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Help, there are ‘omics’ in my comparative physiology!

Alex S. Torson', Yun-wei Dong? and Brent J. Sinclair'-*

ABSTRACT

‘Omics’ methods, such as transcriptomics, proteomics, lipidomics or
metabolomics, yield simultaneous measurements of many related
molecules in a sample. These approaches have opened new
opportunities to generate and test hypotheses about the mechanisms
underlying biochemical and physiological phenotypes. In this
Commentary, we discuss general approaches and considerations for
successfully integrating omics into comparative physiology. The choice
of omics approach will be guided by the availability of existing resources
and the time scale of the process being studied. We discuss the use of
whole-organism extracts (common in omics experiments on small
invertebrates) because such an approach may mask underlying
physiological mechanisms, and we consider the advantages and
disadvantages of pooling samples within biological replicates. These
methods can bring analytical challenges, so we describe the most
easily analyzed omics experimental designs. We address the
propensity of omics studies to digress into ‘fishing expeditions’ and
show how omics can be used within the hypothetico-deductive
framework. With this Commentary, we hope to provide a roadmap
that will help newcomers approach omics in comparative physiology
while avoiding some of the potential pitfalls, which include ambiguous
experiments, long lists of candidate molecules and vague conclusions.

KEY WORDS: Transcriptomics, Metabolomics, Genomics, RNA-seq,
Hypothesis testing

Introduction

A goal of comparative physiology is to understand the diverse
mechanisms that allow animals to function and survive in their
environments. Comparative physiologists (1) inquire vertically across
levels of biological organization, (2) connect processes horizontally
among organisms within ecosystems (e.g. host—pathogen
interactions), and (3) aim to understand how physiological systems
adapt in response to changing environments (see Mykles et al., 2010;
Somero et al., 2017). A decade (or so) ago, there was a disconnect
between the tools available for the non-model organisms favored by
the Krogh principle, and the burden of proof that could be shouldered
by transferring those questions to established model organisms (Dow,
2007). Now, high-throughput omics is routine in non-model species,
genetic manipulation via RNA interference (RNAi) is almost de
rigueur in some taxa (e.g. Howlett et al., 2012; Huang et al., 2018;
Maori et al., 2019), CRISPR/Cas9 allows genomic manipulation in
non-models (e.g. Gui et al.,, 2020) and genetic models can be
established (relatively) quickly (for discussion, see Matthews and
Vosshall, 2020). However, the core use of omics (largely
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transcriptomics, metabolomics and proteomics; see Glossary) in
comparative physiology remains exploratory, identifying candidate
molecules and processes — and thus allowing researchers to generate
hypotheses — rather than revealing the mechanisms that underlie
physiological phenomena. We argue that the latter should drive the
questions of ‘when’ and ‘why’ to use omics in comparative
physiology.

In this Commentary, we draw on our experiences — and especially
our own mistakes — to build a road map for incorporating omics into
comparative physiology. We do not address the strengths,
weaknesses or ‘promise’ of specific methods or technologies —
this is covered and criticized elsewhere (e.g. Dow, 2007; Karahalil,
2016; Madr et al., 2017; Suarez and Moyes, 2012), and rapid
changes in technology would render our thoughts obsolete before
publication. Nor do we presume to preach to the many comparative
physiologists already making sterling use of omics. Rather, we
aim to provide an entry point for comparative physiologists who
are considering incorporating omics into their studies for the first
time. We hope that this Commentary will be useful for designing
and interpreting experiments, and for tempering expectations: if
there is anything we have learned as a discipline, it is that omics
seldom yields clear answers. Because it is our area of focus, we
center our examples around invertebrate thermal biology, but the
principles presented here should be applicable across
comparative physiology. Opinions and recommendations are,
of course, our own.

What are ‘omics’?

For the purposes of this Commentary, we define omics as any
technique that identifies and quantifies a suite of sub-cellular
molecules in a high-throughput fashion (Raghavachari, 2011).
Although technology has increased the sophistication of these
methods, comparative physiologists have long addressed questions
using multivariate and integrative techniques. For example,
understanding  metabolic  flux requires the simultaneous
measurement of the activity of many enzymes (Darveau et al.,
2005; Driedzic and Hochachka, 1976; Fernandez et al., 2011) and
understanding changes in membrane dynamics during thermal stress
requires the characterization of membrane fluidity, lipid composition
and activity of membrane-associated proteins (Biederman et al.,
2019). Thus, these multi-molecule approaches have a longer history
in the field than their recent categorization as ‘omics’.

Omics approaches vary in their functional significance. For
example, genomics (see Glossary) can address population-level
structure (Kovach et al., 2015) and evolutionary questions (Mock
et al.,, 2017); epigenomics can unveil regulatory mechanisms
(Glastad et al.,, 2019) and transgenerational plasticity (Ho and
Burggren, 2010); and microbiomics (usually microbial
metagenomics, e.g. Ren et al., 2020) can reveal how microbes
influence the phenotypes of their hosts (e.g. Moriano-Gutierrez
et al., 2019). However, comparative physiologists tend to focus on
functional omics such as transcriptomics, proteomics, lipidomics
and metabolomics (Fig. 1), because they most directly connect to
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Glossary

Gene co-expression network

An undirected graphic that shows which genes or gene products have
correlated expression profiles. Co-expressed genes are of biological
interest because they likely indicate shared regulatory control or
functional relationships.

De novo transcriptome assembly

The assembly of short sequences into a transcriptomic sequence without
the use of a reference genome.

Differential expression analysis

A method of taking RNA sequencing data and conducting a statistical
analysis to evaluate quantitative changes in expression between
experimental groups.

Gene ontology (GO)

A system of classification used to characterize gene and gene-product
functions across species under a unified vocabulary. This database is
often used to categorize groups of genes with similar function during
omics analyses. See http:/geneontology.org/.

Genomics

The study of the structure and function of all the genetic information
encoded in an organism’s DNA.

Genome-guided transcriptome assembly

A method of transcriptome assembly that relies on existing genomic DNA
sequence to align and assemble RNA sequencing reads.

KEGG (Kyoto Encyclopedia of Genes and Genomes)

A bioinformatics database linking genomic information to higher-level
cellular processes such as metabolism, cell cycling and signal
transduction. See https:/www.genome.jp/kegg/.

Metabolomics

The characterization of a large number of metabolites in a sample.
Untargeted metabolomics is the global analysis of all molecules of a
similar type (e.g. polyamines) independent of known identities. Targeted
metabolomics, in contrast, quantifies a suite of molecules that have
already been identified.

Orthology-based approaches

The identification and functional characterization of genes and gene
products based on sequence similarity and assumed functional
conservation among species.

Phosphoproteomics

A subcategory of proteomics that identifies changes in the phosphorylation
state of proteins.

Proteomics

Identification and quantification of the entire set of proteins that is
produced or modified by an organism.

Reference genome

A template nucleic acid database that contains all or most of the genomic
DNA sequence of an organism.

RNA sequencing (RNA-seq)

A high-throughput sequencing technique used to identify and quantify all
expressed genes (i.e. MRNA) of an organism at a given point in time.
Transcriptomics

The study of the complete set of RNA molecules transcribed by an
organism using high-throughput methods such as RNA-seq and
microarray.

organismal and cellular function. Many of these omics tools are
available off-the-shelf from private companies or central platforms,
most of which will perform some level of analysis (for a fee, of
course). We caution that commercial (usually biomedical)
laboratories seldom have the resources to optimize their protocols
for non-model systems; as a result, the results can be unsatisfactory
or unusable. Identifying a collaborator with a vested interest in the
question or organism is typically more effective, especially for
metabolomics and proteomics. Nevertheless, generating some level
of omics data for almost any question about an organism is now
relatively affordable and accessible, whether it is a traditional model
system or not.

A typical omics workflow, such as a study using RNA-seq (see
Glossary), would start with (1) a simple experimental design that
will facilitate pair-wise comparisons in the analysis; (2) extraction of
the relevant molecules from a sample; (3) data processing [for
RNA-seq, this might include genome-guided transcriptome
assembly (see Glossary)]; (4) analysis [for RNA-seq, this might
include differential expression analysis (see Glossary) to identify
transcript expression that varies in response to a treatment]; and
(5) data visualization and interpretation (often with the help
of functional databases or pathway-mapping tools). These high-
throughput techniques can yield long lists of ‘candidate’ molecules
or pathways, especially when the experiments are intended to be
hypothesis generating. For this reason, omics studies have a
reputation as ‘fishing expeditions’, and it can be difficult to publish
omics-only studies unaccompanied by additional experiments. How,
then, do we effectively use omics in comparative physiology? We
argue that a successful omics study in comparative physiology has (1)
an experimental design that facilitates inquiry at and across omics-
levels, (2) sophisticated interpretation of results that moves past the
generation of ‘candidates’, and (3) an emphasis on hypothesis
evaluation and/or explicit hypothesis testing.

Designing experiments with omics in mind

Elegant experimental design remains a cornerstone of comparative
physiology. Omics is now readily affordable, such that cost is
increasingly unlikely to constrain experimental design. However,
there are practical and design-related decisions that must be made
before embarking on an omics experiment in comparative
physiology. Here, we break down some of these important decisions.

Availability of existing omics resources
Some non-model systems already have omics tools available. The
existence of reference genomes (see Glossary), transcriptomes or
metabolite databases diminishes some of the challenges that come
with starting from scratch. However, although a high-quality
reference genome or transcriptome will simplify RNA-seq
workflow, published genomes vary widely in their completeness
and quality (for discussions see: Hanschen and Starkenburg, 2020;
Mardis et al., 2002; Seppey et al., 2019). If a reference genome is
unavailable, de novo transcriptome assembly (see Glossary) is
necessary, but relatively straightforward (e.g. Duan et al., 2015;
Poelchau et al., 2011; Toxopeus et al., 2018). However, there are
drawbacks associated with incomplete (i.e. draft-level) reference
genomes and de novo-assembled reference transcriptomes: it is
much more difficult to detect the involvement of regulatory
elements such as promoters or alternative splicing events (Conesa
et al., 2016), and some epigenomics techniques may be of little
value without a high-quality reference genome (Cazaly et al., 2019).
Other omics techniques, such as metabolomics and proteomics,
also benefit from established resources. Accurate identification of
metabolites and proteins (as opposed to metabolite or protein
“features’, which may simply be peaks in a spectrogram) is critical
for informed analysis and interpretation of results (Calvete, 2014;
Pinu et al., 2019). Model systems benefit from sequenced genomes
and transcriptomes (which facilitate protein identification; e.g.
Modahl et al., 2018), and established metabolite libraries and
databases (e.g. MetaboLights, a cross-species database which
covers metabolite structure and reference spectra; Haug et al.,
2020). For non-models, metabolite libraries may need to be
developed in-house and protein identification must rely on
orthology-based approaches (see Glossary), which can limit
conclusions. For example, MacMillan et al. (2016) were limited
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Fig. 1. Systems-level integration of biological levels of organization. White circles and arrows represent examples of interaction between levels and the
direction of regulation, respectively. The response time box is relative to the four main omics levels, with variation at the metabolomic level capable of driving fast
physiological changes and changes at the genomic level only capable of driving generational-scale changes in phenotype.

to 34 identified metabolites in D. melanogaster because of a small
reference panel of metabolites associated with their untargeted
metabolomics, whereas Hariharan et al. (2014) identified over 1000
metabolites in the same species with a larger reference library.
Although a small reference panel decreases inferential power in
untargeted metabolomics studies, if the hypothesis being tested
predicts specific patterns of response, then identifying all the
metabolites is less important than identifying large-scale patterns
and the key drivers of those patterns; alternatively, a small reference
panel of highly relevant metabolites will suffice. Characterizing the
features in proteomics often relies on matching peptide fragments to
a reference genome (Yang et al., 2019). In the absence of high-
quality reference information, this process depends on orthologous
relationships with existing resources, which rapidly becomes less
precise as the references are less closely related to the study species
(Armengaud, 2016).

Time scales of biological processes influence the choice

of omics

Metabolic and gene regulatory networks drive cellular-level
responses to stimuli on distinct time scales (Shamir et al., 2016).
RNA-seq is widely used by comparative physiologists because it is
affordable and sensitive, and turn-key analyses are available.
However, biological processes occur over a range of timescales.
In eukaryotes, transcriptomic or proteomic responses (requiring
~5—10 min or tens of minutes, respectively) are too slow to regulate,
for example, metabolic flux, which requires control via allosteric
interaction and post-translational modification (Milo and Phillips,
2015). In ectotherms, these processes will also be temperature
dependent. We suggest that omics choice should be governed by the
timescale of the process: biological processes that take minutes
might require, for example, phosphoproteomics (see Glossary) or
metabolomics, those on the order of tens of minutes to hours are
well-suited to transcriptomics and proteomics, generational-scale
phenomena might be best addressed in the epigenome, and longer-
term (evolutionary) processes might require input from the genome
(Fig. 1).

As an example in insects, a brief (minutes) exposure to mild low
temperatures increases tolerance to more extreme cold exposures, a
process called rapid cold-hardening (RCH; Teets et al., 2020).
However, transcriptomic signatures of RCH have been elusive: for
example, Zhang et al. (2011) identified only 20 genes upregulated after
a RCH-like treatment in D. melanogaster. In retrospect, this is
unsurprising. Rapid cold-hardening can be induced in as little as
10 min, a timeframe that is unlikely to be influenced heavily by
transcriptional regulation — in fact, RCH does not even require protein

synthesis (Misener et al., 2001). However, such rapid changes fall
within  the timeframe captured by metabolomics and
phosphoproteomics, which revealed gluconeogenesis, cryoprotectant
synthesis and phosphorylation of cytoskeletal and stress response
proteins during RCH in Sarcophaga bullata (Teets and Denlinger,
2016; Teets et al., 2012). By contrast, low-temperature acclimation over
6 days also improves D. melanogaster cold tolerance, but these
physiological changes are accompanied by differential expression
across one-third of the transcriptome (MacMillan et al., 2016). Thus,
transcriptomic-level inquiry, which is a common first step into omics
studies, may not be appropriate for all physiological processes.

Choice of sample material could restrict inference

Animals integrate and partition physiological processes among
tissues and cells. Tissue-level resolution in omics is especially
important when tissues within a system respond differently to a
given stimulus. In insects, for example, water balance is governed
by the balance of excretion by the Malpighian tubules and
absorption by the hindgut (Nation, 2015). Increased expression or
activity of sodium pumps would thus increase active transport in the
hindgut but decrease transport across Malpighian tubules (Des
Marteaux et al., 2018a), but the antagonistic responses would be
masked in a sample that includes both tissues.

While vertebrate biologists have almost always used specific
tissues (e.g. the liver, brain or gills; Akashi et al., 2016; Windisch
et al, 2014; Zhang et al., 2015), invertebrate comparative
physiologists often homogenize entire animals (e.g. Deng et al.,
2018; Des Marteaux et al., 2019; Robert et al., 2016; Torson et al.,
2017; Zhang et al., 2011). This whole-animal approach is forgivable
for very small animals, fast physiological processes (i.e. those that
proceed more quickly than the time needed to dissect out tissues) or
large experiments, and has been used to successfully generate
testable hypotheses (e.g. Gleason and Burton, 2015; MacMillan
et al., 2016; Meyer et al., 2011; Poupardin et al., 2015; Teets et al.,
2012; Torson et al., 2015). However, we argue that, at best, using
whole animals limits the capacity to draw inferences about sub-
organismal processes, and at worst, may obscure some processes
entirely. When whole-animal sampling is unavoidable, additional
care can be inserted into data processing. For example, bacterial,
fungal and plant contamination included with the gut tissue can be
identified through matches to databases and tools such as DeconSeq
(Sangiovanni et al., 2019; Schmieder and Edwards, 2011). It is
possible to extend this argument further to include among-cell
variation within a tissue (e.g. there are distinct cell types in the
Malpighian tubules, Halberg et al., 2015), and techniques are
available for single-cell omics (e.g. scRNA-seq; Kolodziejezyk

3

)
(@)}
9
je
(2]
©
-+
c
Q
£
—
()
o
x
NN
Y
(©)
‘©
c
—
>
(®)
-_




COMMENTARY

Journal of Experimental Biology (2020) 223, jeb191262. doi:10.1242/jeb.191262

et al., 2015), should these be necessary to answer a specific
question. However, such single-cell approaches are technically
challenging and likely impractical in many non-model systems. As a
result, one needs to choose an appropriate tissue or cell type when
designing omics experiments. These decisions require some
working knowledge of the physiological system in question and
careful logistical considerations related to optimizing sample
preparations. Even if the fingerprint of the hypothesized response
is observable in whole-organism homogenates, a tissue-specific
approach will increase signal and reduce noise. To keep results
repeatable, the sample collection also needs to be repeatable. For
both single-cell and tissue-specific studies, this might require a
formal detailed protocol in the methods, or even stand-alone
methods descriptions (e.g. Torson et al., 2020).

More replicates are better, but pooling can reduce costs
without losing (too much) signal

Balancing the difficulty of obtaining samples against the expected
among-individual variation in a response defines the acceptable
sample size for any experiment in comparative physiology (McNab,
2003). Three biological replicates are currently acceptable for
comparative physiology omics experiments (Fig. 2A), but this is
really an analytical minimum rather than an example of best practice
for either statistical or inferential power. The cost of omics has been
falling (e.g. genome sequencing; Wetterstrand, 2019), allowing

A Low replication: weak signal B

Axis 2

Moderate replication: moderate signal

larger sample sizes. This allows easier identification of outliers and,
therefore, increased accuracy (Fig. 2B). When performing omics
studies, one must consider the relative importance of among-
individual versus among-treatment variation. In studies that focus
on differences between treatments, small variations in the age or
prior experience of individuals (especially if they were field-
collected) is noise. By contrast, if differences among individuals are
paramount (e.g. where there are precise phenotypic measurements
for each individual), then the variation among individuals is signal.
The best way to improve the signal-to-noise ratio and statistical
power is to increase replication (Fig. 2C). However, pooling
(Fig. 2D) can mask inter-individual variation, increasing the signal-
to-noise ratio when comparing treatments at the cost of decreased
statistical power and the capacity to detect individual differences.
Thus, if individual variation is not a primary research objective then
pooling is both cost-effective and improves the capacity to detect a
treatment effect.

Although omics is getting cheaper, cost is still important,
especially when the cost is per sample. For example, metabolomics
usually requires sequential sample processing through
chromatography/mass-spectrometry instruments. In these cases,
the cost of replication scales linearly with sample size. In other
technologies, such as RNA-seq, analyses are parallel, and many
replicates can be sequenced on a single ‘lane’ or ‘cell” (at the
expense of number of reads per sample, i.e. sequencing depth). In

Fig. 2. Hypothetical principal component
analyses of omics profiles. Increasing
replication and pooling can improve signal to
noise in omics profiles. (A) Low biological
replication (e.g. n=3) will support most omics
statistical analyses, but significant biological
variation in the two groups (black and grey)
could yield an inaccurate estimate (x) of the true
mean (p). (B) With moderate replication,
estimates are more accurate, and outliers can be
identified and addressed. (C) High replication
gives the most accurate estimate of mean and
variance to detect the true differences among
groups. (D) Pooling individuals from high-
replication sampling (represented by shapes of
similar color in C is an effective cost-saving
strategy that gives an accurate estimate of the
signal but masks underlying individual variation.

C High replication: strongest signal D

Axis 2

Average values of each pool in C are represented
by colored + symbols.

Pooled samples from high
replication: strong signal
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this case, there is still a per-replicate cost for sample preparation, but
adding more samples to a sequencing run bears no additional cost:
the ability to detect differentially expressed genes plateaus after
about 10 million reads (Liu et al., 2014), but, of course, this plateau
increases if one is interested in isoform-level resolution. Thus, more
biological replicates at a cost of sequencing depth returns the
greatest statistical power per unit cost. If there is a per-replicate cost
to acquiring omics data, then pooling individuals within biological
replicates can increase the signal-to-noise ratio with a small sample
size, as discussed above.

Simple experiments are still best

Analyzing omics output from complex experiments is not trivial.
Most omics analysis pipelines such as the Tuxedo Suite for RNA-
seq (Trapnell et al., 2013, 2012) and MetaboAnalyst for
metabolomics (Chong et al., 2019) are optimized for pairwise
comparisons. Experimental designs comparing two treatments or
multiple treatments back to a common control (Fig. 3A) are easily
analyzed under this framework. Pairwise tools are also appropriate
for more complex designs that compare controls and treatments

among tissues or populations (Fig. 3B; e.g. Des Marteaux et al.,
2017). However, a typical ‘simple’ comparative physiology
experiment might be a 2x2 design examining the interaction of
two treatments (Fig. 3C). Ordinarily, we would analyze such data
using some version of a two-way ANOVA. Pairwise comparisons
allow the dissection of main effects, but not the interactions (which
mayi, in fact, be the purpose of the experiment). Such designs can be
analyzed (for RNA-seq, in any case) using generalized linear
models, which are more complex than the turn-key analyses
provided in many packages (McCarthy et al.,, 2012). Pairwise
analyses are also ill-suited to time series data (Fig. 3D), since
dividing a time series analysis into discrete pair-wise comparisons
fails to account for temporal autocorrelation (Spies et al., 2019).
However, there are tools for clustering temporal patterns of gene
expression (e.g. maSigPro; Nueda et al., 2014) that can identify sets
of genes that respond similarly over time (e.g. Toxopeus et al.,
2018). The tools to address these complex designs are still in the
early stages of their development and are challenging for those
without great familiarity with omics analyses. Thus, there are
currently no well-established standards and the most-common

A Pairwise design B Multi-factor design
- - Enriched in cold
> - R e -
Control Cold Tissue 1 Tissue 1
control cold
| Profile overlap
Enriched in control
> - K)
Tissue 2 Tissue 2
control cold
C Full-factorial design D Time series design
Control Cold o Control Recovery
2
E - -
: [} - -
Q Control Single g' - -
stress o
KO .
Control
Cold stress Cold stress
_ i A
O Single Both
stress stressors
Desiccation 1 1 1 1 J

Time

Fig. 3. Designing experiments with omics in mind. (A) Experiments consisting of simple pairwise comparisons are easily analyzed using common analytical
pipelines. (B) Multi-factor experiments, such as those measuring responses to cold stress in multiple tissues can be analyzed in a pairwise fashion

(black arrows) and interactions between tissues can be addressed via overlap of differential expression profiles between tissues (represented as Venn diagrams).
Analyzing (C) full-factorial designs and (D) time-series data is more challenging (see main text for further discussion).
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methods for complex analyses are often out-performed by pairwise
differential expression methods (summarized by Spies et al., 2019).
Nevertheless, the proverbial statistician’s cry still holds true in the
face of omics: ‘plan your data analysis before you do the
experiment!’

Interpreting omics: moving beyond the fishing expedition

A key advantage of omics is that when few or no hypotheses exist,
omics should allow the generation of testable hypotheses by
identifying candidate molecules and pathways underlying
physiological processes. However, this approach is often derided
as a “fishing expedition’ (Ning and Lo, 2010). It may be argued that
such omics approaches fall into the ‘hypothesis formulation’ stage
of the classic scientific method (Doughty and Kerkhoven, 2020).
Nevertheless, because large amounts of omics data can be acquired
cheaply and easily, and the analysis can be challenging, an unkind
criticism might be that the quality of the hypotheses generated has
not generally been high. If this is indeed the case, how do we
improve the quality of omics as a hypothesis-generating tool?

Most omics analyses generate long lists of candidate molecules as
their output. In some cases, these candidates are themselves direct
evidence of a molecule’s involvement in a physiological process.
For example, high concentrations of hemolymph glycerol in
emerald ash borer (4grilus planipennis) prepupae during winter
strongly suggest that this metabolite is a cryoprotectant (Crosthwaite
et al., 2011). Differential expression of genes associated with a
transcriptionally regulated process (e.g. caspase-8 in apoptosis; Li
et al., 2014) could directly imply that pathway’s involvement in a
phenotype. Alas, we are rarely so lucky in omics analyses. Often the
evidence is indirect and requires either more-sophisticated omics-
level analyses or additional experiments.

When faced with an overwhelming degree of differential
expression from RNA-seq or proteomics experiments, many
authors use orthology-based approaches to categorize their
candidates into functional classes (using, for example, gene
ontology, GO; see Glossary) or biological pathways (e.g. using
the Kyoto Encyclopedia of Genes and Genomes, KEGG; see
Glossary), and test for enrichment of these functions against a
reference. For example, Zhang et al. (2020) evaluated differential
expression of proteins using a metabolic pathway analysis to show
that fatty acid degradation increased during diapause in rice water
weevil, Lissorhoptrus oryzophilus. Because some of the tools used
to categorize candidates overlap, there can be integration among
omics datasets: for example, pathway outputs from metabolomics
and transcriptomics can be compared (e.g. Kost’al et al., 2016).
However, there are caveats to these analyses: (1) not all genes/
transcripts are annotated meaningfully, and in most datasets a
significant number of genes and transcripts have no annotation or
known function, which introduces bias into the processes that will
(or can) be identified; (2) gene products could serve purposes that
have not yet been functionally annotated (e.g. moonlighting
proteins; Jeffery, 2014), which could lead to inaccurate
conclusions about the involvement of a process in a phenotype;
(3) gene ontology and pathway analyses rely heavily on the
assumption of homologous relationships in gene-product function
across taxa, which could allow novel functions or processes to be
overlooked; and (4) taxonomic coverage is limited in most databases
and heavily biased towards biomedical models, which means omics
results from the more weird and wonderful Krogh models may miss
key processes or functions (Gaudet et al., 2017).

One way to avoid the bias inherent in these functional analyses
is to use clustering and gene co-expression network analyses

(see Glossary) to identify associated groups of molecules or
processes without a priori expectations about their function or
pathway (Horvath, 2011; Scaria et al., 2016; Wu et al., 2003). For
example, Riddell et al. (2019) used a co-expression network
analysis to identify functional modules of gene expression and show
that plasticity in the desiccation tolerance of a montane salamander
correlates with suites of genes involved in blood vessel
development. Thus, clustering and co-expression analyses can
contribute directly to the generation of testable hypotheses about
novel gene function, which can then be followed up with functional
experiments. The implementation and interpretation of the results
generated from these more advanced analytical tools requires a
robust bioinformatics skill set.

Omics in a hypothetico-deductive framework

Designing and testing elegant, efficient and discriminatory
hypotheses is the epitome of experimental science (Platt, 1964).
Although the emergence of omics led to claims that this moved
science to a post-hypothesis world (e.g. Ning and Lo, 2010), most
omics still require follow-up ‘small science’ hypothesis-driven
studies (cf. Alberts, 2012) to draw conclusions. What, then, is the
role of omics in hypothesis-driven comparative physiology, and
what opportunities for testing hypotheses do omics technologies
afford?

Increasing the sophistication of omics-level analyses will
increase the quality of the resulting hypotheses, but if an omics
study generates hypotheses, reviewers and editors will probably
expect the authors to test those hypotheses. We note that the
hypothesis testing need not take place at the same level of
organization — indeed, to do so would be overwhelming if there
are tens or hundreds of potentially interacting candidate molecules,
and there are limited (or no) genetic tools for the organism in
question. However, omics-derived hypotheses can be readily tested
using the tools with which physiologists are comfortable (Table 1).
For example, transcriptomics suggested that cold-acclimated
crickets remodel their hindgut cytoskeleton (Des Marteaux et al.,
2017), which was then tested using microscopy (Des Marteaux
et al, 2018b). Similarly, Whitehead et al. (2012) used
transcriptomics to identify aryl-hydrocarbon receptor pathways
upregulated after crude oil exposure in killifish and evaluated this
response with immunohistochemical measurements of gill
cytochrome p450 Al protein. Thus, in these situations, omics are
contributing directly to the integrative goals of the comparative
physiology program, but the omics are used to generate, rather than
test, the hypotheses (Table 1).

One approach to the use of omics in hypothesis-driven
comparative physiology is to use omics data to evaluate a priori
hypotheses. For example, MacMillan et al. (2016) articulated six
hypotheses associated with the mechanisms underlying insect cold
acclimation, and used a combination of metabolomics and
transcriptomics to support four of those hypotheses. One of the
other hypotheses concerned phospholipid properties (a potential
mechanism that is likely to be neither transcriptionally regulated nor
identifiable using a metabolomics approach that focused on polar
metabolites). The remaining hypothesis was on the regulation of
apoptosis: this process is transcriptionally regulated (Franzetti et al.,
2012) and should produce a metabolomic signature, so a lack of
evidence in the omics datasets suggests that this hypothesis is not
well supported. We refer to this approach as ‘hypothesis evaluation’,
rather than testing, because an omics approach will rarely provide a
direct and definitive test of a physiological hypothesis. To be most
effective, we advocate the systematic compilation of hypotheses to
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Table 1. Examples of omics-derived hypotheses and follow-up experiments crossing biological levels of organization

Initial omics
Species approach Omics-derived hypothesis Follow-up level (technique) Reference(s)
Fall field cricket RNA-seq Crickets remodel the cytoskeleton during Cellular (microscopy) Des Marteaux et al.
(Gryllus pennsylvanicus) low temperature acclimation (2017, 2018b)
Cabbage looper RNA-seq Dietary ion loading leads to changes in  Protein (immunohistochemistry); gene Kolosov et al. (2019a,b)
(Trichoplusia ni) paracellular permeability in the distal expression (QPCR); cellular
ileac plexus of lepidopteran (microscopy, pharmacology)
Malpighian tubules
Alfalfa leafcutting bee RNA-seq Brief warm exposures elicit a beneficial Protein (enzyme activity); cellular Torson et al. (2015,
(Megachile rotundata) oxidative stress response in chill- (oxidative damage) 2019)
injured insects
Mangrove killifish Proteomics  Structural proteins for bone Tissue (histology, bone density Turko et al. (2017)
(Kryptolebias marmoratus) mineralization are responsible for measurements, mechanical tests)
weight-responsiveness of the
musculoskeletal system
Gulf killifish RNA-seq Toxic levels of crude oil reduce Organismal (egg production, fertilization Whitehead et al. (2012)
(Fundulus grandis) reproductive success via interference success)
with oestrogen signaling pathways
Rice water weevil Proteomics  Glycerol accumulation is driven by fatty Metabolomic (glycerol and glycogen Zhang et al. (2020)
(Lissorhoptrus oryzophilus) acid breakdown during diapause measurements); gene expression
(aPCR)
Blue mussels Proteomics Sirtuin-dependent deacylation regulates Protein (chemical inhibition of sirtuin) Vasquez et al. (2017,

(Mytilis galloprovincialis;

Mytilis trossulus) mussels

heat stress response in intertidal

2020)

yield a priori expectations about candidate molecules and
processes. This approach can then facilitate the evaluation of
multiple (and possibly competing) hypotheses based on predicted
omics-level responses under the strong-inference paradigm (cf.
Platt, 1964). Analysis and interpretation can then be two-pronged:
(1) hypothesis evaluation and (2) hypothesis generation based on
the dataset. Explicit hypothesis evaluation can be applied to data
analysis and interpretation after data collection, making it possible
to reconcile otherwise overwhelming ‘fishing expedition’ data sets
with a more recognizable hypothetico-deductive approach.

Can omics be used to directly test a hypothesis? The short answer
to this question is ‘yes’, but designing and interpreting that
hypothesis is more challenging. Omics methods should lend
themselves well to testing hypotheses that predict patterns of
responses. For example, Sinclair et al. (2013) hypothesized that
insects have similar cellular responses to cold and dehydration stress
(i.e. that they display cross tolerance). This hypothesis yields clear
predictions of shared patterns of omics responses to the two
stressors, which can be readily evaluated (Fig. 4). Similarly, Harada
and Burton (2020) used a transcriptomic approach to test the

C+D

A B No cross-tolerance Cross-tolerance
Humidity W+H W+D C+H C+D W+H W+D C+H
Humid Dry
c
2
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o Warm W+H W+D g
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£ U]
& Cold C+H C+D
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[ ] No change in expression [__| Low expression [ Medium expression
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Fig. 4. A hypothetical experimental design to investigate cross tolerance of cold and dehydration stress in insects. This experiment uses a full-factorial
design (A) to test the hypothesis that the physiological responses of an insect to cold stress and dehydration share similar regulatory mechanisms. This
hypothesis is easily tested using an omics approach by evaluating the degree to which molecular profiles (e.g. RNA-seq) are similar or dissimilar among the
single-stress and combined-stress exposures. (B) Low levels of overlap among, for example, gene expression profiles (which could be evaluated using heat
maps) would not support the hypothesis and would indicate divergent stress response mechanisms to cold stress and dehydration. Expression levels, relative to
the warm temperature, high humidity treatment, from low to high are represented as a gradient from yellow to blue, with grey representing no change in expression.
A high degree of overlap in profiles would support the hypothesis that cross tolerance exists between these stressors. W, warm; C, cold; H, humid; D, dry.
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hypothesis that the heat shock response in the intertidal copepod
Tigriopus californicus is regulated by heat shock transcription
factor-1 (HSF-1). After exposure to a heat shock, HSF-1 trimers bind
to highly conserved sequences in the genome (heat shock elements;
HSEs) to promote the expression of genes involved in the heat shock
response (Vihervaara and Sistonen, 2014). Thus, this hypothesis
predicts that knocking down HSF-1 prior to heat stress should result
in a decreased expression of genes with HSEs in their promoter
regions and should ultimately hinder the heat shock response.
Knocking down HSF-1 using RNAI resulted in decreased survival
after heat stress but did not alter the expression of any of the
approximately 400 genes in C. californicus containing at least one
HSE in their promoter region, not supporting the original hypothesis.

Conclusions

Omics techniques are now readily accessible for comparative
physiology investigations in non-model species, giving researchers
new tools to study complex physiological problems. The
physiological process under investigation will dictate the most
appropriate omics method, the tissue sampling and replication
approach, and the experimental design. However, analysis of omics
experiments can be challenging, so begin with simple experimental
designs. A strength of omics is the ability to generate new
hypotheses, but these studies need not be fishing expeditions. The
hypotheses generated by omics can be tested (often at another level
of biological organization) using more conventional physiological
tools, but omics data themselves can also be used to evaluate
competing hypotheses. We recommend compiling these hypotheses
a priori and developing clear predictions to allow them to be
evaluated. With some care, omics can even be used to directly test
hypotheses about physiological processes. Ultimately, we hope that
this Commentary saves those who are new to omics from falling
victim to their many pitfalls and inspires established comparative
physiologists to integrate these tools into their research.
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