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What determines systemic blood flow in vertebrates?
William Joyce1,2,* and Tobias Wang1

ABSTRACT
In the 1950s, Arthur C. Guyton removed the heart from its pedestal in
cardiovascular physiology by arguing that cardiac output is primarily
regulated by the peripheral vasculature. This is counterintuitive, as
modulating heart rate would appear to be the most obvious means of
regulating cardiac output. In this Review, we visit recent and classic
advances in comparative physiology in light of this concept. Although
most vertebrates increase heart rate when oxygen demands rise
(e.g. during activity or warming), experimental evidence suggests that
this tachycardia is neither necessary nor sufficient to drive a change
in cardiac output (i.e. systemic blood flow, _Qsys) under most
circumstances. Instead, _Qsys is determined by the interplay
between vascular conductance (resistance) and capacitance (which
is mainly determined by the venous circulation), with a limited and
variable contribution from heart function (myocardial inotropy). This
pattern prevails across vertebrates; however, we also highlight the
unique adaptations that have evolved in certain vertebrate groups to
regulate venous return during diving bradycardia (i.e. inferior caval
sphincters in diving mammals and atrial smooth muscle in turtles).
Going forward, future investigation of cardiovascular responses to
altered metabolic rate should pay equal consideration to the factors
influencing venous return and cardiac filling as to the factors dictating
cardiac function and heart rate.

KEY WORDS: Capacitance, Vasculature, Cardiac output, Mean
circulatory filling pressure, Reptile, Fish, Resistance, Exercise,
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Introduction
Arthur C. Guyton (1919–2003) revolutionised our understanding of
the circulation by arguing that regulation of the heart per se plays
only a minor role in the normal control of cardiac output, despite
heart rate ( fH) being one of the most obvious factors to change
during exercise. Instead, Guyton (1955, 1967, 1968, 1969) posited
that the changes in fH are of secondary importance to the peripheral
changes in the vasculature, such as capacitance (see Glossary) and
conductance/resistance (see Glossary), that determine local and
systemic blood flow. This elaborated upon, and popularised, the
foundations laid previously by workers including Otto Frank,
Robert Tigerstedt, August Krogh and Ernest Starling (Frank, 1901;
Krogh, 1912a,b; Markwalder and Starling, 1914; Patterson and
Starling, 1914; Tigerstedt, 1907). It has been 50 years since
Guyton’s keystone reviews (Guyton, 1967, 1968), yet his ideas
remain as debated and influential as ever (Andrew, 2013; Beard and
Feigl, 2013; Brengelmann, 2006, 2019; Dalmau, 2019; Magder,
2006; Sunagawa, 2017). The intention of this Review is to

demonstrate how comparative cardiovascular physiology provides
some of the most compelling examples in support of Guyton’s
thesis, and to illustrate how the Guytonian view of the circulation
provides important insight into cardiovascular regulation in diverse
vertebrates. We will focus on cardiovascular regulation when
oxygen demand increases, especially during activity or exercise,
although other cases (such as the effects of increased temperature,
digestion and diving) are included when they provide relevant
contrasts and comparisons. We focus our Review on teleost fishes
and reptiles because the majority of relevant work in ectothermic
vertebrates has been performed in these groups. This enables
comparisons to be made with mammals, where the literature is more
extensive.

When considering the regulation of total blood flow, research
often focuses on ‘cardiac output’, as it represents the main source of
internal oxygen convection, provisioning blood to respiring tissues
(Rowland, 2005). However, this term is misleading and potentially
ambiguous when applied to ectothermic vertebrates, making it
difficult to draw conclusions based on comparisons between
vertebrate classes. Firstly, the expression inherently biases our
focus towards the heart (Rowland, 2005; Vincent, 2008), which
does not necessarily regulate total blood flow in the circulatory
system. In mammals, cardiac output is classically defined as left
ventricular output (Guyton, 1969). In fish, it is measured as the total
volume of blood pumped by the single ventricle (Farrell, 1991;
Farrell and Smith, 2017). The issue is complicated in reptiles and
amphibians, which possess hearts with a single ventricle but also
have double circulation (i.e. pulmonary and systemic circuits). In
this situation, cardiac output could be argued to be the total amount
of blood pumped into both circulations from the single ventricle (as
in fish), or systemic blood flow (equivalent to cardiac output in
mammals). Johansen (1979) previously attempted, in vain, to define
cardiac output as the total amount of blood pumped (in both
systemic and pulmonary circuits) by the heart irrespective of
whether the ventricle is divided. However, this definition has not
been widely adopted, particularly by the biomedical community, in
which the definition centred on left ventricular output is ingrained.
Thus, there is no single definition of the term that can be applied
across vertebrates. For the purpose of this Review, we circumvent
the issue by chiefly focusing on systemic blood flow ð _QsysÞ when
making comparisons amongst vertebrate classes.

There are three primary factors that can affect _Qsys: cardiac
function, vascular capacitance and peripheral vascular conductance/
resistance (Guyton, 1967, 1968). In this Review, we provide a
revised overview of how these variables regulate _Qsys in animals
with disparate cardiovascular anatomy, cardiac function (including
fH) and blood pressure. We begin by providing a foundation by
describing how _Qsys is regulated in vivo by different vertebrates.
Subsequently, we review data that suggest that changing fH alone
has little direct impact on _Qsys. Thereafter, we provide mechanistic
insight into how _Qsys can be effectively regulated by independently
considering the effects of changes in myocardial function, vascular
capacitance and conductance/resistance. Finally, we synthesise how
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these different components are integrated in the cardiovascular
system. Along the way, we provide examples that illustrate
similarities and differences between vertebrate groups.

Frequency- versus volume-mediated regulation of _Qsys when
metabolic demands increase
_Qsys is the product of fH and systemic stroke volume (VS), and
may, therefore, change as one or both of these variables changes
(i.e. frequency- or volume-mediated regulation of _Qsys,
respectively). In mammals, fH characteristically increases during

exercise, and some studies also report relatively small increases in
VS during exercise (Bada et al., 2012; Lujan and DiCarlo, 2013;
Munch et al., 2014; Rushmer, 1959; Stray-Gundersen et al., 1986;
Stubenitsky et al., 1998; Thomas and Fregin, 1981). Owing to their
high mass-specific oxygen consumption rate and correspondingly
high resting fH [i.e. 500–700 beats min−1 in the mouse (Janssen
et al., 2002; Lujan and DiCarlo, 2013) and 835 beats min−1 in the
smallest living mammal, the Etruscan shrew (Jürgens et al., 1996)],
small mammals exhibit a relatively smaller scope to increase fH and
cardiac output during exercise than larger mammals (Janssen et al.,
2016). For a mechanistic overview of how fH is controlled in
mammals and other vertebrates, see Box 1.

As fellow endotherms, birds attain similar fH to mammals of
equivalent body mass, and due to their high resting fH
(>1000 beats min−1 in hummingbirds), smaller species likewise
have a diminished fH scope (Bishop and Butler, 1995; Bishop and
Spivey, 2013). Nevertheless, in birds, tachycardia (see Glossary),
with negligible change in VS, also generally characterises the
regulation of _Qsys during exercise (Bech and Nomoto, 1982; Butler
et al., 1977; Grubb, 1982; Kiley et al., 1985), although a lesser
increase in VS has been described in running emus (Grubb et al.,

List of abbreviations
fH heart rate
Gsys systemic conductance
NO nitric oxide
Pcv central venous pressure
Pmcf mean circulatory filling pressure
Psys systemic blood pressure (mean arterial blood pressure)
_Qsys systemic blood flow
Rart arterial resistance
Rtot total peripheral resistance
Rven venous resistance
SNP sodium nitroprusside
SV stressed blood volume
USV unstressed blood volume
VR venous return
VS stroke volume

Glossary
Bradycardia
A slowing of heart rate.
Capacitance
The relationship between volume and distending pressure in a vessel,
vascular bed or circulation.
Compliance
The ratio of the change in volume to the change in pressure in a vessel,
vascular bed or circulation. A more compliant system accommodates a
greater change in volume for a lesser change in pressure.
Mean circulatory filling pressure
The average pressure in the circulatory system when there is no blood
flow. This represents the driving force for venous return to the heart.
Myocardial inotropy
The force of myocardial contraction. The ‘inotropic response’ refers to a
change in the force of myocardial contraction.
Stressed volume
The volume in a circulation that, on top of the unstressed volume (see
below), exerts a pressure on the blood vessel walls.
Tachycardia
An increase in heart rate.
Unstressed volume
The volume in a circulation that fills the vasculature, preventing it from
collapse, but does not exert a pressure.
Vascular conductance
The easewith which blood flows through a circulation at a given pressure
difference (the reciprocal of resistance).
Vascular resistance
The hindrance to blood flow in a circulation at a given pressure difference
(the reciprocal of conductance).
Vis-à-fronte (‘force from the front’) cardiac filling
The mechanism that describes how cardiac contraction can reduce
pericardial pressure and promote venous return.
Vis-à-tergo (‘force from behind’) cardiac filling
The driving force for venous return generated in the peripheral venous
vasculature.

Box 1. How is heart rate controlled?
Heart rate ( fH) is predominantly regulated by the autonomic nervous
system. This includes the parasympathetic (cholinergic) and sympathetic
(adrenergic) limbs, which are inhibitory and stimulatory, respectively
(Burnstock, 1969; Wang, 2012). The mechanisms underlying fH
responses can be inferred using muscarinic cholinergeric (e.g.
atropine) and β-adrenergic (e.g. propranolol) receptor antagonists,
allowing the calculation of cholinergic and adrenergic tone (Altimiras
et al., 1997). Across vertebrates, the rise in fH during acute exercise is
achieved by a decreased cholinergic tone and increased adrenergic tone
(Axelsson et al., 1987; Iversen et al., 2010; Joyce et al., 2018e; Wang
et al., 2001;White and Raven, 2014). The decrease in cholinergic tone is
mediated via decreased vagus nerve activity, whereas the increase in
adrenergic activity may occur via sympathetic neuronal innervation or
circulating catecholamines (adrenaline and noradrenaline), which have
been shown to increase during activity in diverse vertebrate species
(Reid et al., 1998; Romero et al., 2004; Stinner and Ely, 1993; Wahlqvist
and Campbell, 1988).
Until recently, the prevailing dogma in mammals has been that vagal

(cholinergic) withdrawal mediates the initial increase in fH during mild to
moderate exercise, whereas further increases during intense exercise
are instigated by the sympathetic nervous system (Rowell, 1993).
However, it is now believed that a more gradual change in both types of
tone occurs across the entire range of workloads, from rest to maximal
oxygen uptake (White and Raven, 2014). Similarly, in fish, cholinergic
tone seems to gradually decrease as swimming speed increases
(Blasco et al., 2017; Iversen et al., 2010). The contribution from
adrenergic tone is variable, and in some species (e.g. European sea
bass, Dicentrarchus labrax, and sharptooth catfish, Clarias gariepinus) it
remains low across a range of exercise intensities (Blasco et al., 2017;
Iversen et al., 2010), whereas in sea raven (Hemitripterus americanus) it
increases during enforced exercise (Axelsson et al., 1989). In reptiles,
there are few studies that have measured autonomic tone during
exercise, but in boas (Boa constrictor) provoked into activity, cholinergic
tone disappears and adrenergic tone doubles (Wang et al., 2001). In
relatively unstressed swimming alligators, the changes are more subtle
(Joyce et al., 2018e). Going forward, it may prove worthwhile for studies
to employ more ecologically relevant and dynamic exercise protocols to
investigate the mechanisms underlying changes in fH. This may involve
telemetric measurements under field conditions (Burggren et al., 2014;
Taylor et al., 2014), which could utilize implantable injectors (Axelsson
and Pitsillides, 2009) to achieve the pharmacological interventions
necessary to calculate autonomic tone.
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1983). Birds, particularly high-altitude species (e.g. bar-headed and
Andean geese; Laguë, 2017; Scott et al., 2015), experience
hypobaric hypoxia during flight, so cardiovascular control during
low oxygen exposure has been a key area of focus. Treadmill-
running bar-headed geese show the typical increase in fH and
constant VS during normoxic exercise, but VS falls during hypoxic
exercise, offsetting an increase in fH and leaving _Qsys unchanged
(Fedde et al., 1989). More recently it was reported that VS declines
with both normoxic and hypoxic treadmill exercise in the same
species (Hawkes et al., 2014). During hypoxia at rest, barnacle
geese, Andean geese and low-altitude-acclimated bar-headed geese
primarily increase _Qsys by elevating VS, with relatively small
changes in fH, whereas high-altitude-acclimated bar-headed geese
rely primarily on increasing fH (Lague et al., 2016, 2017).
To date, virtually all studies on non-avian reptiles, including

snakes (Secor et al., 2000), lizards (Frappell et al., 2002; Gleeson
et al., 1980), turtles (Kirby et al., 2019; West et al., 1992) and
alligators (Joyce et al., 2018d), also indicate little change in VS, but
substantial increases (i.e. 2- to 3-fold) in fH during exercise (Wang
et al., 2019). As an exception, varanid lizards show a 60% increase
in VS, along with a doubling of fH, during treadmill exercise (Clark
et al., 2005).
The question of frequency- or volume-mediated regulation of

_Qsys has proven controversial in teleost fish. The pioneering and
influential work (see Wang and Malte, 2012) of Kiceniuk and Jones
(1977) on exercise in rainbow trout demonstrated that a 3-fold
increase in _Qsys was predominantly achieved by more than doubling
VS, and established a widespread view that the fish heart is
generally ‘volume regulated’ during exercise (Angelone et al.,
2012; Chaui-Berlinck andMonteiro, 2017; Farrell, 1991; Shiels and
White, 2008; Shiels et al., 2006). When Farrell (1991) originally
proposed this hypothesis, the only known exception were tuna, in
which it was understood that _Qsys could be increased entirely
through fH during swimming. However, more recently, a wealth of
data in other species has demonstrated that many teleost fishes –
from polar, temperate and tropical regions – regulate _Qsys during
swimming chiefly, if not solely, by increasing fH (Axelsson et al.,
1992; Clark and Seymour, 2006; Cooke et al., 2003; Iversen et al.,
2010; Korsmeyer et al., 1997; Nelson et al., 2017; Sandblom et al.,
2005). Thus, the prevailing dogma that fish regulate VS more than fH
during exercise is oversimplified; the exceptions are becoming the
norm. Furthermore, a major concern pertaining to many older
studies is the effect of post-surgical stress. In Atlantic cod, at
comparable temperatures, resting fH has ‘fallen’ from around
60 beats min−1 in the 1970s (Helgason and Nilsson, 1973) to
33 beats min−1 in more recent work (Petersen and Gamperl, 2010;
Sandblom and Axelsson, 2011). A high resting fH clearly reduces
the scope for an increase during exercise. In an illuminating study,
Altimiras and Larsen (2000) demonstrated a greater scope for
changing fH in rainbow trout when fH was measured non-invasively
to avoid surgery. As surgical techniques, analgesia (Gräns et al.,
2014) and biotelemetry technology (Brijs et al., 2018, 2019; Gräns
et al., 2009, 2010) improve, we surmise that more studies will report
lower resting fH, and hence reveal greater fH changes during exercise
in fish.
In addition to exercise, oxygen requirements are also increased by

an increase in temperature. The effect of increasing temperature
on convective oxygen transport in fish is less contentious than
the effects of exercise; the majority of studies demonstrate that the
increased oxygen requirement is satisfied by an increase in fH, while
VS is relatively unchanged (Eliason and Anttila, 2017; Farrell,
2016). Thus, vertebrates generally increase fH when oxygen demand

increases, and the contribution of VS appears to be of lesser
importance (Hedrick et al., 2015; Hillman and Hedrick, 2015;
Wang et al., 2019).

fH does not regulate _Qsys per se
Having established that fH is the most evidently labile parameter of
cardiac regulation in vertebrates, in this section we consider how
changes in fH directly affect _Qsys. This was first experimentally
addressed in perfused rabbit hearts by Bock (1908), who increased
fH by raising temperature and observed that VS largely changes in
inverse proportion to fH, resulting in constant _Qsys. Shortly
thereafter, similar results were independently reported by
Markwalder and Starling (1914) in dog heart–lung preparations.
Markwalder and Starling (1914) attributed the rise in VS to an
increase in cardiac filling pressure (preload pressure), a concept that
Starling quickly elaborated upon when he established the ‘law of the
heart’ (Patterson and Starling, 1914; Starling, 1921). However,
changing temperature is not a precise method to manipulate fH;
temperature also profoundly affects cardiac contractility. In
endotherm and ectotherm hearts alike, a decrease in temperature
normally increases force (by increasing action potential duration)
(Kalinin et al., 2009; Templeton et al., 1974), which may have
contributed to the increased VS at low temperatures observed by
Markwalder and Starling (1914). However, a similar phenomenon
(‘autoregulation of cardiac output’; a proportional increase in VS as
fH is decreased) has now been reported in rainbow trout (Altimiras
and Axelsson, 2004) and freshwater turtle (Joyce et al., 2018c) in
response to zatebradine, a specific bradycardic agent with little or no
direct effect on contractility or peripheral vasculature.

fH can also be specifically manipulated with electrical pacing
in vivo, and this can be used as another means to investigate the
relationship between fH and _Qsys. A series of studies in the 1960s
(Miller et al., 1962; Noble et al., 1966; Ross et al., 1965; Sugimoto
et al., 1966) demonstrated that pacing to increase fH resulted in a
decreased VS and unchanged _Qsys in the intact cardiovascular
systems of conscious humans and dogs. Moreover, in dogs with
atrio-ventricular block, in which fH was held constant, it was
demonstrated that VS was adequately increased during treadmill
exercise, ensuring _Qsys was still matched to metabolic demand
(Warner and Toronto, 1960). Recent pacing studies have confirmed
and extended this early work, revealing that maximum fH does not
limit maximum _Qsys, even during intense exercise in humans (Bada
et al., 2012; Munch et al., 2014).

As an apparent exception, _Qsys appears to increase when fH is
paced at low rates (<60 beats min−1) in dogs (Miller et al., 1962) and
humans (Munch et al., 2014). This is pertinent because most
ectotherms operate at lower fH than endotherms (Hillman and
Hedrick, 2015), so the results from mammals may not apply
generally to all other vertebrates. However, in American alligators
instrumented with pacing electrodes, we recently reported that _Qsys
is independent of fH both at rest and during exercise, across a range
of fH from <30 beats min−1 to supra-physiological levels
(72 beats min−1) (Joyce et al., 2018d). Fig. 1 depicts the striking
similarity in the response to pacing in humans and alligators, despite
the obvious differences in baseline _Qsys. The value of _Qsys in
humans and dogs may be dependent on fH at low frequencies
because they show a steep positive force–frequency relationship at
low fH, which then plateaus (Chung et al., 2018; Janssen and
Periasamy, 2007). This means that as fH increases within low
frequencies, there is a large increase in myocardial inotropy (see
Glossary); below, we discuss how changes in cardiac function can
have appreciable, albeit restricted effects on _Qsys. By contrast, many
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ectotherms exhibit a negative force–frequency effect, which means
that myocardial force generation declines at high contraction
frequencies (Galli et al., 2006; Shiels et al., 2002).
An obligatory role for frequency-dependent regulation of _Qsys

during warming in fishes has been dismissed by Gamperl and
colleagues, who have elegantly demonstrated that when the
tachycardia normally seen at increased temperatures is prevented
by treatment with zatebradine, the essential increase in _Qsys can be
entirely achieved with an increase in VS (Gamperl et al., 2011; Keen
and Gamperl, 2012). It is thus remarkable that despite pronounced
differences in cardiac function and cardiovascular anatomy
(Boukens et al., 2018; Hillman and Hedrick, 2015), fH is tightly
regulated in both ectotherms and endotherms (Box 1), yet is not a
primary regulatory mechanism changing _Qsys either at rest or during
periods of increased oxygen demand.

The regulation of cardiac function
Cardiac function plays a ‘permissive’ role in the regulation of _Qsys,
i.e. maximum cardiac performance sets the upper limit for the
circulation as a whole (Guyton, 1967, 1968). In a typical ‘Starling’
cardiac function curve, an increase in central venous pressure (Pcv; a
surrogate of end-diastolic volume) results in an increase in _Qsys until
reaching a plateau (Fig. 2, black curve). This ‘Frank–Starling effect’,
the increased force generated when the myocardium is stretched, is
common to all vertebrates (Shiels and White, 2008) and results from
length-dependent activation ofmyofilaments (de Tombe et al., 2010).
Adrenaline increases cardiomyocyte contractility, primarily via

β-adrenergic receptors, by increasing the amplitude of the Ca2+

transient that initiates cardiomyocyte contraction. The increase in

the Ca2+ transient is attained by increasing sarcolemmal Ca2+ influx
and augmenting Ca2+-induced Ca2+ release from the sarcoplasmic
reticulum via protein kinase A-dependent phosphorylation (Cros
et al., 2014; Eisner et al., 2017; Shiels, 2017; Vornanen, 2017). In
many species, including fish, reptiles and mammals, increasing
myocardial contractility with adrenaline (such as occurs during
exercise) shifts the Starling curve upwards (Fig. 2, red curve),
thereby elevating maximum _Qsys (Graham and Farrell, 1989; Joyce
et al., 2017; Sarnoff, 1955). However, some species exhibit a
blunted inotropic response to adrenaline (Axelsson and Franklin,
1995; Farrell et al., 2007). This may be, in part, attributable to the
negative force–frequency effect that characterises the myocardium
of ectotherms (Shiels et al., 2002), including European sea bass
(Imbert-Auvray et al., 2013; Joyce et al., 2016a) and crocodilians
(Crocodylus rhombifer; W.J. and T.W., unpublished observations)
and means that force development is reduced at high contraction
frequencies. Thus, even when adrenaline exerts a positive inotropic
effect at a given frequency, because it concomitantly increases fH, it
may overall reduce myocardial force.

Perfused hearts are particularly useful in determining the specific
importance of cardiac function, because they allow the effects of
adrenaline to be investigated under constant filling and output
conditions (i.e. the height of the column filling the heart, and the
height of the column the heart pumps blood against) (Krogh, 1912b).
In two species of fish (sea raven, Hemitripterus americanus, and
ocean pout, Macrozoarces americanus), Farrell et al. (1983)
demonstrated biphasic responses to adrenaline perfusion: _Qsys
initially increases when the fH response is small, but as fH
continues to increase, VS falls and _Qsys returns to baseline
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Fig. 1. Despite the large discrepancies in heart rate ( fH) and systemic
blood flow ( _Qsys), alligators and humans show a striking similitude in
their cardiovascular responses to exercise and right atrial pacing. In both
animals, exercise (swimming in alligators, knee extensor exercise in humans)
is associated with an increase in fH and _Qsys (marked by the blue arrows).
However, when fH was artificially increased by right atrial pacing, both at rest
and during the exercise period, _Qsys did not change (green bars), indicating
that changes in fH per se do not change _Qsys. Human data replotted from Bada
et al. (2012), alligator data replotted from Joyce et al. (2018d).
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Fig. 2. Guyton’s graphical analysis of the factors that determine _Qsys. The
solid black line represents a typical ‘Starling curve’ in which _Qsys increases in
response to increased central venous pressure (Pcv). Adrenergic stimulation of
β-adrenergic receptors on the myocardium increases cardiac function (solid
red line). Venous return (dashed black line) decreases as Pcv increases
until it reaches zero, when Pcv equals filling pressure (mean circulatory
filling pressure; Pmcf ). Elevating Pmcf (for example, adrenaline acting via
α-adrenergic receptors; dashed purple line) increases venous return. Because
venous return must always equal cardiac output at steady state, the ‘working’
_Qsys is found where the Starling curves and venous return slopes intersect.
Point ‘A’ represents a theoretical starting point, at baseline _Qsys. Point ‘B’ is the
result of increasing cardiac function but not venous function; _Qsys is able to
increase but Pcv falls. Point ‘C’ represents an increase in venous function
(increased Pmcf ) without a change in cardiac function, which increases _Qsys

as Pcv increases. In situation ‘D’, both cardiac and venous functions are
increased, which increases _Qsys more than either mechanism is able to alone,
whilst preserving Pcv. The axes have been left unitless to render the graph
species neutral. Based on Guyton (1955).
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conditions. In perfused crocodile hearts, Axelsson and Franklin
(1995) reported that adrenaline evokes a concentration-dependent
tachycardia, accompanied by a proportional decrease in VS, leaving
_Qsys unchanged. It was therefore unexpected that adrenaline clearly
elicits a sustained increase in _Qsys, despite a prominent tachycardia in
anaconda hearts perfused under similar conditions (Joyce et al.,
2017). This is, nevertheless, reminiscent of the mammalian response
(Sarnoff, 1955). The interspecific differences are attributable to two
main factors. In crocodiles, the Starling curve suggests very little
inotropic action of adrenaline on the myocardium – _Qsys does not
increase at any filling pressure (Axelsson and Franklin, 1995) –
whereas adrenaline clearly elicits a strong positive inotropic effect in
anaconda myocardium (Joyce et al., 2017). This may be related to the
force–frequency effect being distinctly negative in crocodiles (W.J.
and T.W., unpublished observations), but flat in anacondas, meaning
that the change in contraction frequency only compromises force
generation in crocodile, not anaconda, hearts. The potential for
adrenaline to increase cardiac function of many fish and reptiles may
also be limited, because ectotherms are known to typically have very
high ejection fractions, approaching 100% (Burggren et al., 2014;
Franklin and Davie, 1992; Williams et al., 2019), thus leaving little
scope for end-systolic volume to be further decreased when inotropy
is increased.
In vivo, it has been shown that β-adrenergic receptor blockade

decreases exercising _Qsys in rainbow trout (Oncorhynchus mykiss)
(Gamperl et al., 1995), sea ravens (H. americanus) (Axelsson et al.,
1989), American alligators (Joyce et al., 2018e), snapping turtles
(Kirby et al., 2019) and various mammals, including dogs, pigs and
humans (Stubenitsky et al., 1998; Tesch, 1985; Versteeg et al.,
1983). However, in European sea bass, adrenergic receptor
blockade does not decrease maximum _Qsys during swimming
(Iversen et al., 2010). It is particularly surprising that the studies that
identified effects of β-adrenergic receptor blockade on _Qsys during
exercise include a fish species (H. americanus) in which Farrell
et al. (1983) showed little direct effect of adrenaline on _Qsys in
perfused hearts and a crocodilian, after Axelsson and Franklin
(1995) observed only small effects of adrenaline perfusion in
saltwater crocodile (C. porosus) hearts. However, it is not possible
to ascertain whether the effects in vivo can be ascribed to a specific
effect on cardiac function. It is plausible that β-adrenoceptors
influence the peripheral vasculature, which may include decreasing
venous (Magder, 2011) or arterial (Stubenitsky et al., 1998)
resistance. β-Adrenoceptors also mediate an increase in coronary
blood flow during exercise in fish and mammals (Axelsson and
Farrell, 1993; DiCarlo et al., 1988; Gamperl et al., 1995; Gorman
et al., 2000), so blockade may only indirectly impair cardiac
function by restricting oxygen supply, and not merely prevent a
normal increase in contractility. This is unlikely to explain the
results in alligators, however, in which β-adrenergic receptor
stimulation does not appear to increase coronary blood flow
(Jensen et al., 2016). In the future, it may be possible to isolate the
specific effects of β-adrenergic receptor inhibition on myocardial
contractility using more sophisticated pharmacological or genetic
tools [e.g. cardiac-specific gene deletion using the CRISPR-Cas9
system (Carroll et al., 2016), which could be applied to adrenergic
receptors] to solely target cardiomyocytes.
Although there is some evidence that β-adrenergic receptor

stimulation of cardiac contractility could directly confer an increase
in _Qsys, at least in some species, the decrease in filling pressure that
occurs in perfused hearts when cardiac function is stimulated with
adrenergic activation (Joyce et al., 2017; Sarnoff, 1955) is at odds
with the change in Pcv that occurs in vivo during activity. In vivo

measurements of resting Pcv reveal considerable variation across
species (recently reviewed in Sandblom and Gräns, 2017). Because
the fish heart is enclosed by a relatively rigid pericardium, blood
ejection has the potential to generate negative pericardial pressure,
which may be transmitted to the sinus venosus, resulting in negative
Pcv. It has therefore been upheld that the fish heart, in particular,
primarily acts as a ‘suction pump’ that fills via a vis-à-fronte (‘force
from the front’) mechanism (see Glossary), in contrast to the
vis-à-tergo (‘force from behind’; see Glossary) situation established
in mammalian hearts (Farrell, 1991; Farrell and Jones, 1992;
Sandblom and Axelsson, 2007b; Satchell, 1992; Zhang et al.,
1998). However, it has been shown that Pcv at resting fH is positive
in rainbow trout (Altimiras and Axelsson, 2004), as well as several
other species of teleost fish (Joyce et al., 2018a,b; Sandblom et al.,
2005, 2009a; Skals et al., 2006). Although elasmobranchs indeed
exhibit negative Pcv at rest (Sandblom et al., 2006b, 2009b; Short
et al., 1977), owing to their particularly rigid pericardium
(Sandblom and Gräns, 2017), it increases to positive levels after
the injection of adrenaline (Sandblom et al., 2006b). A classic study
on anaesthetised varanid lizards demonstrated negative Pcv

(Johansen and Burggren, 1984), yet our more recent studies on
surgically recovered reptiles (turtles and snakes) have generally
revealed positive Pcv (Jacobsen et al., 2012; Joyce et al., 2018c;
Skals et al., 2005). This does not undermine any contribution from
vis-à-fronte cardiac filling in species with positive Pcv; cardiac
contraction may still reinforce the pressure gradient driving blood to
return to the heart by reducing pericardial pressure and Pcv (Joyce
et al., 2018c; Sandblom and Gräns, 2017), but most importantly, in
exercising animals – including various fish, reptiles and mammals –
Pcv either increases or is unchanged when _Qsys increases during
exercise (Joyce et al., 2018a; Munch et al., 2014; Sandblom et al.,
2005, 2006a; Sheriff et al., 1993). This directly contrasts with the
situation in perfused hearts, in which the measured filling pressure
decreases acutely as pump function improves (Joyce et al., 2017;
Sarnoff, 1955). Together, these data suggest that peripheral factors
must be involved in regulating venous return to compensate for
or even increase Pcv during the integrated cardiovascular response
to exercise.

The role of vascular (venous) capacitance in regulating _Qsys
Arguably Guyton’s most notable intellectual contribution was to
promote the concept of mean circulatory filling pressure (Pmcf; see
Glossary). Pmcf represents peripheral venous pressure, i.e. the main
driver for vis-à-tergo cardiac filling. As peripheral venous pressure
in the smallest venules is difficult to measure in practice, Pmcf is
typically defined as the plateaued venous pressure measured during
brief cardiac arrest. It is therefore essentially determined by blood
volume and vascular capacitance, i.e. the relationship between
blood volume and distending pressure. At a given blood volume, a
decrease in capacitance increases Pmcf. In mammals, routine Pmcf is
approximately 0.9–1.2 kPa (Rothe, 1983; Rothe, 1993), whereas it
is much lower (0.15–0.27 kPa) in fishes (Sandblom and Axelsson,
2006; Sandblom et al., 2005; Sandblom et al., 2006b; Sandblom
et al., 2009a) and intermediate (0.3–0.8 kPa) in reptiles (Enok et al.,
2016; Joyce et al., 2018c; Skals et al., 2005).

Pmcf is specifically determined by the ‘stressed’ blood volume
(SV; see Glossary), which exerts a hydrostatic pressure on blood
vessel walls, in contrast to the ‘unstressed’ component (unstressed
blood volume, USV; see Glossary), which is the volume of blood
that merely fills blood vessels, keeping them from collapse, without
generating pressure. In mammals, routine USV is 60–70% of total
blood volume (Pang, 2000; Rothe, 1983). Similar values have been
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reported in fish (Sandblom and Axelsson, 2006; Zhang et al., 1998),
whereas two studies in snakes (Enok et al., 2016; Skals et al., 2005)
reported that USV makes up ∼50% of total blood volume. Because
the majority of blood [70% in resting mammals (Pang, 2000),
although the value is not known for ectotherms] lies in the venous
circulation, Pmcf is primarily determined by venous capacitance, and
it provides a close approximation of pressure in small veins, which is
impractical to measure directly (Guyton, 1955; Rothe, 1993;
Sandblom and Axelsson, 2007b).
The rate of venous return (VR), which, under steady state, must

equal _Qsys, is determined by venous resistance (Rven) and the
pressure difference between the start of the venous circulation
(≈Pmcf ) and Pcv, according to the equation:

VR ¼ Pmcf � Pcv

Rven
: ð1Þ

In a series of experiments in dogs, Guyton et al. (1955)
demonstrated that, at a constant Pmcf, increasing Pcv acts as a
‘back pressure’ and linearly reduces VR (dashed black line in Fig. 2)
(Guyton et al., 1955). When Pcv=Pmcf, VR is zero (i.e. the
x-intercept in Fig. 2). A limitation exists at Pcv below zero, at which
point central veins begin to collapse and thus cannot conduct more
blood flow.
Both VR curves and _Qsys on a typical Starling curve are plotted

against Pcv in Fig. 2. Because _Qsys must equal VR at steady state, the
intercept of the superimposed cardiac function curve and the VR
curve predicts the ‘working’ Pcv and _Qsys (Fig. 2, point A). It
emerges from this framework that cardiac and venous functions
potentially limit one another. An increase in cardiac function
(Fig. 2, point B) can only increase total blood flow as far as the given
VR function permits. This corresponds with the decrease in preload
pressure observed in anaconda hearts perfused with adrenaline
under otherwise unchanged filling conditions (Joyce et al., 2017).
Likewise, increasing Pmcf, but not the cardiac function curve (Fig. 2,
point C), has limited effects on _Qsys. Concurrent elevation of VR
and cardiac function can increase _Qsys more than either mechanism
alone (Fig. 2, point D).
Critics of Guyton’s analysis argue that there is misidentification

of the independent variable in his experiments (Beard and Feigl,
2013; Brengelmann, 2003, 2006, 2016). Although Pcv (or right
atrial pressure in Guyton’s original work) was plotted on the x-axis,
this was not the independent variable – instead, it was VR that was
manipulated by a pump via a Starling resistor. Similar arguments
regarding the ‘true’ independent variable have been levied against
our conventional understanding of Starling curves (Berlin and
Bakker, 2015). Nevertheless, Guyton’s model provides a
conceptually useful approach to explain why and how regulation
of vascular capacitance and/or blood volume contribute to the
control of _Qsys (Henderson et al., 2010; Magder, 2016).
Pmcf can be changed via three distinct mechanisms: (1) by

changing venous capacitance (Fig. 3, line B), (2) by changing
compliance (see Glossary; Fig. 3, line C) and (3) by changing total
blood volume (Fig. 3, line D). Fig. 3 depicts a series of vascular
capacitance curves obtained by in vivomeasures ofPmcf at a range of
blood volumes (i.e. following blood withdrawal or infusion). Line A
in Fig. 3 represents a routine state, in which it can be seen that the
blood volume when Pmcf=0 represents the USV. Constriction of the
venous capacitance vessels converts USV into SV (Fig. 3, line B).
This is primarily achieved by contraction of smooth muscle in
venules, which may be mediated by α-adrenoceptor activation by
circulating catecholamines or the sympathetic nervous system, as

has been demonstrated in fishes, mammals and reptiles (Guyton,
1955; Joyce et al., 2018c; Rothe, 1993; Sandblom and Axelsson,
2007b; Shepherd, 1966; Skals et al., 2005, 2006).

Compliance refers to the slope of the pressure–volume line:

Compliance ¼ DV

DP
: ð2Þ

Fig. 3, line C demonstrates how a decrease in compliance can
change Pmcf without affecting USV and SV. α-Adrenergic
stimulation decreases vascular compliance, although it remains
unclear how this is effected, as it depends upon a change in the
physical (elastic) properties of the vessels (Olson et al., 1997;
Rothe, 1983).

A change in total blood volume (Fig. 3, line D) affects Pmcf.
Assuming that USV is unchanged, an increase in blood volume
directly increases SV. If compliance is unchanged, Pmcf increases by
the same amount whether SV is increased by recruitment from USV
(Fig. 3, line B) or addition of total blood volume (Fig. 3, line D).

The comparative literature provides strong support for the notion
that circumstances that require an increase in _Qsys are invariably
associated with an increased Pmcf. A suite of studies by Sandblom,
Axelsson and co-workers have demonstrated that Pmcf increases
during acute warming and exercise in fishes (Sandblom and
Axelsson, 2007a,b; Sandblom et al., 2005, 2006a, 2009b). In the
air-breathing swamp eel (Synbranchus marmoratus), Skals et al.
(2006) demonstrated that Pmcf increases during aerial ventilation to
support an increase in _Qsys. Because of the technical difficulties
associated with measuring vascular compliance (this would require
rapid blood volume manipulation with serial determinations of
Pmcf ), it is unclear whether these increases are associated with
changes in compliance or venous tone (Sandblom and Axelsson,
2007b). Given that catecholamines are known to both increase
venous tone and decrease compliance (Zhang et al., 1998), it is
likely that the two components change simultaneously.

In swimming alligators, β-adrenergic receptor blockade (by
propranolol) abolishes exercise tachycardia but only attenuates the
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Fig. 3. Venous capacitance curves demonstrate how Pmcf can be
changed. In the routine situation (line A), there is a linear relationship between
blood volume and Pmcf, in which the y-intercept, i.e. where Pmcf=0, reveals
the unstressed blood volume (USV). Line B demonstrates how increasing
venous tone decreases USV, thus increasing stressed blood volume (SV),
which, at a constant total blood volume, increases Pmcf. A change in
compliance changes the slope of the pressure–volume relationship. Line C
demonstrates how decreasing vascular compliance increases Pmcf, without
changing USV or SV. Line D demonstrates how an increase in total blood
volume, without changing USV or compliance, can also elevate Pmcf. The axes
have been left unitless to render the graph species neutral. Adapted and
redrawn from Sandblom and Axelsson (2007b).

6

REVIEW Journal of Experimental Biology (2020) 223, jeb215335. doi:10.1242/jeb.215335

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y



increase in _Qsys during swimming by ∼50% (Fig. 4; Joyce et al.,
2018e). The change in _Qsys, however, is abolished by subsequent
treatment with an α-adrenergic receptor antagonist (phentolamine),
which is probably due to the α-adrenergic control of venous
capacitance, although this awaits confirmation with Pmcf

measurements. In pythons, it has recently been demonstrated that
the increase in _Qsys during digestion is associated with an increase in
Pmcf, achieved by decreasing compliance and increasing venous tone
(decreasing USV) with no change in blood volume, although the
relevant regulatory mechanisms remain unknown (Enok et al., 2016).

Changes in total blood volume may provide a viable means to
regulate _Qsys over longer time scales. It was recently demonstrated
that _Qsys increases in a VS-dependent manner, and in parallel
with an increase in Pcv, in an Antarctic notothenioid fish
(Notothenia coriiceps) acclimated at 5°C versus 0°C (Joyce
et al., 2018b). This is predicted to be the result of an increased
blood volume. Blood volume increases by >25% in brook trout
(Salvelinus fontinalis) acclimated at 5°C versus 2°C (Houston and
Anne DeWilde, 1969); however, it has yet to be definitively shown
that, within a given fish species, blood volume is actively regulated
to change _Qsys during thermal acclimation.

Peculiar adaptations to regulate venous return in diving
vertebrates
With the use of pneumatic cuffs placed around the major veins in
dogs, Guyton experimentally demonstrated that VR (and therefore
_Qsys) is exquisitely sensitive to changes in Rven (Guyton et al.,
1959). A striking natural correlate is found in diving mammals, and
is most prominently expressed in seals. Diving is associated with a
well-characterised bradycardia (see Glossary), during which fH can
fall from over 100 beats min−1 to, in extreme cases, less than
5 beats min−1 (Thompson and Fedak, 1993). As has now been
established, based on intrinsic mechanisms alone this would be
predicted to be associated with a tremendous increase in VS.
However, this does not occur; VS in fact decreases during the dive
response (Blix et al., 1983; Kjekshus et al., 1982; Zapol et al.,
1979). To protect the heart from volume overload, seals have a well-
developed sphincter in the inferior vena cava that regulates VR
(Blix, 2011, 2018; Burow, 1838; Elsner et al., 1971; Harrison and
Tomlinson, 1956). This specific regulation of Rven allows _Qsys to fall
and ensures that the increase in peripheral resistance (which diverts
blood away from non-vital organs towards the brain) does not incur
a catastrophic increase in arterial blood pressure (Blix, 2018).
Similar but less well-developed sphincters are present in other
diving mammals, including cetaceans and otters (Barnett et al.,
1958; Harrison and Tomlinson, 1956; Lillie et al., 2018), and may
play an equivalent role during diving bradycardia.

Turtles also exhibit a pronounced diving bradycardia, during
which VS is maintained (Joyce et al., 2018c;Wang and Hicks, 1996a)
or may even be decreased (Burggren et al., 1997). We recently
proposed that atrial smooth muscle, which was first discovered over a
century ago (Bottazzi, 1906; Fano, 1887; Shaner, 1923; Snyder and
Andrus, 1919), plays a unique role in the regulation of VS during
diving in freshwater turtles (Joyce et al., 2019a). Contraction of
smooth muscle restricts cardiac filling, thereby mediating a large
decrease inVS. The classical studies established that vagal stimulation
is a powerful stimulator of atrial smoothmuscle contraction (Bottazzi,
1900; Fano and Fayod, 1888; Meek, 1927), suggesting that it
probably co-occurs with the dive bradycardia, which is also vagally
mediated (Burggren, 1975). Atrial smooth muscle is generally more
prevalent in aquatic than in terrestrial species of turtle (Joyce et al.,
2019d), further supporting the idea that it is involved in the regulation
of cardiac output during diving.

Peripheral vascular resistance/conductance
Above, we have considered the contribution of venous resistance to
_Qsys; however, venous resistance makes up just one part of total
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Fig. 4. The effects of autonomic receptor antagonists on the response of
combined right aortic arch and subclavian flow ( _QRAoþSC) and fH to
exercise (swimming) in American alligators. Atropine (Atr.), propranolol
(Propr.) and phentolamine (Phent.) – antagonists of muscarinic cholinergeric
receptors, β-adrenergic receptors and α-adrenergic receptors, respectively –

were administered in series between swimming trials. All antagonists were
administered at 3 mg kg−1 and have long-lasting effects that were maintained
for the duration of the study. Asterisks indicate significant changes in a variable
between rest and exercise. Although atropine increased fH at rest and during
swimming, it had no effect on _QRAoþSC in either state. Propranolol abolished fH
tachycardia and approximately halved the increase in _QRAoþSC associated with
exercise. Phentolamine had no additional effects on fH, but abolished the
remaining increase in _QRAoþSC during exercise. Data replotted from Joyce et al.
(2018e); hypoxic and normoxic programmed animals were pooled as no
differences were observed between the groups for either _QRAoþSC or fH in the
original study.
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peripheral resistance (Rtot), which affects _Qsys as described in the
following equation:

_Qsys ¼
Psys � Pcv

Rtot
: ð3Þ

In mammals (Samar and Coleman, 1978), reptiles (Enok et al.,
2016; Joyce et al., 2018c; Skals et al., 2005) and fish (Sandblom
et al., 2005, 2006a,b), arterial blood pressure (Psys) is 5- to 15-fold
higher than Pmcf; thus, Rtot is much higher than Rven, and the arterial
side of the circulation makes up the majority of the resistance.
However, Guyton showed that injecting glass beads (Guyton et al.,
1955) or plastic microspheres (Guyton et al., 1959) into the arterial
bed, in order to occlude a subset of arteries and selectively increase
arterial resistance (Rart), had little effect on _Qsys; instead, Psys

increased. Guyton concluded that the regulation of Rven is of greater
consequence for the regulation of _Qsys than the regulation of Rart

(Guyton, 1968; Guyton et al., 1959). However, in the 50 years since
Guyton’s work, our understanding of the regulation of Rart has
deepened. Our knowledge on the regulation of arterial vessels, in
particular, has expanded enormously, most notably to recognise the
large contribution of purines (Burnstock, 1987; Burnstock and
Ralevic, 2014) and nitric oxide (NO) (Palmer et al., 1987), which
can act as potent vasodilators of arterial smooth muscle during
exercise (see Box 2). Concurrent with the discovery of novel
vasodilators, our appreciation of how Psys and _Qsys change in vivo,
especially during activity, has changed. Physiological changes in
vascular tone may be associated with large changes in _Qsys but
remarkably little change in Psys (Magder, 2018), which is the reverse
of the results of Guyton’s artificial experiments (Guyton et al.,
1955, 1959). When _Qsys changes and Psys does not, the relationship
between _Qsys and Rsys is curvilinear, which makes comparisons
difficult. For that reason, when changes in _Qsys are to be understood

in terms of vascular tone, the reciprocal of Rsys, vascular
conductance (Gsys; see Glossary) is preferable (Joyce et al.,
2019b; Lautt, 1989; Stark, 1968):

_Qsys ¼ Gsys � ðPsys � PcvÞ: ð4Þ

For this reason, below, we will consider Gsys as opposed to Rsys in
terms of the effects on _Qsys.

A number of recent human studies have used the vasodilative
effects of adenosine or ATP to determine the consequences of
regulation of vascular tone. Strikingly, ATP infusion alone mimics
the increase in leg blood flow during one-legged knee-extensor
exercise, and can invoke a similar (over 2-fold) increase in total _Qsys
(Bada et al., 2012; González-Alonso et al., 2008). This suggests that
peripheral vasodilatation can change _Qsys independently of central
cardiac control and the muscle pump driving VR (Bada et al., 2012;
González-Alonso et al., 2008). Importantly, González-Alonso et al.
(2008) demonstrated that infusion of ATP into the femoral vein had
no effect on leg blood flow or _Qsys, invoking arteriolar or capillary
level effects as opposed to a change in Rven. In Antarctic icefish, it
was also recently demonstrated that adenosine injection gives rise to
a large increase in _Qsys and systemic conductance (Joyce et al.,
2019c), similar to that during activity (Joyce et al., 2018a).
Although the underlying signalling mechanisms remain unclear,
_Qsys also increases severalfold when pythons digest meals in the
absence of muscular activity (Enok et al., 2016), and this is probably
driven by the large rise in Gsys.

In both the icefish and human cases, _Qsys increases
simultaneously with a decrease in ventral aortic or mean arterial
pressure, respectively. Thus, a ‘cardiocentrist’ may argue that the
rise in _Qsys stems from decreased cardiac afterload and hence can be
ascribed to heart performance. However, in icefish this does not
appear to be the case because the peak in _Qsys occurs considerably
(1.5 min) after the transient peak decrease in ventral aortic pressure.
Moreover, in red-blooded Antarctic fish (Pagothenia borchgrevinki)
(Sundin et al., 1999) and rainbow trout (O. mykiss) (Sundin and
Nilsson, 1996), although adenosine increases Gsys, it decreases
branchial conductance (i.e. it increases branchial resistance). This
means that ventral aortic pressure (i.e. cardiac afterload) rises,
but nevertheless _Qsys increases, demonstrating that systemic
vasodilatation is determining _Qsys.

The effects of systemic vasodilators are complex in non-avian
reptiles, such as turtles and rattlesnakes, as the undivided ventricle
allows large intraventricular shunts, which means that a portion of
oxygen-poor blood from the right atrium may re-enter the systemic
circulation (pulmonary bypass; right-to-left shunt) or oxygenated
blood returning from the lungs may re-enter the pulmonary artery
(left-to-right shunt) (Hicks, 2002; Hicks and Wang, 2012;
Joyce et al., 2016b). Both adenosine and NO cause systemic
vasodilatation in non-avian reptiles, as shown by an increase inGsys,
and thereby increase in _Qsys (Crossley et al., 2000; Galli et al., 2005;
Joyce and Wang, 2014; Skovgaard et al., 2005). However, although
pulmonary conductance is not directly affected by adenosine or NO,
pulmonary blood flow decreases because the right-to-left shunt
passively increases, diverting flow towards the systemic circulation.
This could compromise blood oxygenation (Wang and Hicks,
1996b); thus, during exercise, other cardiovascular responses (i.e.
decreased vascular capacitance, increased cardiac function and
regulation of the pulmonary vasculature) must contribute to the
integrated response to maintain pulmonary blood flow when
systemic conductance increases. β-Adrenergic receptor stimulation
may decrease pulmonary resistance (Berger, 1972; Burggren, 1977;

Box 2. The regulation of systemic conductance (Gsys)
Systemic conductance (Gsys) is a critical determinant of systemic blood
flow ð _QsysÞ that can be changed by peripheral vascular tone (i.e.
vasodilatation and vasoconstriction). Vascular tone is regulated by both
the autonomic nervous system and local signalling. Adrenergic stimulation
(i.e. circulating catecholamines and sympathetic innervation) typically
results in α-adrenoceptor-mediated vasoconstriction (Sandblom and
Gräns, 2017; Sheng and Zhu, 2018; Thomas, 2011). Acetylcholine, the
parasympathetic neurotransmitter, may directly act on vascular smooth
muscle muscarinic receptors, inducing vasoconstriction, or cause
vasodilatation by inducing endothelial cells to release nitric oxide (NO)
(Furchgott and Zawadzki, 1980; Sheng and Zhu, 2018).

NO may also be released by endothelial cells in response to sheer
stress (Green et al., 1996) or can be generated by the nitrite reductase
activity of deoxygenated haemoglobin (Cosby et al., 2003). The evolution
of NO-mediated regulation of vasomotor tone is complex (Donald et al.,
2015), and NO-dependent vasodilatation may be absent in many fishes
(Jennings et al., 2007), although it is clearly evident in amphibians,
reptiles and mammals (Crossley et al., 2000; Jennings and Donald,
2008; Skovgaard et al., 2005).

Adenosine, a purine that was only starting to come to prominence at
the time of Guyton’s (1968) review, is released by tissues when oxygen
supply does not meet demand, including during activity (Mubagwa et al.,
1996). Adenosine is now recognised as a potent vasodilator of systemic
vessels across vertebrates, including fish (Joyce et al., 2019c; Sundin
and Nilsson, 1996), reptiles (Joyce and Wang, 2014) and mammals
(Rådegran and Calbet, 2001). ATP exerts similar vasoactive effects
(González-Alonso et al., 2008; Rådegran and Calbet, 2001), and is
released by erythrocytes (Kalsi et al., 2017) or endothelial cells in
response to sheer stress (Burnstock and Ralevic, 2014).
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Donald et al., 1990; Overgaard et al., 2002). In anaesthetised
alligators, adenosine and NO increase Gsys, but do not affect _Qsys as
Psys falls in parallel (Jensen et al., 2016), which is more in line with
Guyton’s original understanding of arterial resistance. It may be
worthwhile for future studies to explore how the peripheral
vasculature, including resistance and capacitance, controls _Qsys in
crocodilians, at rest and during exercise.

Integrating changes in cardiac function, vascular
capacitance and peripheral conductance
It is difficult to dissociate the relative contributions of the many
factors that influence and change cardiac function and the
vasculature (capacitance and conductance) to the global regulation
of _Qsys. Furthermore, it is sometimes unclear which variables are
regulated and which accommodate passive changes. However, some
insight can be gleaned from the influence of pharmacological agents
exerting specific effects on the vasculature that would be predicted
to have opposing effects on _Qsys. In this section, we will focus on a
few select examples where the isolated effects of a given regulator
(i.e. NO, α- or β-adrenergic receptor stimulation) are relatively well
resolved in a particular species.
In many vertebrates, NO either has no effect on myocardial

contractility or exerts a small negative inotropic effect (Filogonio
et al., 2017; Imbrogno et al., 2001, 2018; Misfeldt et al., 2009;
Pedersen et al., 2010). As discussed above, NO is a potent
vasodilator, so NO donors, such as sodium nitroprusside (SNP),
increase Gsys (Bower and Law, 1993; Galli et al., 2005; Olson et al.,
1997). This general vasodilatation decreases Pmcf because vascular
tone is reduced (Bower and Law, 1993; Olson et al., 1997; Skals
et al., 2005). In rattlesnakes, the increase in capacitance appears to
largely offset the increase in Gsys, as the overall change in _Qsys is
minor in response to SNP (Galli et al., 2005; Skals et al., 2005). In
cats under control conditions, SNP treatment results in a small
decrease in _Qsys, suggesting that the pronounced decrease in Pmcf

outweighs the increase in Gsys (Bower and Law, 1993). However,
when basal NO synthesis is inhibited with L-NAME, the SNP-
dependent increase in Gsys is severalfold greater, whereas the
increased sensitivity of Pmcf is much smaller. Under these
conditions, instead of decreasing, _Qsys increases during SNP
infusion (Bower and Law, 1993). In trout, treatment with SNP
causes little change in the venous vasculature, but large changes in
arteriolar vasomotor tone, increasing Gsys, which in turn increases
_Qsys (Olson et al., 1997). Thus, it appears that the integrated effect of
SNP on _Qsys is determined by the opposing effects on capacitance
and Gsys; only when there is a large change in Gsys can this
overcome a decrease in Pmcf.
In mammals, α-adrenergic receptor stimulation of the

myocardium exerts complex species- and tissue-specific inotropic
effects, which include positive and negative inotropy (Endoh, 2016;
Endoh et al., 1991; Wang et al., 2006). The role of α-adrenergic
receptor stimulation in the hearts of ectothermic vertebrates is not
well understood; however, in perfused rainbow trout hearts, there is
no effect of α-adrenergic receptor stimulation with the specific
agonist phenylephrine (Farrell et al., 1986). van Harn et al. (1973)
also found no evidence for the presence of α-adrenergic receptors in
the turtle ventricle (Van Harn et al., 1973), and we likewise saw no
effect of phenylephrine in crocodile myocardium (W.J. and T.W.,
unpublished). Pmcf is increased by phenylephrine universally in
vertebrates (Sandblom et al., 2006b, 2009a; Skals et al., 2005,
2006), which would be predicted to increase cardiac filling and _Qsys.
However, owing to its potent and general vasoconstrictive effects,
phenylephrine decreasesGsys, which decreases _Qsys in most species,

including rattlesnake, swamp eel and an Antarctic notothenioid
(Pagothenia borchgrevinki) (Sandblom et al., 2009a; Skals et al.,
2005, 2006). In dogfish, there is no significant change in _Qsys in
response to phenylephrine (Sandblom et al., 2006b). In a
particularly elegant study on anaesthetised pigs, Cannesson et al.
(2012) demonstrated that when _Qsys is ‘pre-load dependent’, i.e. on
the ascending portion of the Frank–Starling curve, phenylephrine
increases _Qsys, suggesting that the increase in Pmcf outweighs the
decrease in Gsys. Conversely, when cardiac output is preload
independent (on the plateau phase of the Frank–Starling curve),
phenylephrine decreases _Qsys.

β-Adrenergic receptor stimulation is known to exert positive
inotropic effects across the vertebrate phylogeny (Farrell et al.,
1986; Gesser et al., 1982; Shiels et al., 2015; Van Harn et al., 1973).
β-Adrenergic receptor stimulation also elicits vasodilatation, thus
increasing Gsys (Sandblom et al., 2006b, 2009a; Skals et al., 2005),
which, in most species (e.g. rattlesnake, swamp eel), contributes to
elevating _Qsys. However, in some species, such as dogfish and turtle
(Overgaard et al., 2002; Sandblom et al., 2006b), _Qsys does not
change, as the increase in fH is associated with a decrease in VS. This
may occur because, despite the fact that an increased cardiac
function and Gsys should increase _Qsys, β-adrenergic receptor
stimulation concomitantly decreases Pmcf (Sandblom et al., 2006b;
Skals et al., 2005, 2006).

These ‘artificial’ examples, with pharmacological agents exerting
specific effects on the heart and vasculature, demonstrate that a
given change in cardiac function, Pmcf or Gsys cannot predict a
change in _Qsys when considered in isolation. To effectively increase
_Qsys, the cardiovascular system orchestrates a compartmentalised
response achieved by different innervation and different distribution
of receptor sub-types. For example, during activity, the elevated
levels of circulating catecholamines (Reid et al., 1998; Stinner and
Ely, 1993) bind to β-adrenoceptors on the heart to increase cardiac
function (Gamperl et al., 1994; Van Harn et al., 1973). By contrast,
in the venules, where vasomotor tone determines capacitance (and
therefore Pmcf ), we know that α-adrenergic vasoconstriction
dominates over β-adrenergic vasodilatation, because exogenous
adrenaline (capable of binding to either subtype) elicits an increase
in Pmcf that is attenuated by α-adrenergic receptor antagonists
(Sandblom et al., 2006b, 2009a; Zhang et al., 1998). However, in
the conductance vessels that determine venous resistance, the
activation of β-adrenoceptors by catecholamines during exercise
ensures that VR is not compromised (Deschamps and Magder,
1992; Magder, 2011). Adrenaline alone would be expected to
decrease Gsys by eliciting arterial vasoconstriction; however,
crucially, vasodilators such as adenosine, ATP and NO exert
‘sympatholytic’ effects (Buckwalter et al., 2004; Hearon et al.,
2017) that are known to contribute to the increased vascular
conductance observed during exercise (Casey et al., 2010; Rådegran
and Calbet, 2001). Together, this complex system integrates to
allow the exquisite control of _Qsys.

Why do most animals regulate fH during activity?
In this Review, we have argued that _Qsys is largely regulated by the
interplay between Pmcf and Gsys, whereas cardiac function plays a
limited functional role, but is important in terms of regulation. We
also posit that fH alone, at least within the physiological range, has
essentially no effect on _Qsys. A conundrum naturally arises; why do
most animals evidently regulate fH during activity?

It is known that dogs, for example, are able to regulate _Qsys
without altering fH during mild exercise (Warner and Toronto,
1960), and resting fish increase routine _Qsys through VS when the
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normal tachycardia is prevented during warming (Gamperl et al.,
2011); however, it is unclear whether similar principles apply at
maximum aerobic performance. Here, it is likely that VS limits _Qsys.
This would be alleviated if end-diastolic volumewere increased, but
to maintain wall thickness (as is necessary to compensate for wall
stress; Seymour and Blaylock, 2000), this would require an increase
in heart mass so would be energetically costly; thus, fH changes may
allow heart size to be maintained as small as possible. Ventricular
compliance also limits VS, and it is intriguing that the larger
maximum VS of athletes is associated with larger compliance of the
ventricular wall (Arbab-Zadeh et al., 2004; Levine et al., 1991).
Thus, although VS may not be limiting during non-maximal activity,
fH changes may nevertheless be ‘default’ in vertebrates because
natural selection has favoured this to benefit maximum cardiac
performance. Furthermore, uncompensated volume overload is
harmful to the heart (Neves et al., 2016). fH is exquisitely matched to
VR to maintain a constant VS, which may protect the myocardium
by avoiding excessive stretch.
Finally, there is convincing evidence that _Qsys can increase faster

when fH is able to change. Dogs in which the heart has been
denervated, which have a suppressed capacity to change fH
(although the exercise-associated tachycardia is not abolished
because of the action of circulating catecholamines), can attain
similar maximum _Qsys and oxygen consumption to control animals
(Donald and Shepherd, 1964a). However, the initial rise in cardiac
output is markedly slowed (Donald and Shepherd, 1964b;
Versteeg et al., 1983). Although fight-or-flight situations may be
largely anaerobic, there may nevertheless be a strong selection
pressure on being able to increase oxygen transport as quickly as
possible. As a line for future research, it would be interesting to
study the immediate cardiovascular responses to transitions in
workload, given that past studies have focused on steady-state
conditions.

Conclusions
Despite prominent differences in cardiovascular anatomy and
function, a number of general principles emerge from our
comparative framework. Although most vertebrates increase fH
(with a varied, albeit typically lesser, contribution from VS) when
oxygen requirements increase, the change in fH is neither necessary
nor sufficient to drive a change in _Qsys under most normal conditions.
Instead, _Qsys is primarily controlled by a balance of arterial
vasodilatation (regulation of Gsys) and venous constriction
(regulation of vascular capacitance). Cardiac function can also
become limiting, so increased myocardial inotropy is also important
for augmenting _Qsys. Increased sympathetic nervous activity and
circulating catecholamines play a fundamental role in the regulation
of cardiac function (including the largely inconsequential regulation
of fH) and vascular capacitance, whereas local sympatholytic
vasodilators (adenosine, ATP, NO) allow Gsys to be controlled
independently. Beyond these commonalities, some vertebrate groups
have evolved uniquemethods to regulate _Qsys (via VR) during special
circumstances, such as venous sphincters in diving mammals and
atrial smooth muscle in freshwater turtles, which offer analogous
solutions to the cardiovascular challenges associated with diving. We
propose that future comparative studies on cardiovascular responses
to altered metabolic rate must be integrative, and need to pay equal
consideration to the factors changing cardiac filling as to the factors
dictating cardiac function. It may be particularly interesting to
investigate the potential limitations of heart size and VS at maximum
aerobic performance when fH is clamped, especially in different
species with different metabolic capacities.
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