature (e.g. by recruiting a greater proportion of
muscle fibers at lower temperatures). For submaximal performance
during burst-acceleratory movements, like jumping or striking
speed, the ability to increase effort at challenging temperatures
could preclude the need for or importance of mechanisms that
confer thermal robustness. However, increased exertion at lower
temperature would require greater energetic expenditure, which
could decrease performance in repeated or sustained performance,
like cyclical locomotion. Therefore, mechanical processes that
confer thermal robustness may be important even for non-peak
activity because of the potential to reduce energy costs incurred by
greater effort at challenging temperatures.
Consideration of the influence of temperature on the processes

underlying a wide variety of movements may reveal surprising
thermal effects on performance. Below, we present some mechanical
processes that may confer thermal robustness to biological
movements in a wide variety of organisms with many different
performance goals.

Elastic recoil
Thermally robust performance is likely to be found in organisms
that rely on latch-mediated spring actuation to power movement,
other than those described above (Box 1). Elastic recoil bypasses
temperature effects on muscle power because energy is loaded
before external motion with reduced time restrictions (Deban et al.,
2007; de Groot and van Leeuwen, 2004). The power of recoiling
biological springs is expected to be relatively unaffected by
temperature because the change in mechanical performance of
viscoelastic materials is negligible across a biologically relevant
range of 0 to 40°C (Alexander, 1966; Denny and Miller, 2006;
Gosline, 2018; Rigby et al., 1959), in contrast to the strong effects of
temperature on muscle power (Bennett, 1984; James, 2013). For
example, frog jumping is a well-studied model for elastically
powered movement. Frog hindlimb muscles load energy into their
tendons and aponeuroses while motion of the body is prevented by a
combination of inertia of the body and poor muscle mechanical
advantage (Astley and Roberts, 2012, 2014); therefore, their jump
performance may be expected to be relatively robust to changes in
temperature (Fig. 1A). However, the prediction of thermally robust
performance from latch-mediated spring actuation requires that the
function of the latch, preventing motion during spring loading and
releasing to mediate spring recoil, is unaffected by temperature. It is
also important to note that temperature effects on other muscle
properties, including force generation and net mechanical work,
may still impact movement performance in these systems
(Olberding and Deban, 2017). Nonetheless, muscles that deform
elastic elements can, in some cases, do more mechanical work than

when acting directly against an inertial load (Olberding et al., 2019),
thus potentially offsetting temperature effects on muscle work
(Olberding and Deban, 2017).

Minimal temperature effects on performance have been described
in some movements thought to be driven by springs, even if not
explicitly labeled as thermal robustness. Jumping fleas load a pad
made of the elastic protein resilin using the femoral depressor
muscle during the preparatory phase prior to the jump, and allow the
pad to recoil against isometric muscle contraction to extend the legs
and launch them into the air (Bennet-Clark and Lucey, 1967). As
temperature drops, fleas extend the period of loading of elastic
structures before the jump, but jumping performance is reported to
be undiminished: velocity does not change significantly from 10 to
21.5°C (Bennet-Clark and Lucey, 1967; Rothschild and Schlein,
1975; Rothschild et al., 1972). Flea beetles can jump when cold by
virtue of a possible spring mechanism in the hindlimb (Heinrich,
1993). Snow fleas show no effect of temperature on jumping
velocity at less than 10°C compared with 21.5°C, and their muscle
mass-specific power is estimated to be up to 740W kg−1, indicating
elastic recoil is at work (Burrows, 2011). In vocalizing frogs,
temperature has far less influence on call frequency properties than
on other call parameters; frequency properties are governed by
isometric muscle tension andmass and spring constants of laryngeal
structures, none of which have high thermal dependence (Gerhardt
and Mudry, 1980; McLister, 2001). Similarly, temperature shows
little or no effect on wingbeat frequency during takeoff in beetles;
frequency is determined by the resonant properties of the thorax and
not directly by muscle shortening velocity (Oertli, 1989). Finally,
the velocity of defensive strikes in two rattlesnake species has
relatively low Q10 values (Q10=1.19–1.00 from 15 to 35°C)
compared with vertebrate muscle contractile properties (Whitford
et al., 2020), and EMG evidence in some vipers suggests the loading
of elastic structures prior to striking (Young, 2010).

Other movements hypothesized to be spring actuated have not
been studied in the context of temperature, but may yet be revealed
as thermally robust. For example, recoiling elastic structures power
prey capture and processing in numerous aquatic invertebrates and
vertebrates (Longo et al., 2018; Patek et al., 2004; VanWassenbergh
et al., 2008) as well as terrestrial animals (Gibson et al., 2018;
Han et al., 2019; Kaji et al., 2018; Patek et al., 2006; Wood, 2020;
Wood et al., 2016). Moreover, they enable jumping in several insect
species (Burrows, 2003; Sutton and Burrows, 2018) and sound
production in some insects (Bennet-Clark and Daws, 1999;
Davranoglou et al., 2019).

Elastic recoil is often studied in animals where muscles load
energy into springs, but diverse ectothermic organisms, from
cnidarians to plants and fungi, use rapid release of energy that was
stored slowly in tissues or fluid to fire nematocysts, seeds and
spores, respectively, or to capture prey (Berg et al., 2019; de Ruiter
et al., 2019; Edwards et al., 2005; Hayashi et al., 2010; Holstein and
Tardent, 1984; Poppinga et al., 2016; Vincent et al., 2011). In cases
where muscle cannot be described as a default motor for
comparison, temperature effects on alternative physiological
motors can be used to assess thermal robustness. For example,
spring actuation is likely more robust to changing temperature in
bladderwort prey capture than the molecular pumps used to
establish the pressure differentials that store energy during trap
loading (Sasago and Sibaoka, 1985).

Mechanisms that recover energy during cyclical movements
using springs also likely have thermally robust performance. When
springs store and release energy during cyclical movement with
high efficiency, muscle may be able to contract nearly isometrically
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and do very little work per cycle (Biewener and Roberts, 2000;
Blickhan, 1989; Dickinson et al., 2000; Roberts et al., 1997).
Temperature effects on muscle force production are relatively low
compared with effects on power generation (Olberding and Deban,
2017), so cyclical movements using elastic energy recovery may be
more robust to changes in temperature than movements generating
muscle power during every cycle. During cyclical running, springs
can also allow for more work to be done per cycle by effectively
increasing average power (Lichtwark, 2014; Lichtwark and Wilson,
2005). Even when positive work is being done during cyclical
movements, any energy that can be recovered from the previous
cycle using springs will be robust to changes in temperature
compared with work done directly by the muscle, in addition to this
energy contributing to higher power per cycle.

Gravity
Movements taking advantage of gravitational potential energy
could have thermally robust performance. Falling with gravity is an
effective means of accelerating a mass and is used by plants for
dispersal and by animals for escape behaviors or prey capture
(Cuadrado et al., 2001; Losey and Denno, 1998; Tucker, 1998).
Many plants can take advantage of sloped terrain with round fruits
or seeds that roll once they contact the ground. Even some animals
adopt round body postures that allow them to roll down slopes as a
means of predator escape, including some salamanders, frogs and
pangolins (García-París and Deban, 1995; McDiarmid and Gorzula,
1989; Tenaza, 1975). Organisms that glide use airfoils to translate
downward acceleration due to gravity into horizontal movement as
seen in a variety of animals (e.g. Bishop, 2007; McCay, 2001;
McGuire and Dudley, 2011; Socha et al., 2005; Yanoviak et al.,
2010) and the seeds of many plants (Greene and Johnson, 1993;
Lentink et al., 2009; Norberg, 1973). Even insects, birds and bats
capable of powered flapping flight use gliding gaits under some
circumstances (Blake, 1983; Lindhe-Norberg et al., 2000; Okamoto
et al., 2009; Wakeling and Ellington, 1997). For all of these
examples, performance may only be affected by temperature via
changes in take-off movements and steering adjustments, air density
or substrate properties.
Gravitational potential energy is also found in the pendular

dynamics of limbed locomotion and some flying gaits that
incorporate gliding or bounding phases (Bertram and Chang, 2001;
Cavagna et al., 1977; Rayner, 1985; Ward-Smith, 1984). Rates of
energy recovery in these systems are low, given that acceleration due
to gravity is slow relative tomuscle-powered accelerations, so thermal
robustness from the recovery of gravitational potential energy may be
most prevalent in relatively slow movements and large animals.
However, any gait that can decrease the proportion of the stride cycle
in which the foot is in contact with the substrate by adding or
lengthening a recovery phase (without an associated decrease in
active phase duration) may avoid some detrimental effects of
temperature by decreasing the required frequency of muscle
contraction for a given speed; temperature effects on rate properties
of muscle contraction are generally greater than those on force and
work production (Olberding and Deban, 2017).

Fluid energy
Movements may bemore thermally robust if they take advantage of the
inertia of a fluidmedium.Organisms that passively rely on fluidmotion
for movement will be subject only to temperature effects on the density
of that fluid (Andersen, 1993; Bell et al., 2005; Scheltema, 1968). Burst
and coast swimming may be less thermally sensitive, similar to
ambulatory or volant locomotion that takes advantage of gravitational

potential energy (Gleiss et al., 2011). Undulatory swimming shows
curiously low Q10 values (Marvin and Beaupre, 2003), perhaps
because attached vorticesmay store energy that is recaptured (Gemmell
et al., 2015, 2018). Many flocking and schooling animals can ‘wake
surf’ (Alexander, 2004; Fish, 1994; Liao, 2007; Newbolt et al., 2019)
for a variety of energetic and performance benefits, such as enhanced
lift or reduced drag. Similarly, the gait used by fish swimming in the
wake of an object in the flow (Kármán gait) (Fig. 1B) is kinematically
distinct and shows reduced muscle activity compared with the
swimming gait used in open flow (Liao, 2007; Liao et al., 2003).

Force-based behaviors
Force generation in behaviors like clinging or climbing can be
accomplished by suction, adhesion or interlocking mechanisms
(Ditsche et al., 2014; Labonte et al., 2016), and this performance
may be more thermally robust than mechanisms using muscle, such
as gripping. However, even behaviors that rely on muscle force
generation may be thermally robust compared with behaviors that
depend more on muscle rate properties. For example, some animals
rely on biting rather than fleeing as an anti-predator behavior at low
body temperatures, presumably because bite force is determined by
muscle force generation which has a relatively low Q10 compared
with the strong thermal effects on muscle power generation during
running (Herrel et al., 2007; Hertz et al., 1982). Muscle rates that
rely on physical properties, such as breaking cross-bridge bonds or
stretching titin proteins within sarcomeres during eccentric activity
(Holt, 2020; Lindstedt and Nishikawa, 2017), should be robust,
whereas chemical processes that convert chemical to mechanical
energy will be more thermally sensitive. Relatively low effects of
temperature on isometric muscle force production (Berman, 1979)
may also mean that behaviors that require muscle to act as a cable
(Dickinson et al., 2000) are thermally robust.

Neuromechanical control
Mechanisms that bypass or augment the need for active neural control
can also confer thermal robustness to movement performance.
Performance may be limited not just by temperature effects on
processes that transform and deliver energy but also by the ability to
effectively sense and respond to external conditions or body position.
Sensory, nervous and endocrine systems rely on chemical processes
that are sensitive to changes in temperature. Therefore, the ability to
coordinate responsive movement in complex environments or rapidly
changing conditions may be difficult at lower temperatures even if
other processes can still function effectively (Montgomery and
Macdonald, 1990). Over longer time scales, increases in neuronal
signal travel and processing time with lower temperature can be
accommodated by shifting signal initiation earlier. However, shifts in
the timing of control signals cannot satisfy the need for responses to
real-time changes or perturbations when facing slower signals at lower
temperatures. In contrast, responses that rely upon either the physical
properties of segments that are accelerated by external forces or the
intrinsic mechanical properties of muscle tissue (Daley et al., 2007,
2009; Lindstedt et al., 2002; Nishikawa et al., 2007; Pearson et al.,
2006) should be thermally robust, even if the configuration of the
system is established by neuromuscular processes. Nervous systems
and musculature set up the mechanical system and even if neural
control and muscle activation are slowed down in cold conditions, the
mechanical system can still respond quickly and be thermally robust.

Conclusions
Despite appearing exceptional, movement performance that is robust
to changing temperature can be explained by replacing thermally
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sensitive chemical processes with mechanical processes that are less
sensitive to temperature. Thermal robustnessmay bemorewidespread
than previously appreciated. The broadly applicable theoretical and
analytical framework developed from the investigation of a handful of
extraordinary organisms that we present here can inform further
investigations into the thermal biomechanics of organismal
movement. Additionally, the study of thermal biomechanics can
inform the design and use of bio-inspired machines operating under
diverse or challenging temperature conditions, because the principles
of thermally robust performance understood from biology also apply
to manufactured systems. Even if temperature is not the primary
selective pressure shaping a particular biomechanical system, nearly
all organisms must reckon with variable temperature. Investigating
biomechanics in the context of changing temperature can reveal
informative patterns and consequences for performance. Inversely,
identifying thermally robust performance can generate testable
predictions about the importance of mechanical processes in
movement mechanisms. In either case, the thermal ecology of some
organisms may be clarified through the mechanistic understanding of
temperature effects on movement.
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