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ABSTRACT

Among vertebrates, teleost eye diversity exceeds that found in all
other groups. Their spectral sensitivities range from ultraviolet to red,
and the number of visual pigments varies from 1 to over 40. This
variation is correlated with the different ecologies and life histories of
fish species, including their variable aquatic habitats: murky lakes,
clear oceans, deep seas and turbulent rivers. These ecotopes often
change with the season, but fish may also migrate between ecotopes
diurnally, seasonally or ontogenetically. To survive in these variable
light habitats, fish visual systems have evolved a suite of mechanisms
that modulate spectral sensitivities on a range of timescales. These
mechanisms include: (1) optical media that filter light, (2) variations in
photoreceptor type and size to vary absorbance and sensitivity, and
(3) changes in photoreceptor visual pigments to optimize peak
sensitivity. The visual pigment changes can result from changes in
chromophore or changes to the opsin. Opsin variation results from
changes in opsin sequence, opsin expression or co-expression, and
opsin gene duplications and losses. Here, we review visual diversity
in a number of teleost groups where the structural and molecular
mechanisms underlying their spectral sensitiviies have been
relatively well determined. Although we document considerable
variability, this alone does not imply functional difference per se.
We therefore highlight the need for more studies that examine species
with  known sensitivity differences, emphasizing behavioral
experiments to test whether such differences actually matter in the
execution of visual tasks that are relevant to the fish.

KEY WORDS: Photoreceptor, Visual pigment, Spectral tuning

Introduction

Animal visual systems detect light and provide information needed for
survival. In vertebrates, the eye consists of a cornea and lens to collect
and focus light, and a retina composed of rod and cone photoreceptors
to absorb and detect light (Cronin et al., 2014; Land and Nilsson,
2001). Rods are important for low-light vision, whereas cones mediate
color vision under well-illuminated conditions. Photoreceptor light
sensitivity comes from visual pigment molecules housed within the
membrane stacks of their outer segment regions, and visual pigments
possess variable peak sensitivities across the spectrum (Ebrey and
Koutalos, 2001). Rods are optimized for greater sensitivity, with peak
absorbances often matched to the peak wavelength of the
environmental light, whereas cone sensitivities are distributed across

"Department of Biology, University of Maryland, College Park, MD 20742, USA.
2Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute
of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland. ®Institute
of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland. “Queensland
Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia.

*Author for correspondence (kcarleto@umd.edu)

K.L.C., 0000-0001-6306-5643; D.E.-C., 0000-0001-6660-4331; S.M.S., 0000-
0001-7158-3934; F.C., 0000-0002-7518-6159; N.J.M., 0000-0001-9006-6713

the spectrum and often work in an opponent manner to provide color
vision (although in some instances rods may contribute to chromatic
tasks; Joesch and Meister, 2016).

Vision helps animals navigate through the environment, find food,
avoid predators and find mates (Cronin et al., 2014). In an organism
with a fixed number of visual channels, each visual task may be
optimized by a different set of visual sensitivities. For a single
species, natural selection may average over all visual tasks to select
the best set of visual pigments for that species. For example, honey
bee vision is good for detecting most flower colors (Chittka et al.,
1994; Raine and Chittka, 2007), and the ability of old world primates,
including humans, to discriminate red may help individuals to detect
young leaves, ripe fruit or females in estrus (Changizi et al., 2006;
Osorio et al., 2004; Sumner and Mollon, 2000). The idea that vision is
tuned for a single task alone is perhaps naive, and a more ‘general-
purpose’ hypothesis might be expected in order to reflect the range of
sensitivities seen. Alternatively, as with some cases of tuning in
audition, a specific vital task — such as mate choice — may have more
weight in the evolutionary processes that determine an animal’s
visual sensitivity profile (Popper and Coombs, 1980).

Terrestrial environments are relatively stable, and so terrestrial
vertebrates have settled on a few common visual systems. Birds and
reptiles converge on a relatively standard set of four cone
photoreceptors (tetrachromacy), sampling light from ultraviolet
(UV)/violet to red (Davies et al., 2012; Hart, 2001; Loew et al.,
2002a,b). Mammals have simpler dichromatic retinas, presumably
as a result of their ancestral nocturnality (Borges et al., 2018; Wu
et al,, 2017). Some primates have re-evolved trichromacy to
coordinate tasks at the longer wavelength region of the spectrum
(Hunt et al., 1998; Jacobs, 1996).

By contrast, aquatic environments are quite variable in illumination
spectra. Furthermore, the animals that live there vary in the placement
of cone sensitivities within the spectrum available. This variability
was recognized by pioneers in visual ecology such as John Lythgoe,
who identified two key features (Lythgoe, 1979). Firstly, waters differ
in the content of dissolved organic matter and sediment, causing their
light environment — and resulting color — to vary widely (Jerlov,
1976; Loew and McFarland, 1990; Marshall et al., 2003). Aquatic
organisms have adapted to these different environments, with blue
oceans fostering shorter wavelength color vision systems than green
lakes, where longer-wavelength sensitivities predominate (Levine
and MacNichol, 1982). Secondly, the diversity in number, type and
placement of cone visual sensitivities for aquatic species is greater
than that of terrestrial vertebrates, and more than would be predicted
from ecological or behavioral constraints. These two factors make the
study of aquatic vision both fascinating and challenging (see Fig. S1).

Understanding the role of the environment or indeed the micro-
environment in altering visual sensitivities is important (Luehrmann
et al., 2020; Marshall et al., 2003; Munz and McFarland, 1977).
All visual detection and discrimination tasks must be performed
within the context of the local light environment. However, the
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combinations of the number and placement of spectral sensitivities
Glossary are equally good for the tasks performed by a given species, with

Benthopelagic

The zone close to the bottom of a deep lake or ocean.
Blackwater

Waters with considerable dissolved tannins that produce
wavelength shifting of the light environment.

Clear water

Waters without significant pigments or particles. In clear water, light is
absorbed primarily by the water itself, producing waters that look blue to
blue-green in color because of the high transmission of wavelengths in
the 450-500 nm region.

Gene conversion

The process whereby two neighboring genes undergo unequal cross
over during meiosis such that one gene converts or replaces the other.
This conversion can work to keep neighboring genes similar in
sequence. However, selection may discriminate against individuals
where the conversion has happened as it might make visual pigments
too similar, preventing subsequent color discrimination by spectrally
distinct pigments.

Heterochronic shifts

Species may differ through ontogeny, having different morphologies as
they shift from larvae to juveniles to adults. These stages often differ in
gene expression, including the opsin genes. When a related species
evolves to alter the developmental progression of opsin genes compared
with an ancestral species, they are changing the timing of opsin
expression. These heterochronic shifts may cause opsin expression to
differ in the adults of the related species.

Introgression

The process whereby genes from one species are introduced into
another through hybridization between species. The retention of some
genes may be due to selective advantage, though this might not come
until a significant time after hybridization.

Mesopelagic

The midwater region of the ocean at depths of 200—1000 m. Light here is
generally dim and confined to blue or blue-green wavelengths.
Optomotor response

A large-field visual system stabilization mechanism that is behaviorally
evident when a fish swims in the same direction as a moving background
to maintain its local position. This response can be used to test fish’s
sensitivity to contrast and color by determining whether fish can
discriminate and therefore follow a moving pattern.

Philopatric

A tendency to stay close to or return to a specific area, for example
animals returning to their birth place.

Sensory drive

A hypothesis suggesting that characteristics of the environment
influence the evolutionary direction of signals and sensory systems in
predictable directions. For example, a color vision system that evolved for
the detection of red food may influence the evolution of red display
ornamentation. This may be a factor in driving speciation.

Spacelight

The light seen by an animal looking off into the distance (often
horizontally). This spacelight forms the background against which
objects may be viewed and in water is from the scattering of the
downwelling light. Its color and other components are therefore strongly
influenced by the optical properties (particulates, dissolved organics) of
the water in the local environment.

Spectral envelope

The relative intensities and wavelengths of incident light in a particular
habitat. Forexample, in the ocean it may be limited to wavelengths from 400
to 550 nm, whereas in fresh water, alonger wavelength range is more likely.

long-

impact of the environment can be hard to discern. When we study the
visual system of a given species, we effectively take a snap-shot that
likely fails to capture the animal’s evolutionary history. In addition,
we lack detailed knowledge of ecology and life history for many
species. This may lead to misconceptions or over-interpretations of
animal coloration and color vision. It is possible that different

differences driven by phylogeny or history. The question remains: to
what extent is the spectral sensitivity range of a given species ‘tightly
adaptive’ or ‘loosely multifunctional/good enough for the job’?
(Marshall et al., 2015).

In this Review, we attempt to answer this question by focusing on
teleost fish. With over 25,000 species, fish represent half of all
vertebrates (Betancur et al., 2017; Nelson et al., 2016). They are by far
the most variable of vertebrates in terms of body form and behavioral
tasks and, as already noted, live in a wide range of light habitats. Our goal
is to explore how the diversity of fish visual systems (and spectral
sensitivity in particular) may be selected for, predicted by or at least
linked to these ecological features. We will present data on the range of
molecular mechanisms that contribute to this diversity, and consider the
degree to which it helps fish adapt and function according to lifestyle and
habitat. In addition, we will consider how these mechanisms contribute
to divergence and ultimately speciation of closely related species.
Although other aquatic organisms, including cartilaginous fishes,
inhabit the same environments, their visual systems are somewhat
reduced in diversity. Many sharks have just one rod and one cone type
(reviewed in Collin, 2018), whereas rays are dichromatic, with two
cone types, as demonstrated molecularly, physiologically and
behaviorally (Hart et al., 2004, 2019; Theiss et al., 2007; Van-Eyk
et al., 2011). We have chosen to focus on teleosts as this group has
numerous examples of species or populations with diverse and
variable visual sensitivities, based on detailed molecular studies.
Visual sensitivities are discussed in combination with other visual
traits and our examples are chosen to be illustrative rather than
exhaustive (with more examples in Table S1).

Diversity in fish spectral sensitivity - the basics

The peak spectral sensitivities of fish visual pigments have been
quantified physiologically for more than 50 years; first through
pigment extraction and then using microspectrophotometry of
individual photoreceptors (Dartnall and Lythgoe, 1965; Levine and
MacNichol, 1979; Loew and Lythgoe, 1978; Munz, 1958; reviewed
in Bowmaker 1995; Schweikert et al., 2019, 2018). This work
demonstrated the diverse sensitivities of rods and cones based on a
diverse set of opsin genes. Our knowledge of that diversity has only
increased with the advent of high-throughput sequencing tools (Lin
et al., 2017; Musilova et al., 2019a). Fish visual sensitivities are, in
fact, shaped by a number of factors (Figs 1 and 2). First, the eye can
filter light through photostable pigments in the ocular media
including the cornea, lens and vitreous humour (Fig. 1A; Siebeck
and Marshall, 2001; Thorpe et al., 1993). These filters usually
absorb shorter wavelengths, such as UV. However, they may even
absorb blue to green wavelengths (being yellow or orange colored),
pushing the short-wavelength cutoff beyond 500 nm (Kondrashev
et al., 1986; Siebeck et al., 2003). Second, retinal photoreceptors
may vary by number, type and arrangement (Fig. 1B-D), all factors
that can affect sensitivity and extent of color discrimination (Walls,
1942). Third, photoreceptor sensitivities are set by visual pigments
in the photoreceptor; these visual pigments have similar, bell-
shaped, absorbance profiles (including an additional ultraviolet-
sensitive side-peak or beta-band for all visual pigments; Fig. 2).
They are composed of opsin proteins bound to a light-sensitive
chromophore, such as 11-cis retinal (Fig. 2A; Wald, 1968).
Interactions between amino acids of the opsin protein and the
chromophore determine where in the spectrum the visual pigment
absorbs best (Yokoyama, 2008). Visual pigments can be tuned by a
number of mechanisms, including changes to chromophore (Fig. 2B)
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Fig. 1. Mechanisms to alter spectral sensitivity. Several mechanisms can alter visual system sensitivities, including filtering by ocular media (A), and
alterations to photoreceptor type (B) and patterning (C,D). (A) Pigments in the cornea and lens can absorb shorter wavelengths and shift the spectrum of

transmitted light that reaches the retina (from gray to yellow or black lines, respectively). For example, a UV-absorbing pigment will long-wavelength shift lens
transmission. (B) Fish photoreceptors include rods and single or double cones. Double cones are morphologically connected but neurally independent, and can
contain different visual pigments. Occasionally, the inner segments of fish cones contain colored filters (such as ellipsosomes, which are usually yellow),

containing pigments that absorb shorter wavelengths. (C) The ratio of photoreceptor types varies for fish living in different habitats. Diurnal species have cones
(red, light green and dark green) and rods (blue), whereas the retinas of nocturnal and deep-sea species are rod dominant. (D) Cones can form different retinal
mosaics, where single cones (pink) and double cones (light green/dark green) have different arrangements (after Collin and Shand, 2003). Some fish have a

second type of single cone located in alternate corners as shown (x) for the square pattern.

or opsin sequence (Fig. 2C), and spectral sensitivity can be influenced
by opsin gene duplications or losses (Fig. 2D). Photoreceptor
sensitivities can further be shifted by altering which opsins are
expressed (Fig. 2E) or coexpressed (Fig. 2F). In a few instances,
photoreceptors also have photostable pigments, for example, in
ellipsosomes that modify the light as it passes through the inner to the
outer segment (Fig. 1B; Collin et al., 2003a; Walls, 1942).

Adaptive shifts in visual sensitivity

Variation in filtering mechanisms and photoreceptor type, number
and spectral placement produce visual variability that may be termed
‘adaptive’. However, as discussed above, our view is rather limited,
both in terms of evolutionary time and assumptions regarding the
habits and habitats of fish. Therefore, it is not always clear which of
the many visual tasks might drive adaptation of fish visual
sensitivities. Further, it is possible that there are multiple solutions
that are all ‘good enough’. There are ways in which we can investigate

links between features of the visual system and organismal fitness.
For example, with DNA data, genes can be tested for evidence of
positive selection using programs such as PAML (Yang, 2007).
When considering gene expression or filtering by photostable
pigments, we can test whether these features correlate with some
aspect of the ecology, such as light intensity or foraging requirements.
Although correlation is not evidence for causation, it is usually taken
as an indication that trait variation may improve fitness. However, in
most fish studies, proof of actual fitness effects are often missing
(Box 1). Some of the visual traits that may be related to fitness and
functional variation are expanded upon below.

Filtering by ocular media

Light is collected and focused by the cornea and lens (Fig. 1 A), either
of which can contain pigments that absorb shorter wavelengths
(Thorpe et al., 1993). UV-blocking lenses are common across coral
reef fishes and are found in freshwater species as well (Hofmann et al.,
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Fig. 2. Mechanisms affecting visual pigment sensitivities, including changes to opsin genes and the retinal chromophore. (A) Photoreceptor sensitivities
are set by visual pigments, which are composed of chromophores (yellow) and opsin proteins (blue). Several different mechanisms can alter sensitivities (shown
by absorption spectra for each visual pigment) including: (B) shifts between vitamin A1- and A2-derived chromophores; (C) changes to opsin amino acid residues;
(D) opsin gene duplications and losses, with duplicate genes acquiring new function (e.g. violet versus blue) and some duplicates subsequently being lost
(shaded); (E) differential opsin expression (shown as % total cone opsin); and (F) co-expression of multiple opsins with co-expression possible both in single
cones (top) and double cones (bottom). Opsin genes are color coded as SWS1 (pink), SWS2B (violet), SWS2A (blue), RH2 (blue-green to green) and LWS (red).

This color coding is similar in other figures.

2010a; Losey et al., 2003; Siebeck and Marshall, 2001; Siebeck and
Marshall, 2007); these filters may help to reduce retinal damage
caused by UV light when organisms do not require it (Ivanov et al.,
2018; Zigman, 1993). Blocking UV wavelengths may also filter out
scattered light, thereby decreasing background noise and enhancing
visual resolution and sighting distance (Muntz, 1973).

Conversely, behavioral tests have indicated the benefits of
UV-transmissive lenses and UV vision for zooplanktivory
(Browman et al., 1994; Jordan et al., 2004; Loew et al., 1993).
Several species are UV-sensitive during their larval pelagic phase
when they feed on zooplankton, and then become insensitive to UV
after settlement and change in diet (Siebeck and Marshall, 2007,
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Box 1. When is visual variation adaptive?

The formal definition of ‘adaptation’ is a change in phenotype that

increases fitness, leading to the production of more offspring in the next

generation (Barrett and Hoekstra, 2011). Whether variation in visual
sensitivity has such an effect is difficult to verify for a number of reasons:

- Experiments do not typically quantify the direct impact of visual
sensitivities on reproduction i.e. the number and/or quality of offspring.
Instead, most studies are indirect, using proxies (foraging rate, growth
rate, mate preference) to demonstrate fitness.

- These functional proxies may have small effect sizes, requiring an
impractical examination of many individuals, thus limiting our power to
detect behavioral or fitness impacts.

- We are often unable to identify the task causing selection on the visual
system. Therefore, we don’t know which proxy to use or which life
stage to test.

« Selection may have acted in the past due to some previous
environmental driver or constraint that shaped the visual system and
is therefore no longer present.

< Vision, particularly color vision, may best be thought of as being
‘general purpose’. Organisms may survive with a ‘good-enough’ visual
system. Effectively, this implies that the fithess landscape is flat,
making correlations between fitness proxies and visual system
characteristics quite weak (as in second point above).

Presuming that proxies are a good measure of fitness, and that the

relevant task and environment are current and determinable, there are

two approaches that have been used to demonstrate visual system
adaptation:

« The sequence of particular genes (e.g. the opsins) may shape visual
function. Evidence for adaptive sequence changes in these key genes
relies on tests of positive selection. These compare whether the
sequence changes between different phylogenetic groups are
correlated with ecology. These methods have the most power when
there are a number of phylogenetically independent changes that
cause repeated sequence evolution of a particular gene.

« Some aspects of visual system sensitivity may be tested to determine
whether they are correlated with ecology. These include the light
transmission of optical media (lens, cornea, photoreceptor
ellipsosomes) or photoreceptor sensitivity placement (Anax, gene
expression, chromophore). Aspects of ecology might include
properties of the local light environment or foraging style. Tests
using phylogenetically informed comparative methods determine
whether the visual and ecological variables are correlated when
correcting for phylogeny. These methods also produce the most
significance when convergence causes multiple independent
changes in response to a particular ecological shift.

Thorpe and Douglas, 1993). Other, mostly smaller, species
maintain UV-transparent lenses and UV-sensitive photoreceptors
throughout life, enabling them to remain zooplanktivorous
(Hofmann et al., 2010a). The advantages of UV sensitivity go
beyond foraging to inter- and intraspecific communication. UV may
be used as a ‘private’ communication channel invisible to larger,
predatory fish, but available for decision-making at close range.
This has been suggested for both freshwater (guppies, Smith et al.,
2002; swordtails, Cummings et al., 2003) and marine fish (e.g.
damselfish, Siebeck et al., 2010; Stieb et al., 2017; see below).
Aside from UV filters, lenses and corneas may contain yellow or
even orange carotenoid pigments (Douglas et al., 1998; Kondrashev,
2008; Muntz, 1973; Siebeck and Marshall, 2000). These may reduce
scattering from certain directions in shallow-water environments with
high light intensity, or may help in contrast enhancements for fish that
feed on algae or graze from the substrate (Siebeck and Marshall,
2000). There are several types of ocular filters at the level of the retina
(reviewed in Douglas and Marshall, 1999). One example is the
intraocular filter of lanternfish (Myctiphoformes) that possesses a

yellow pigment located in one area of the retina’s outer nuclear layer.
The yellow filter occurs in 10 of 61 species studied, with varying
spatial distributions, and it may be related to diurnal migration,
camouflage breaking or predator avoidance (de Busserolles et al.,
2015). In two species, its spatial location varies between the sexes. In
these species, it may be used to enhance bioluminescence detection
and may facilitate intraspecific communication (de Busserolles and
Marshall, 2017).

Photoreceptor type

As discussed above, photoreceptors are classified as rods and cones
(though this classification can be complicated, see Table 1 in de
Busserolles et al., 2017). The rod photoreceptors are predominantly
sensitive to medium wavelengths (peak absorbance ~500 nm) and
show less variation in spectral sensitivity. One exception is found in
deep-sea fishes, where rods may have broader sensitivities,
either through exceptionally long photoreceptor outer segments or
shifted visual pigment sensitivities. Their broader rod sensitivity is
thought to increase spectral/visual range to allow fish to detect
bioluminescent prey (Douglas et al., 1998; Musilova et al., 2019a).
Cones can be subdivided based on morphology into single cones
and double or twin cones, with occasional triple and even quadruple
cones. These often form regular mosaics across the retina in teleosts
(Fig. 1B-D; Walls, 1942). Whereas double cones, like rods, have
spectral absorbances of medium and long wavelengths, often
matching the prevailing wavelength of light, the absorption of single
cones may be quite variable within the spectral envelope (see
Glossary) of available light (Lythgoe, 1979, 1984; Marshall et al.,
2003; Partridge and Cummings, 1999). Ratios of different
photoreceptor classes and mosaics vary between and within
species (reviewed in Collin and Shand, 2003; Fig. 1D), thus
producing differential visual sensitivities. These may also fluctuate
across the retina, providing specialized regions with spectrally
distinct sensitivities matched in some way to the environment (e.g.
in garfish, Reckel et al., 2002). Both interspecific and intraretinal
variation is thought to be driven by variation between local
environments as well as variation within a particular environment.
For example, diurnal, shallow-living fishes are exposed to
bright, colorful environments, and usually possess a complex
photoreceptor mosaic providing a powerful color vision system with
sensitivities across the spectrum (Marshall et al., 2006). The spectral
sensitivities of this mosaic can vary between species in different
localities that differ in light environment. Fish in clear lakes have
shorter-wavelength sensitivities than fish in murky lakes (Hofmann
et al.,, 2009). Variation within a retina can result when the
background light varies spatially. For example, the dorsal retina
that looks down against the brown rocks can contain longer
wavelength-sensitive visual pigments while the ventral retina that
looks up against the spacelight can be sensitive to shorter
wavelengths (Temple et al., 2011). Conversely, deep-living
species generally have a more homogeneous retina based on high-
sensitivity rods (Wagner et al., 1998; Fig. 3).

Photoreceptors and their arrangement may also change with
development. This often accompanies changes in the spectral
composition and intensity of the photic environment, as well as
transitions from one feeding strategy to another (Collin and Shand,
2003). A good example is the change in retinal composition among
migrating salmonids. Salmon go from freshwater to marine
environments and switch from a planktivorous to a benthopelagic
(see Glossary) existence. This is accompanied by a (partial ) loss of
UV-sensitive cones (Bowmaker and Kunz, 1987; Deutschlander
et al., 2001; Hawryshyn et al., 1989). However, UV sensitivity is

5

)
(@)}
9
je
(2]
©
-+
c
Q
£
—
()
o
x
NN
Y
(©)
‘©
c
—
>
(®)
-_




REVIEW Journal of Experimental Biology (2020) 223, jeb193334. doi:10.1242/jeb.193334
A B
OLight gradient Tuning mechanisms Visual sensitivities
Eye Retina Opsin duplications
morphology morphology and losses 1.0 1
S 0.8
Z 0.6
15 = — 5 4
[ 2 o,
—- 0
300 400 500 600 700
30
E
=
a
o 45
a
1.0
= § 087
60 S 0.6
_-.s — 2
3 0.4+
—H -
< 0.2
0 B T T T T T
75 300 400 500 600 700
400 450 500 550 600 650 Wavelength (nm)

Wavelength (nm)

Fig. 3. Adaptation from shallow to deep water environments. (A) Adaptation in deep oceans and lakes may be extreme, as the light spectrum decreases in
intensity and blue shifts with depth. (B) With increasing depth, fish switch from duplex cone and rod retinas to all-rod retinas (e.g. Wagner et al., 1998).
Sometimes fish acquire multiple RH1 opsins with rod sensitivities covering the range of light (residual daylight and bioluminescence) in the deep sea (Musilova

et al., 2019a). Eye size can also increase as fish adapt to dim environments.

regained when fish return to the rivers to breed (Allison et al., 2006;
Cheng and Novales Flamarique, 2004).

Molecular photoreceptor tuning mechanisms

The peak sensitivities of photoreceptor visual pigments are
influenced by five different factors that affect their two primary
components: the chromophore and the opsin protein. Here we
describe what is known about these different mechanisms and how
they might improve ecological function.

Chromophore

Fish vary in their use of vitamin Al- or A2-derived chromophores
or a mixture (Fig. 2B; Bridges et al., 1984; Munz and McFarland,
1977). They can switch chromophores, likely through the activity of
an enzyme, Cyp27cl, that converts Al chromophore into A2
(Enright et al., 2015). The presence of an extra double bond in the
A2 chromophore long-wavelength shifts all visual pigments, with
the longer-wavelength pigments having a larger chromophore shift
(Harosi, 1994; Parry and Bowmaker, 2000). Typically,
chromophore changes shift visual pigments to shorter
wavelengths in clear water (see Glossary), which transmits blue to
green parts of the spectrum. In turbid environments, visual pigments
are shifted to longer wavelengths to match the red-shifted light
spectrum resulting from particulates and high chlorophyll
concentrations. For example, cichlids from clear lakes, such as
Lakes Malawi (Terai et al., 2002) and Lake Xiloa (Hérer et al., 2018)
rely on Al-based pigments and have low gene expression of
cyp27cl. However, cichlids that live in murky Lake Managua and
Lake Nicaragua express more cyp27cl, increasing the amount of A2
chromophore within their visual pigments. In addition, studies
in cichlids from Lake Victoria (Terai et al., 2017) and in
sticklebacks from Fennoscandian lakes (Saarinen et al., 2012)
suggest A2 pigments with longer-wavelength sensitivities match the
downwelling illumination more effectively. The switch between

chromophore types can occur on relatively short timescales (Munz
and McFarland, 1977), as seen for example in the cichlid, Cichla
monoculus, which navigates environments with varying turbidity
in the Panama canal, on a daily or weekly basis (Escobar-Camacho
et al., 2019b). Surprisingly, some chromophore changes are more
closely tied to seasonality than water properties, as found
for Scandinavian fishes (Jokela-Maatta et al., 2019) and salmon
(Flamarique, 2005; Temple et al., 2006), though ontogeny can also
play a role (Archer and Hirano, 1996). Seasonality may be linked to
variations in sun angle: during winter the lower sun angle is
associated with longer-wavelength environmental light (Lindstrom,
2000; Pauers et al., 2012).

Opsin sequence shifts (discussed below) and chromophore
shifts sometimes both correlate with water spectral color and
depth. As for chromophore shifts, opsin sequence changes also tend
to shift visual pigments to shorter wavelengths in clearer water.
However, at least one study has shown that this relationship is not so
straightforward. Sand-dwelling cichlids of murky Lake Victoria
utilize long wavelength-sensitive opsin (LWS) genes with sequences
that would be sensitive to shorter wavelengths in combination with
higher levels of A2 chromophore when fish live deeper (Terai et al.,
2017). It may be that some mixing and matching of shorter-tuned
opsins and longer wavelength-sensitive chromophores are needed to
produce the optimal visual pigment to detect the available light.

Opsin sequence

Five classes of ancestral vertebrate visual opsins are known, and
many fish possess all of these, including rhodopsin (RH1; expressed
in rods) and four cone opsin classes: short wavelength-sensitive
(SWS1 and SWS2), rhodopsin-like (RH2) and LWS (Ebrey and
Koutalos, 2001; Yokoyama, 2008). The corresponding protein of
each class is sensitive to light in different parts of the spectrum
(RH1: 447-525 nm; SWS1: 347-383 nm; SWS2: 397-482 nm,;
RH2: 452-537 nm; LWS: 501-573 nm; see Table S2). The
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sensitivity range of each class is the result of changes in key amino
acid sites close to the retinal binding pocket that alter amino acid
polarity and thus change the way in which the chromophore
interacts with the opsin protein (Fig. 2C; Asenjo et al., 1994; Chang
et al., 1995).

Opsin sequences quite often vary between closely related species.
These differences are thought to enable fish to adapt to different
light environments. For RH1 opsins, changes in a few amino acids,
so called key-tuning sites, shift the visual pigment to shorter
wavelengths with depth in clear waters (e.g. cottoids: Luk et al.,
2016; deep-sea fishes: Hunt et al., 2001; cichlids: Sugawara et al.,
2005; Sugawara et al., 2002) and to longer wavelengths with depth
in murkier waters (cichlids: Terai et al., 2017). Also, moving from
clear water to a murkier habitat can induce changes in RHI
sequences (e.g. anchovies: Van Nynatten et al., 2015; cichlids:
Schott et al., 2014; Torres-Dowdall et al., 2015; herring: Hill et al.,
2019). Changes to key sites may not only shift the peak spectral
absorbance, but also increase light sensitivity by increasing the
stability of the excited rhodopsin intermediate (Hauser et al., 2017),
and/or the excitability of the chromophore (Luk et al., 2016).

Cone opsin sequences also vary with light habitat. For example,
the cichlid SWSI gene is long-wavelength shifted by 10 nm in
murky Lake Victoria (Ayax 378 nm), compared with homologs in
Lake Malawi (Ap.x average 368 nm; Smith and Carleton, 2010).
Cottoid fishes of Lake Baikal are also known to shift their SWS2
pigments to shorter wavelengths in an attempt to match their blue-
shifted light environment at depth (Cowing et al., 2002). Another
prominent example is the rapid fixation of red-shifting mutations in
SWS2 pigments in stickleback populations that have recently
invaded blackwater habitats (see Glossary) dominated by longer
wavelengths of light (Marques et al., 2017).

There is also evidence that past environmental variability
produces contemporary genetic variability. Genes for the shortest-
and longest-wavelength opsins accumulate sequence variation,
suggesting they have experienced shifting light regimes. These
include the SWSI and LWS genes in African cichlids (Hofmann
et al., 2009) and damselfish (Hofmann et al., 2012; Stieb et al.,
2017), and the SWS2 and LWS genes in labrids (Phillips et al.,
2016), cardinalfishes (Luehrmann et al., 2019), characins (Escobar-
Camacho et al., 2019a preprint) and Neotropical cichlids (Escobar-
Camacho et al., 2017). This accumulation of mutations may result
from selection acting on the genes for visual pigments at the edge of
the light’s spectral envelope. Species experience changing light
environments because of altered water spectral quality with depth,
or as species repeatedly shift habitats from rivers to lakes or marine
to freshwater over evolutionary time. The genes for visual pigments
that are spectrally more central do not show such sequence changes,
as the consistency of their light stimulation provides less selective
pressure.

Gene duplications and losses

Ancestral vertebrates already possessed members of five opsin
classes, as suggested by the diversity in sea lamprey (Collin et al.,
2003b). Since the vertebrate common ancestor, some teleost
lineages have gained additional opsin copies through duplications
so that they now have more opsins than other vertebrates (Davies
et al., 2012; Musilova et al., 2019a; Rennison et al., 2012). These
extra copies are sometimes the result of the teleost-specific whole
genome duplication (Escobar-Camacho et al., 2019a; Liu et al.,
2016; Liu et al., 2019; Morrow et al., 2011), but can also result from
duplications specific to particular lineages, e.g. the tandem
duplications of the SWS2 and RH2 genes that are shared across

Actinopterygians (Hofmann and Carleton, 2009; Parry et al., 2005).
As with any gene or genome duplication event, the functional
reasons behind opsin gene duplications need further study to assess
possible fitness effects.

Teleosts have up to two SWS1, three SWS2, eight RH?2 and five
LWS cone opsins within their genomes, with a median of six cone
opsins across fishes. The highest currently recorded number is 13
cone opsins for the Blackbar soldierfish, Myripristis jacobus
(Musilova et al., 2019a). Although most fish species have only
one or sometimes two rod opsin genes (RH1), in some, mostly deep-
sea fish lineages, these genes also proliferated. For example, the
spinyfin, Diretmus argenteus, has 38 RHI copies in its genome
(Musilova et al., 2019a). Although less than half of the Diretmus
genes are expressed at any one time, they do show different spectral
sensitivities. This could potentially be important for performing
different visual tasks or for performing the same task under different
light regimes provided by the mesopelagic realm (see Glossary).

Once opsin genes duplicate, they may acquire new mutations
which shift their spectral sensitivity. Sometimes this coincides with
the loss of function of a gene that confers a spectral sensitivity which
is close to the sensitivity of the original duplicate (Fig. 4; Escobar-
Camacho et al., 2019a preprint; Liu et al., 2019). For example, in
Osteoglossiformes and Characiformes, LWS was duplicated.
Coincident with loss of functionality of a RH2 gene, one of the
LWS duplicates was selected to shift to shorter-wavelength
sensitivity, replacing the lost mid-wavelength sensitivity. In this
way, a gene duplicate became neofunctionalized from the ancestral
version to fill an important spectral niche. Duplications of the SWS2
genes have also led to neofunctionalization, with the ancestral gene
retaining blue sensitivity while the duplicate becomes violet sensitive
(Cortesi et al., 2015). In other systems, spectral shifts of opsin
duplicates are prevented by gene conversion (see Glossary). In some
poeciliids, for example, neighboring copies of LWS recombine to
homogenize the different LWS opsin copies to minimize long-
wavelength variation. However, in other species, selection minimizes
gene conversion to retain unique LWS gene sequences, as this
differentiation may facilitate mate choice based on long-wavelength
red coloration (Sandkam et al., 2017; Watson et al., 2011). Overall,
duplicates can be either quite distinct or only slightly different in
sensitivity, depending on their time since duplication and the strength
of selection acting on them. The role of these extra opsin copies is not
always clear. More information is needed on their spatial and
temporal distribution and possible co-expression before we can
determine their significance.

In addition to gene duplication, opsins can also be lost from the
genome. This may be the result of photoreceptor simplification in
spectrally narrow environments or when light intensities change
severely such as in the deep sea (Musilova et al., 2019a) or turbid
waters (Escobar-Camacho et al., 2017; Lin et al., 2017; Liu et al.,
2016; Weadick et al., 2012). These habitats are generally darker and
have reduced levels of UV light (and red light, in the case of deeper
waters; Fig. 3). Consequently, in deeper-living fish, one would
expect a (total) loss of cone opsins. However, although some opsins
can be lost (e.g. SWS1 and LWS cone opsins), medium-wavelength
opsins appear to be useful to larval stages, and are therefore often
retained (see Fig. S1 in Musilova et al., 2019a). An extreme
correlation between gene loss and light environment is found in the
Southern cavefish, Typhlichthys subterraneus, which has
degenerated eyes and has only one fully coding RH2 gene left in
its genome (Musilova et al., 2019a). Studies in other cavefish
confirm a preponderance of loss of vision-related genes, including
opsins, as well as epigenetic mechanisms for altering gene
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expression (Gore et al., 2018; McGaugh et al., 2014). Fish opsin
duplications and losses occur far more frequently than expected,
with a great deal of turnover across fish lineages (Fig. 5).

Opsin expression and co-expression
Fish with many opsins may sometimes express all of them. For
example, zebrafish express all eight cone opsins in different regions
of the retina (Allison et al.,, 2010; Raymond and Barthel, 2004;
Takechi and Kawamura, 2005). By contrast, other species express
only a subset of opsins with different sets for different developmental
stages (flounder: Evans et al., 1993; Savelli et al., 2018; cichlid: Harer
et al., 2017; O’Quin et al., 2011; salmon: Cheng and Flamarique,
2007; Cheng and Novales Flamarique, 2004; dottybacks: Cortesi
et al., 2016; Cortesi et al., 2015; grouper: Matsumoto and Ishibashi,
2016; and silver spinyfin: Musilova et al., 2019a). This may provide
benefits when larval habitat or foraging differs from that of adults.
Altering the timing of this developmental progression through
heterochronic shifts (see Glossary) may change the adult phenotypes
between closely related species (Carleton et al., 2008; Hérer et al.,
2017). Switching expression from one opsin class to another can
cause significant (30-90 nm) spectral shifts (see Fig. S2).
Intraretinal variation in opsin expression is another tuning
mechanism that acts within an individual to optimize vision in
different directions (zebrafish: Zimmermann et al., 2018, four-eyed
fish: Owens et al., 2012). For example, archerfish use a spitting jet
of water to capture terrestrial insects. As a result, the eye is
optimized for vision at the interface between water and air, and
demonstrates an excellent example of intraretinal variability in
spectral sensitivity (Temple et al., 2010). Different sets of visual

Characiformes

Opsin expression (%)

Opsin expression (%)

Fig. 4. Opsin gene neofunctionalization. Opsin
gene duplicates may gain new function by acquiring
amino acid substitutions that shift visual pigment
sensitivity. This sometimes occurs after species lose
one gene. Here, both osteoglossiformes and
characiformes have lost (osteoglossiformes) or
downregulated the expression (characiformes) of the
RH2 gene while one of their LWS duplicates has
acquired key amino acid changes that green-shifted
its sensitivity.

Osteoglossiformes
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sensitivities are produced by changes in opsin expression combined
with changes in chromophore ratios, which produce long-wavelength
sensitivities in the dorsal retina for looking down against the rocks,
medium-wavelength sensitivities in the medial retina for looking
against the spacelight (see Glossary), and short-wavelength
sensitivities in the ventral retina for looking up against the bright
sunlight. This optimizes different visual tasks that will be performed
by the different parts of the retina, both under and above water.

Opsin expression may vary among closely related species, with
differences correlated with foraging. The UV-sensitive opsin
(SWSI) is highly expressed in planktivorous cichlids (Hofmann
et al., 2009; O’Quin et al., 2010). Alternatively, long-wavelength
sensitivity is correlated with foraging on benthic algae. For
example, in damselfish, LIS expression is notably increased in
herbivorous species (Stieb et al., 2017). This may improve contrast
between the long-wavelength portion of the chlorophyll reflectance
that fish must discriminate from the gray or brown rubble
background when viewed with a long-wavelength biased visual
system (Marshall et al., 2003).

Some shifts in opsin expression over an individual’s lifetime
appear to be genetically hard-wired to modify vision developmentally
(bream: Shand et al., 2008, 2002; pollack: Shand et al., 1988;
unicornfish: Tettamanti et al., 2019). However, fish may also display
some level of plasticity, with opsin expression varying with light
environment (killifish: Fuller et al., 2004) or depth (cichlids: Smith
et al., 2011; damselfish: Stieb et al., 2016). This plasticity has been
explored in laboratory experiments that demonstrate sensitivity shifts
to match different light environments (killifish: Fuller et al., 2005;
Fuller and Claricoates, 2011; bream: Shand et al., 2008; cichlids:
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Fig. 5. The teleost phylogeny showing the prevalence of different spectral tuning mechanisms between species within a given order. Spectral tuning
mechanisms include changes to opsin amino acid sequence, opsin gene expression, cornea and lens transmission, chromophore shifts, gene duplications and
gene losses (columns from left to right). Phylogeny based on Hughes et al., 2018. Several animal silhouettes courtesy of PhyloPic (http:/www.phylopic.org).

Hofmann et al., 2010b; Nandamuri et al., 2017; cardinalfish and
damselfish: Luehrmann et al., 2018; and guppies: Kranz et al., 2018,
Sakai et al., 2018). However, not all species are plastic (sticklebacks:
Flamarique et al., 2013; cod: Valen et al., 2018; salmon: Novales
Flamarique, 2019), and plasticity is sometimes limited to younger
stages (cichlids: Hérer et al., 2017; Hornsby et al., 2013). Plasticity
may also have a genetic component and so may vary between
populations (stickleback: Rennison et al., 2016; bluefin killifish:
Fuller et al., 2005) or environments (sticklebacks: Veen et al., 2017).

In addition, at least one study system showed some measure of
compensation for the lighting environment used for raising fish
(Kroger et al., 1999, 2003; Wagner and Kroger, 2000). After long-
term rearing of the South American cichlid Aequidens pulcher under
monochromatic lights, researchers found that although the visual
sensitivities did not change (i.e. no change in gene expression)
photoreceptor cell numbers and lengths varied under short-
wavelength rearing. The number of short wavelength-sensitive
cones decreased, while the length of the longer wavelength-
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sensitive double cones increased. These compensatory changes
would enhance long-wavelength sensitivity when little long-
wavelength light was available. Interestingly, switching fish to
white light reversed these differences, with retinae returning to
normal after 2 months (Wagner and Kroger, 2000).

Although expression may completely switch from one opsin to
another, multiple opsins can also be co-expressed in the same
photoreceptor, producing intermediate spectral sensitivities (salmon:
Cheng and Flamarique, 2007; cichlids: Dalton et al., 2017, 2014,
Torres-Dowdall et al., 2017; and damselfish: Stieb et al., 2019). The
idea that spectral tuning may be achieved by co-expression of
multiple opsins is supported by the fact that opsins are generally not
randomly co-expressed from closely located loci (i.e. it is not leaky
expression from some shared promoter). Instead, opsins that are
spectrally close are co-expressed from loci that are genomically
far apart (cichlids: Dalton et al., 2017, 2014; osteoglossiforms:
Liu et al., 2019; characins: Escobar-Camacho et al., 2019a preprint).
Co-expression may vary spatially across the retina with less
co-expression in regions of high acuity (area centralis) and more in
the periphery (Dalton et al., 2017). However, this is not always the
case. The Barrier Reef anemonefish Amphiprion akindynos has
recently been shown to have a small area in the central temporal
region with significant coexpression of SWSI! (UV) and SWS2B
(violet) (Stieb et al., 2019). This region, which falls within the region
of'highest acuity, may be important for discriminating objects at close
range. It therefore may increase the chromatic contrast of conspecific
color patterns possibly involved in mate choice.

Opsin expression does vary between species in different light
habitats, suggesting adaptation to the light environment. Cichlids in
murky lakes with red-shifted light environments express longer
wavelength-sensitive opsins than those in clear lakes, increasing
overall quantum catch (Hofmann et al., 2009; Torres-Dowdall et al.,
2017). Expression shifts may occur on a very local scale. For
example, cichlids are quite philopatric (see Glossary) and do not
move long distances. Therefore, cichlids living at clearer sites in the
center of a lake express shorter-wavelength opsins whereas those
living nearby in more murky riverine sites have longer-wavelength
opsins (Hofmann and Carleton, 2009; Wright et al., 2019). On coral
reefs, cardinalfish that live above the corals in the ‘blue’ water
column express shorter-wavelength opsins, whereas those that live
in dimmer ‘reddish’ coral caves express longer-wavelength opsins
(Luehrmann et al., 2020). Similarly, opsin expression in guppies
varies between different watershed populations (Sandkam et al.,
2015b) and even between populations with high versus low
predation (Sandkam et al., 2015a). Opsin expression is also
known to vary among fishes living in different small lakes and
streams, presumably matching changes in the light environment
(Musilova et al., 2019b; Veen et al., 2017).

Rapid plastic responses to the local environment also shift opsin
expression, suggesting that it may be adaptive to match dynamic
changes in light environment. This was first discovered in bluefin
killifish; fish from clear springs or tea-stained swamps switched
opsin expression when raised in different environments (Fuller
et al., 2004, 2005). The rapidity of these switches is astonishing:
sudden environmental shifts can cause changes within just a few
days (Fuller and Claricoates, 2011). Cichlids also show rapid
plasticity (Nandamuri et al., 2017), but plasticity in other species
requires a longer time scale, potentially allowing for seasonal
adaptation (medaka: Shimmura et al., 2018; damselfish and
cardinalfish: Luehrmann et al., 2018).

In addition to the molecular studies demonstrating plastic
responses, studies using physiology also support such shifts. This

includes microspectrophotometry and electrophysiology studies of
fish that change sensitivities through development or rearing in
different environments (e.g. bream: Shand et al., 2002; cichlid:
Wagner and Krdger, 2005; Lisney et al., 2010; eel: Archer et al.,
1995; Wang et al., 2011; flounder: Evans et al., 1993; killifish:
Fuller et al., 2003; and tuna: Loew et al., 2002a,b). These studies
provide validation that molecular changes cause significant
physiological sensitivity shifts.

In summary, visual pigment and photoreceptor sensitivities vary
owing to a number of mechanisms. Although numerous examples of
these variations correlate with environment or ecology, it is not
always clear whether these differences actually have any functional
or fitness implications. Testing for the significance of these changes
in the context of current environments may prove to be either highly
or just barely relevant. However, it can be difficult to determine
whether these differences matter evolutionarily, because of the
challenges in demonstrating adaptation (Box 1).

Using behavior to investigate visual sensitivity

Behavioral tests are arguably the best way to investigate the
significance and effect size of visual system variation, as they
involve responses at the level of the whole organism. Such tests can
be challenging to implement, as they require attention to hue/color
as well as brightness, in order to ensure that one is not confounded
by the other (Douglas and Hawryshyn, 1990). In addition, animals
may respond to cues other than those intended. Finally, not all
species can be motivated to repeatedly perform particular behavioral
tasks. A number of behavioral studies have quantified the ability of
fishes to discriminate colors by quantifying photoreceptor
performance (i.e. receptor limited noise) in order to predict how
well fish can perform particular discrimination tasks of ideal colored
targets (Champ et al., 2016; Cheney et al., 2019; Pignatelli et al.,
2010). However, here we focus on more biological, animal-centered
tasks, such as foraging for prey or choosing mates.

The importance of particular wavelengths for foraging has been
demonstrated. For example, UV light improves prey capture rates in
zooplanktivorous animals, suggesting that UV sensitivity plays an
important role in their prey detection (perch: Loew et al., 1993,
trout: Browman et al., 1994; Novales Flamarique, 2013,
sticklebacks: Rick et al., 2012, cichlids: Jordan et al., 2004,
zebrafish: Novales Flamarique, 2016). The study of other robust
behaviors, such as the optomotor response (OMR; see Glossary),
has also demonstrated the effect of altered visual sensitivity. For
example, knocking out the LIS opsin in medaka causes fish to be
much less sensitive to red light during OMR (Homma et al., 2017).
This provides a clean behavioral measure of a fish’s spectral
sensitivity in a robust and easy way. More subtle spectral tuning
effects may also affect OMR sensitivity. In cichlids, LS sequence
(Maan et al., 2006) and expression (Smith et al., 2012) affects OMR
sensitivity — fish that have LWS genes encoding variants that are
sensitive to longer wavelengths or that have higher LWS gene
expression have better red sensitivity.

Additional demonstrations of the behavioral effects of spectral
tuning involve mating experiments. In medaka with the LIS opsin
knocked out, the lack of red sensitivity alters mate choice, making
them less able to discriminate against skin color mutants (Kamijo
et al., 2018). Stickleback mating preference is also influenced by
retinal sensitivity (Boughman, 2001; Rick et al., 2011) — females
with higher red sensitivity (based on OMR) prefer redder males.
Sticklebacks are also influenced by UV signals, with a decrease in
UV illumination reducing male aggression (Rick and Bakker,
2008). This suggests that some parts of the spectrum may be
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important triggers for particular behaviors including female mating
(red) and male aggression (UV).

Another example of adaptive spectral tuning comes from coral
reef fishes. Most damselfish species have UV-reflective body
parts (Fig. 6; Marshall, 2000; Stieb et al., 2017). This, together with
their overall UV sensitivity, provides a ‘private’ close-range
communication channel (Losey, 2003; Marshall and Cheney,
2011; Siebeck et al., 2006). Indeed, behavioral studies revealed
that the damselfish Pomacentrus amboinensis uses facial UV
patterns for species discrimination and perhaps also for mate
selection (Siebeck et al., 2010).

Differences in visual sensitivity and their implications for visual
performance and potential role in speciation have been behaviorally
tested in sympatric Lake Victoria cichlids. These species include a
shallow-water, blue-colored species, Pundamilia pundamilia, that
has a shorter wavelength-sensitive LIS opsin and a deeper living,
red-colored species, Pundamilia nyererei, with a longer-wavelength
LWS opsin. Visual sensitivity differences have been confirmed
through LWS sequencing, microspectrophotometry (Carleton et al.,
2005) and protein expression (Terai et al., 2006). A 5 kb region
around the LWS gene shows evidence of selection for the alternative
LWS alleles in the two species (Terai et al., 2006). These differences
have been proposed to contribute to speciation through sensory
drive (see Glossary; Endler, 1992) in a series of steps. First, the LWS
sequence differences were selected to increase luminance detection
of the background spacelight across a depth gradient. Second,
acquired visual sensitivity differences affected mate preference,
with shallower P. pundamilia being sensitive to shorter wavelengths
and preferring blue males, whereas deeper P. nyererei were sensitive
to longer wavelengths and preferred red males. Finally, these mating
preferences led to reproductive isolation and speciation (Seehausen
et al.,, 2008). A number of key elements for this correlative
hypothesis are supported through direct experimentation. This
includes enhanced sensitivity of P. pundamila to blue light and
P. nyererei to red light (Maan et al., 2006), natural sorting of
P. pundamilia and P. nyererei to shallow and deep environments
(Seehausen et al., 2008), enhanced survivability of the two species
in lab experiments simulating their respective light environments
(Maan et al, 2017) and enhanced female preference for their
conspecific males in these same light environments (Wright et al.,
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2017). Other species pairs in Lake Victoria also show evidence of
opsin sequence differences that are correlated with depth and male
nuptial color, suggesting this could be a common speciation
mechanism in Lake Victoria (Miyagi et al., 2012). Although
sensory drive and the co-evolution of visual sensation and color
signals is somewhat at odds with a general-purpose visual system,
there is mounting evidence for such a correlation (Cummings et al.,
2018).

Several of the sensitivity differences between species involve fixed
genetic differences, but we should note that plasticity might also play
a role in speciation. Some might argue that plasticity would prevent
speciation as changes would not become fixed and so not contribute
to genetic isolation between species. However, it has been suggested
that plasticity might actually facilitate speciation by enabling
organisms to move into new habitats (West-Eberhard, 2005). These
habitats could differ spatially on a large scale, but might also include
microhabitat or temporal differences in when and where populations
mate. Short-term plasticity might allow individuals to adapt to
different light regimes or perform different foraging tasks in these
different locales. Therefore, plasticity might be an important driver
facilitating speciation (West-Eberhard, 2003).

Comparing mechanisms of spectral tuning - effect sizes and
time scales

Many of the mechanisms for spectral tuning described here are
shared across the teleost phylogeny (Table S1; Fig. 5). This suggests
that these mechanisms arose early in vertebrate evolution; indeed,
this idea is well supported by studies of migrating lamprey. This
basal vertebrate has the ability to switch chromophore, gene
expression and even ellipsosomes through ontogeny (Collin et al.,
2003a; Davies et al., 2007; Morshedian et al., 2017). Comparisons
between lamprey species also show evidence of opsin gene loss
(Davies et al., 2009). Therefore, each of the key spectral tuning
mechanisms was present across groups from fishes to gnathostomes,
supporting their likely origin in early vertebrates.

It is worth asking why fish have so many different ways to produce
spectral shifts. One reason might be that the different mechanisms
vary in their effect size and how rapidly they occur (Fig. S2). Changes
in both co-expression and chromophore usage are relatively rapid and
introduce similarly sized shifts. However, co-expression can affect

UV reflectance Fig. 6. UV sensitivity is adaptive. In

1004 damselfish, spectral tuning in the UV is
achieved by (A) high sequence variability of

801 the SWS1 opsin with multiple changes in

60 opsin spectral tuning sites between species,

404 (B) differential SWS17 opsin expression

20 (Stieb et al., 2017) to produce (C) short

0 wavelength-shifted visual pigments (arrow

indicates UV-sensitive visual pigment). (D)
Damselfish also have UV-transmissive
lenses. (E) Most damselfish species also
show UV reflectivity (Marshall, 2000; Stieb
et al., 2017), including individual UV facial
patterns, suggesting that UV is likely to be
important for species discrimination (Siebeck
etal, 2010).
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Fig. 7. Visual system divergence in cichlids. Cichlids have adapted to
different rivers and lakes on different continents. African rivers and lakes may
be quite clear, leading to a diverse array of opsin genes that detect a broad
spectrum of light. South American waters are often murkier, such that cichlids
have lost a number of shorter wavelength opsins. South American cichlids
have also acquired yellow cornea and lens filters, perhaps to reduce the
transmission of scattered light in the murkier waters (Muntz, 1973, 1982;
Escobar-Camacho et al., 2017; Escobar-Camacho et al., 2019b).

individual visual pigments, whereas chromophore shifts affect
multiple visual pigments simultaneously. Perhaps co-expression
relies on having ‘extra’ opsin genes and so only some species will

be able to utilize co-expression, whereas chromophore tuning is
more ubiquitous across groups. Opsin sequence changes and gene
losses and duplications are quite slow, on the scale of thousands
to millions of years. They may only become important after more
rapid, plastic mechanisms enable species to invade new habitats,
inducing selection to drive genetic change (Parsons et al., 2019;
West-Eberhard, 2005).

Many of these mechanisms for altering visual sensitivity work in
concert during ecological shifts. For example, adaptation of cichlids
to either clear African lakes or murky South American rivers
involved multiple mechanisms, including lens pigmentation, opsin
expression, opsin gene losses and chromophore shifts. Adaptation
to the different habitats occurred over long evolutionary timescales
(80 million years), enabling contributions from each of the tuning
mechanisms (Fig. 7; timetree.org, Escobar-Camacho et al., 2017;
Matschiner et al., 2017).

Other visual changes have occurred more recently. These include
adaptations in cichlids of Lake Victoria, which formed only
15,000 years ago. The more rapid mechanism of differential opsin
gene expression has occurred (Wright et al., 2019), but surprisingly,
sequence changes are also present (Terai et al., 2002). These
mutations may actually have accumulated in riverine refugia and
then introgressed (see Glossary) between lake and riverine taxa
(Meier et al.,, 2017). Adaptation in guppy visual systems to
particular light environments also appears to be rapid, on the scale
of only a year. This is supported by evidence from changes in opsin
expression and behavior, including mating preferences (Cole and
Endler, 2015; Endler et al., 2001; Kranz et al., 2018).

Conclusions and future work
The visual system is often portrayed as a prime example of
phenotypic adaptation to ecology (Hauser and Chang, 2017;
Yokoyama, 2008; Yokoyama and Yokoyama, 1996). As we have
discussed in this Review, adaptations of the visual system can arise by
several mechanisms, which have been studied in detail in a few
animal groups. In spite of the many tuning mechanisms that have
been discovered, we know little about their effects on behavior or
fitness. We would expect large sensitivity shifts to have fitness
effects, and indeed in some cases such shifts have been correlated
with changes in foraging preferences (e.g. UV sensitivity for
zooplanktivory) or pecking behavior (Fuller et al., 2010).
Additionally, shifts in spectral sensitivity (including those caused
by removing particular opsins, as in medaka) have been shown to
have impacts on mate choice (e.g. cichlids, stickleback, guppies).
However, examples from foraging or mating behaviors are few, and
might not represent good proxies of animal fitness. In addition, we
don’t know how large a sensitivity change has to be in order to
measurably affect behavior. It is possible that much of the observed
visual variation happens randomly with little effect, such that most
visual systems are good enough for the visual tasks at hand. For
example, a small amount of extra opsin expression might have little
impact on foraging efficiencies or mate choice (Mitchem et al., 2018).
Therefore, it is possible that any trichromat with three visual pigments
will successfully perform most visual tasks (Marshall et al., 2015).
Alternatively, one can argue that variation in spectral sensitivity
does not happen by chance, based on the fact that shifts in opsin
sequence, expression and chromophore are correlated with
environment in expected ways. In addition, changes such as gene
co-expression do not occur at random, but typically involve
spectrally close opsins that provide the best tuning effect. There is
also spatial variation across the retina, suggesting that different parts
of the retina function better with particular opsin combinations to
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better match the light environment and background being viewed
(Temple, 2011; Zimmermann et al., 2018). However, some of the
experiments reviewed here reveal a lot of individual variation,
implying the lack of selection for one perfect solution.

One of the most pressing needs in the field of visual ecology is to
determine when molecular variation actually matters for organismal
fitness. To test the significance of many of these mechanisms for
shifting spectral sensitivity, we need suitable behavioral studies to
identify the true implications of sensitivity shifts. What size and
magnitude of shift produces a behaviorally relevant change?
Ultimately, we also need direct tests of fitness, based on
reproductive success, rather than studies of proxies based on our
best guesses for important behaviors. Only when we can directly
determine reproductive success can we confidently assess the
importance of an observed set of visual sensitivities for the visual
tasks performed across a lifetime, and gain an understanding of how
much variation in the visual system can be tolerated.

Fortunately, our molecular understanding of visual sensitivities
continues to advance. With increased speeds for molecular
genotyping and molecular manipulation at the organismal level,
we should soon be able to assess which aspects of the visual system
are critical for organismal survival and are therefore likely to be the
purview of selection.
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