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Structural plasticity of the avian pectoralis: a case for geometry

and the forgotten organelle
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ABSTRACT

The avian pectoralis muscle demonstrates incredible plasticity. This
muscle is the sole thermogenic organ of small passerine birds, and
many temperate small passerines increase pectoralis mass in winter,
potentially to increase heat production. Similarly, this organ can double
in size prior to migration in migratory birds. In this Commentary,
following the August Krogh principle, | argue that the avian pectoralis is
the perfect tissue to reveal general features of muscle physiology. For
example, in both mammals and birds, skeletal muscle fiber diameter
is generally accepted to be within 10—100 um. This size constraint
is assumed to include reaction-diffusion limitations, coupled with
metabolic cost savings associated with fiber geometry. However,
avian muscle fiber structure has been largely ignored in this field, and
the extensive remodeling of the avian pectoralis provides a system with
which to investigate this. In addition, fiber diameter has been linked to
whole-animal metabolic rates, although this has only been addressed in
a handful of bird studies, some of which demonstrate previously
unreported levels of plasticity and flexibility. Similarly, myonuclei, which
are responsible for protein turnover within the fiber, have been forgotten
in the avian literature. The few studies that have addressed myonuclear
domain (MND) changes in avian muscle have found rates of change not
previously seen in mammals. Both fiber diameter and MND have strong
implications for aging rates; most aging mammals demonstrate
muscular atrophy (a decrease in fiber diameter) and changes in
MND. As | discuss here, these features are likely to differ in birds.

KEY WORDS: Muscle fiber diameter, Muscle ultrastructure,
Myonuclear domain

Introduction

The avian pectoralis muscle is responsible for the downstroke during
wing beats (Torrella et al., 1998), and this muscle complex is one of
the largest organs in birds, as it accounts for up to 17-25% of their
total body mass (Greenewalt, 1962; Dietz et al., 2007). In many birds,
the pectoralis muscle serves as the main thermoregulatory organ, in
addition to being responsible for lift and thrust (Driedzic et al., 1993).
Thus it is central to survival in this animal group. Importantly, many
avian species demonstrate tremendous plasticity in the mass and
weight of the pectoralis muscle across seasons and during migration
(Swanson, 2010; Gaunt et al., 1990). Whereas there is a large body of
literature highlighting the incredible mass change in the pectoralis
muscle of birds under these circumstances, there are very few studies
dedicated to some important structural aspects of avian muscle
physiology. In this Commentary, I argue that more detailed study of
the structure of the avian pectoralis could potentially improve our
understanding of muscle physiology in general.
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The diameter of skeletal muscle fibers is 10—100 pm in mammals
and birds. Limits to the size of muscle fibers probably reflect a
compromise between diffusion constraints and metabolic cost
savings (Kinsey et al., 2011; Jimenez et al., 2013), as described by
the ‘optimal fiber hypothesis’ (Johnston, 2006). Specifically,
diffusion distances in small fibers are short, allowing rapid
diffusion of molecules such as O, and ATP (Kinsey et al., 2011).
However, fibers with greater diameters are less costly metabolically,
because they have less membrane-associated Na'—K*"-ATPase
activity (Jimenez et al., 2013). Of course, one of the interesting
properties of muscle is that fiber size changes during animal growth
(Kinsey et al., 2007) and, in some birds, across seasons (Swanson,
2010). This has to do with the way muscle grows. Muscle growth in
animals can follow two distinct patterns: (1) hypertrophy (see
Glossary), which is an increase in muscle mass due to an increase in
fiber diameter and length (Kinsey et al., 2007; Nyack et al., 2007,
Jimenez et al., 2013) while fiber number remains nearly constant
and (2) hyperplasia (see Glossary), which is an increase in fiber
number (Sola et al., 1973; Taylor and Wilkinson, 1986; Antonio and
Gonyea, 1993). Despite having low metabolic costs at rest,
pectoralis muscle forms a large relative proportion of bird body
mass, so that a positive correlation between basal metabolic rate
(BMR; see Glossary) and the size of the pectoralis muscle has been
previously shown (Chappell et al., 1999).

As discussed above, birds show huge plasticity in the mass and
weight of muscle — particularly for the pectoralis. Muscle tissue of
avian species that are migrants or overwinter in colder temperate
regions has a feature that is not seen in the typical mammalian study
systems: a repeated increase and decrease in the mass of the tissue
itself. Metabolic adjustments associated with the plasticity of the
avian pectoralis muscle have been explored elsewhere (Guglielmo,
2010; Swanson, 2010), and are not a part of this Commentary.
Additionally, birds provide an interesting study model with respect
to aging, as they have higher mass-specific metabolic rates but live
longer lives compared with similar-sized mammals (Jimenez et al.,
2019a). These differences between birds and mammals imply that
studies including birds represent an interesting and under-utilized
avenue to unveil generalizable principles in muscle structure and
function.

Here, I emphasize some of the missing pieces in the avian muscle
literature. I first give examples of conditions under which the
pectoralis muscle demonstrates plasticity in birds, then I go on to
discuss physiological implications of changing muscle fiber size.
Next, I address the lack of myonuclear domain (MND; see
Glossary) studies in avian muscle, followed by a consideration of
potential ploidy changes in avian muscle. Finally, I end with a
discussion of potential molecular mechanisms dictating these
muscle changes. Using the (sometimes few) available studies,
I describe the interesting physiological implications of these traits,
especially when compared with the mammalian-dominated
literature in these fields.
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Glossary

Basal metabolic rate

The rate of metabolism in a post-absorptive, non-reproductive, non-
thermally stressed animal.

Endopolyploidy

Ploidy level is defined as the number of copies of DNA per nucleus.
When more than two copies of each chromosome are present in a
nucleus, it is termed polyploidy, or endopolyploidy.

Fast glycolytic muscle fiber

These rely primarily on anaerobic metabolic pathways to produce ATP,
and their morphology reflects this: they lack the high number of
mitochondria seen in oxidative fibers, and have less vascularization.
Fast-twitch fibers can contract quickly, but also fatigue quickly.
Hyperplasia

An increase in muscle mass due to an increase in fiber number.
Hypertrophy

An increase in muscle mass due to an increase in fiber diameter and
length.

Maximum cold-induced metabolism

A measure of maximal shivering heat production seen as an index of
avian cold endurance.

Metabolic scope

The difference between basal metabolic rate and peak metabolic rate.
Myonuclear domain

The amount of cytoplasm (volume) serviced by each myonucleus.
Peak metabolic rate

Maximal metabolic rate as measured by cold exposure or exercise.
Sarcolemma

Lipid bilayer plasma membrane enveloping skeletal muscle fibers.
Sarcopenia

Loss of skeletal mass and function (sometimes associated with age in
mammals).

Slow oxidative muscle fiber

These rely primarily on aerobic metabolic pathways to make ATP and
have several structural features that support this type of metabolism,
including more mitochondria and capillaries compared with fast-twitch
glycolytic fibers. Because they use aerobic means to fuel ATP
production, slow oxidative fibers fatigue slowly. Generally, oxidative
fibers have a smaller diameter, and less force production compared with
glycolytic fibers.

Plasticity of the avian pectoralis

Avian pectoralis muscle and thermogenesis

In many birds, heat is generated by shivering, and the pectoralis muscle
is considered to be the main thermogenic organ (Swanson, 2010;
Swanson and Vézina, 2015). Thus, it follows that the pectoralis (as
well as the flight muscles and supracoracoideus muscles) have all been
studied with respect to avian shivering thermogenesis (Swanson, 2010,
and references therein). Maximum metabolic rates (MMR) during cold
exposure in birds generally range from three to eight times BMR,
although most studies measuring MMR do so well below temperatures
naturally experienced by birds (Swanson, 2010). Metabolic scope (see
Glossary) during cold exposure is usually less than that measured
during flight or locomotion (Brackenbury, 1984) — some species see a
5.5-fold increase over BMR during steady flight (Klaassen et al., 2000)
— pointing to the fact that not all aerobic capacity in bird muscle is
available for thermogenesis (Swanson, 2010). Seasonal alterations of
the morphology and physiology of the pectoralis muscle are common
in birds that live in temperate areas, and these changes allow birds to
better match energy demands across seasons (Swanson, 2010). Many
bird species have been used as model systems in this regard, and seem
to demonstrate larger pectoralis muscle mass during winter compared
with summer months (O’Connor, 1995; Swanson, 2010; Swanson and
Vézina, 2015; Swanson et al., 2013).

Although many have linked the size of the pectoralis muscle in
passerines with maximum cold-induced metabolism (Mg,,; see
Glossary) (Vézina et al., 2006, 2007, 2011; Swanson, 2010; Swanson
etal., 2013; Petit and Vézina, 2014), others have found that increases
in muscle mass do not correlate with Mg, (Noakes et al., 2020) or no
correlation was found between pectoralis size and M,,, (Barceld
etal.,2017; Milbergue et al., 2018). Thus, heat production may not be
amere function of pectoralis muscle mass, but also of cellular acrobic
capacity. Conversely, species that demonstrate no seasonal variation
in pectoralis muscle mass, such as house finches in Colorado, also see
no changes in Mg,,,, (Dawson et al., 1983; Carey et al., 1989). This
implies that increases in pectoralis muscle mass (and heart mass) may
partially be the drivers of seasonal flexibility in temperate small
passerines and may allow these species to survive potentially harsh
winter temperatures (Swanson and Vézina, 2015). However, it may
be informative to consider the underlying ultrastructural changes in
pectoralis in this case (see below).

Avian pectoralis muscle and migration

Bird migration is a physiologically demanding period of time. The
actual migration time is sandwiched between two (or more) periods
of hyperphagia, where birds deposit mass rapidly (Guglielmo and
Williams, 2003). During migration itself, birds perform endurance
flights at high metabolic rates for up to 100 h (Guglielmo and
Williams, 2003), and migratory birds generally have well-developed
exercise organs, such as their pectoralis muscle, heart and lungs
(Swanson, 2010; Vagasi et al., 2016). Rapid pectoralis muscle
changes are known to occur in response to increases in workload
(Petit and Vézina, 2014; Zhang et al., 2015) or in preparation for
migration (Swanson, 2010; Price et al., 2011). Prior to migration,
many bird species increase their body mass and, concomitantly,
their pectoralis muscle size, an adaptation that is often described as
an enhancement for power output, as in the case of semipalmated
sandpipers (Calidris pusilla) (Driedzic et al., 1993). Body mass is
positively correlated with muscle mass in birds that undergo
migration (Lindstrom et al., 2000; Bauchinger and Biebach, 2005).
However, migration distance does not correlate with flight muscle
sizes (Vagasi et al., 2016). After migration, many birds exhibit up to
a 25% decrease in muscle mass (Swanson, 2010).

It should be noted that many studies looking at muscle mass
changes during migration refer to the increase in bird muscle mass as
hypertrophy without considering the actual structural changes
underlying this change in organ size. If these changes occur via
increases in fiber number, they would more accurately be termed
hyperplasia. Historically, there have only been three studies that
quantified the ultrastructural change in pectoralis muscle; these
studies determined that the increase in mass was most likely to be the
result of hypertrophy, although hyperplasia could not be ruled out
(Marsh, 1984; Gaunt et al., 1990; Evans et al., 1992). Dunlin and
sanderlings increase their muscle mass pre-migration due to a
significant increase in fiber area (i.e. hypertrophy; Evans et al., 1992).
Fiber area changes are greater than body mass changes in these birds
(Evans et al., 1992). The authors of this study noted that hypertrophy
may occur to different extents in different parts of the pectoralis
muscle (Evans et al., 1992). It is noteworthy to mention here that
muscle fiber sizes can be diffusion limited (as discussed above);
fibers that are too large may be affected by decreases in the rates of
diffusion of important metabolites (Kinsey et al., 2007). One way
around this challenge within muscle tissue is to recruit muscle fibers
via hyperplasia, as seen in the black seabass (Priester et al., 2011).
Thus, this could be a mechanism by which birds increase the mass of
their musculature while preventing diffusion limitations. As an
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extreme example of the plasticity of the pectoralis, when eared grebes
(Podiceps nigricollis) molt all of their feathers, they are flightless and
their pectoralis muscle mass is greatly reduced in size. However,
within two weeks prior to migration departure, the grebes double the
size of their muscle mass (Gaunt et al., 1990). The mechanism via
which muscular proteins are upregulated remains unexplored, as does
the activity of each nucleus within avian skeletal muscle.

Muscle fiber diameter in birds

At rest, the tissue-specific metabolism of skeletal muscle is
relatively low. However, because skeletal muscle is the tissue that
makes up the largest fraction of body mass, it has a strong
contribution to whole-animal metabolic rate (Martin and Fuhrman,
1955; Rolfe and Brown, 1997). Thus, in small mammals, skeletal
muscle accounts for up to 30% of the metabolic rate at rest (Martin
and Fuhrman, 1955; Rolfe and Brown, 1997); this figure rises to
90% for peak metabolic rate (PMR; see Glossary) as elicited by
locomotion (Weibel and Hoppeler, 2005). In birds, the pectoralis
muscle contributes up to 25% of the total body mass (Greenewalt,
1962; Dietz et al., 2007); thus, it may be a tissue where considerable
basal metabolic savings could be accrued. As discussed above, there
is a strong link between the size of a muscle fiber and the cost of ion
pumping. The surface area to volume ratio of a muscle fiber and the
rate of cell metabolism are positively correlated with the rates of
Na"~K"-ATPase activity, and larger muscle fibers are therefore not
as metabolically expensive to maintain (Johnston et al., 2003;
Jimenez et al., 2011, 2013; Kielhorn et al., 2013). Na*~K"-ATPase
activity in the muscle sarcolemma (see Glossary) is responsible for
19-40% of the resting metabolic rate in muscles (Gregg and
Milligan, 1982; Milligan and McBride, 1985; Rolfe and Brown,
1997), and muscle can represent up to 25% of the total body mass
(Greenewalt, 1962; Dietz et al., 2007); therefore any change in the
surface area to volume ratio of muscle fibers resulting from seasonal
plasticity or migration would have implications for the cost of
maintaining the muscle mass and, in turn, for the BMR of the
animal. Thus, the geometry of the muscle fiber can have whole-
animal metabolic implications. For example, fiber diameters are
closely related to the body mass of quail, where larger, faster-
growing quail have significantly larger fiber diameters than smaller
quail with lower growth rates (Jimenez et al., 2018). In addition,
following migration in eared grebes, a decrease in pectoralis muscle
size is accompanied by a 60% decrease in fiber diameter during
atrophy (Gaunt et al., 1990). In fact, fiber diameters in birds differ
with life-history traits. In addition, fiber diameters in avian muscle
are more plastic and responsive to environmental stress than
originally thought, and the pattern of muscle fiber diameter as birds
age seems to differ from the commonly accepted mammalian
paradigm. These issues are discussed in more detail below.

Life history

Tropical birds have an 18% lower BMR and a 30% lower PMR as
elicited by cold exposure or exercise in a flight wheel compared with
temperate bird species (Wiersma et al., 2007a,b). In a study
published in 2014, we used 16 phylogenetically paired species of
tropical and temperate birds and assessed fiber diameters in the
pectoralis muscle as well as maximal Na™—K*-ATPase activity, with
the aim of testing the idea that differences in life history can be
related to differences in muscle structure (Jimenez and Williams,
2014a). In general, we found that temperate birds have larger muscle
fiber diameters and, concomitantly, lower maximal activity of Na*—
K*-ATPase than tropical birds. These results were surprising,
considering that we anticipated that tropical birds (which have lower

whole-animal metabolic rates than temperate birds) would have
larger diameter fibers that would be metabolically cheaper. Based
on our findings, we suggested that the larger diameter fibers found
in temperate species would allow the birds to have increased force
production and a greater muscle mass (especially in winter months)
relative to tropical birds (Wiersma et al.,, 2012), while still
minimizing basal metabolic costs. Tropical birds perform shorter
flights and have a reduced muscle mass; we therefore proposed that
the smaller muscle fibers are the result of reduced selection for
muscle performance in these birds (Jimenez and Williams, 2014a).

Seasonality and thermal stress

As temperature is one of the major modifiers of metabolic rates in
endotherms (Swanson, 2010), it makes sense that birds would have
adaptive responses to mediate its effects. These responses have been
investigated across seasons in Central New York, using both small
black-capped chickadees and larger rock pigeons. In the former,
spring-phenotype birds have significantly larger fiber diameters than
summer-phenotype birds. However, there is no seasonal difference in
fiber diameter in rock pigeons (Jimenez et al., 2019b). Chickadees
and rock pigeons both have larger pectoralis muscles in the winter
(Saarela and Hohtola, 2003; Petit et al., 2014; Vézina et al., 2017).
Thus, it seems that black-capped chickadees and rock pigeons are
both phenotypically flexible across seasons, but their strategies differ.
The pectoralis of black-capped chickadees shows an increase in
muscle mass (which is mediated by hypertrophy) in spring relative to
summer. This might allow them to save energy during the colder
months, as a larger body mass is associated with lower thermogenic
costs (Stager et al., 2015; Milbergue et al., 2018). The larger muscle
fiber diameters of spring-phenotype chickadees may contribute to
reductions in basal metabolic costs associated with the activity of
Na"~K*-ATPase, while simultaneously providing increases in force
production to improve shivering. For comparison, rock pigeons also
have greater muscle mass at lower acclimation temperatures (Saarela
and Hohtola, 2003). However, as rock pigeons are larger than
chickadees they are likely to face a lower selection pressure for
metabolically cheaper fibers — this is because they do not require the
same increases in thermogenic capacity or force production (for
shivering) in colder months as the smaller black-capped chickadee.
Additionally, fiber diameters in black-capped chickadees seem to be
homogenous and are significantly smaller (32-38 um) compared
with those of rock pigeons that demonstrate a heterogeneous
population of small and large muscle fibers (small fibers 30—
40 pm; large fibers 60—80 um). Arguably, there is already a cost
saving associated with these large fibers in rock pigeons compared
with black-capped chickadees. Thus, pigeons may be able to grow
their muscle mass via hyperplasia (Jimenez et al., 2019b). In terms of
heat stress, we have also previously found that heat-shocked house
sparrows (Passer domesticus) decrease muscle fiber diameter within
24 h of a heat-shock treatment, and that fiber diameter can return to
control conditions after recovering at room temperature for 24 h after
the 24 h heat-shock treatment. Na'—K*-ATPase activity increases
significantly when fiber diameters decrease due to heat shock
(Jimenez and Williams, 2014b). Thus, muscle fibers in small
passerine birds may be quickly adaptable and plastic.

Aging

In humans, muscle fiber diameters tend to decrease with age, in a
process termed sarcopenia (see Glossary; Young et al., 1984; Lexell
etal., 1988; Frontera et al., 2000). However, it is not known whether
these age-related changes affect all (or most) animals or whether
they are specific to mammals (Young et al., 1984; Lexell et al.,
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1988; Frontera et al., 2000). The pectoralis muscle of aging black-
legged kittiwakes and thick-billed murres does not show signs of
atrophy (Brown et al., 2019; Jimenez et al., 2019c¢), in opposition to
the mammalian aging paradigm, which includes a decrease in fiber
diameter as part of the muscular atrophy process. These papers are
the first to note a lack of muscle atrophy with age in wild birds.

Are myonuclei the forgotten organelle in avian muscle
studies?

Muscle is a post-mitotic, multinucleated tissue (i.e. a syncytium).
Therefore, to grow by hypertrophy, new nuclei may need to draw into
the muscle fiber from a population of satellite cells. These are stem-
like cells located under the basement membrane and the sarcolemma
of each muscle fiber, and it is thought that the number of satellite cells
is fixed throughout an animal’s life (Bruusgaard et al., 2010; Van der
Meer et al., 2011; Jimenez and Kinsey, 2012). Each myonucleus in a
muscle fiber controls a certain volume of cytoplasm known as a
myonuclear domain (MND) (Qaisar and Larsson, 2014; Box 1). The
cytoplasm of a muscle fiber must be highly organized in order to
contain the necessary metabolic and contractile machinery. One
could therefore think of the regulation of muscle fiber size and/or
cross-sectional area in terms of the balance between production and
degradation of cytoplasmic components (Hughes and Schiaffino,
1999; Van der Meer et al., 2011). In chickens, post-natal development
of' muscle fibers involves both an increase in fiber size and an increase

in the number of nuclei (derived from satellite cells), demonstrating
that fiber size may not maintain a constant MND (Hughes and
Schiaffino, 1999; Brack et al., 2005). In adult birds, satellite cells may
proliferate following stretching (Winchester and Gonyea, 1992). The
majority of the work on MND has been performed using mammalian
muscle (Box 1), and the role of this organelle in avian muscle seems
to have been forgotten. Below, I discuss the few studies on birds that
have measured MND changes. In the Brown et al. (2019) study on
aging birds, we highlight all the avian studies that have quantified
muscular fiber size and capillary density, but we also point out that
Brown et al. (2019) was the first study we could find that measured
MND in birds. Thus, changes associated with the myonuclei have
been mostly ignored in this field.

Seasonality and thermal stress
In black-capped chickadees, when fiber diameter increases across
seasons by hypertrophy, MND also increases (Jimenez et al.,
2019a). This indicates that each myonucleus must maintain a proper
balance between synthesis and degradation for a greater area of the
muscle fiber, (Van der Meer et al.,, 2011). In addition, each
myonucleus may need to respond to an increased demand for
protein turnover. It is possible that MND increases prior to satellite
cells being incorporated into the myofiber, as stated in Box 1.
Cold-acclimated chickadees exposed to a sudden 15°C drop in
temperature are able to modify their pectoralis ultrastructure within

Box 1. Myonuclear domain in mammals

In mammals, myonuclear domain (MND) size differs across fiber types; slow oxidative fibers have a smaller MND than glycolytic fibers (Van der Meer et al.,
2011). The effects of changing muscle fiber size on MND are not clear: some studies report no changes to MND size with hypertrophic muscle growth,
whereas others report an increase in MND (Hikida et al., 1997; McCarthy and Esser, 2007; O’'Connor and Pavlath, 2007; Brooks et al., 2009).

Whether a change in MND is imperative for hypertrophic muscle growth is controversial (Van der Meer et al., 2011). Currently, we do not know the
sequence of events and time course that is required for muscle fiber architectural changes (Van der Meer et al., 2011). For example, one study demonstrated
that an increase in fiber size during hypertrophy is preceded by the recruitment of more nuclei (Bruusgaard et al., 2010). However, others have stated that
changes in MND and fiber size take up to 4 weeks, and some have seen changes within 1-2 weeks (Van der Meer et al., 2011). These conflicting results
have led to the notion that MND size may not be as carefully regulated as once thought (Gundersen and Bruusgaard, 2008).

A positive relationship between fiber size/cross-sectional area and MND would be potentially disadvantageous, as this would result in insufficient nuclei
per fiber to accommodate increasing diffusion distances. A positive relationship between fiber size and MND implies that growing muscle cells may not
recruit satellite cells (there may not be any left to recruit). This would increase the protein turnover load per nucleus (Kinsey et al., 2011). In mammals,
decreased innervation appears to cause sarcopenia, with associated decreases in MND (Hughes and Schiaffino, 1999). Studies have shown conflicting
results when examining age-related changes in myonuclear number for humans, mice and rats — some studies show no change in the number of myonuclei,
whereas others report that there are more myonuclei with age (Van der Meer et al., 2011). Myonuclei can be eliminated from the muscle fiber via caspases
without the destruction of the cell, a pathway that is probably triggered by atrophic conditions (Van der Meer et al., 2011), although this notion has been
challenged (Gundersen and Bruusgaard, 2008). In contrast, it seems that myonuclei that are newly acquired during hypertrophy in mouse muscle are not
lost, even after 3 months of denervation (Bruusgaard et al., 2010; Van der Meer et al., 2011). In fact, during atrophy, the number of nuclei has been shown to
be conserved for up to 28 days in both oxidative and glycolytic fibers (Bruusgaard and Gundersen, 2008). The Box figure shows depictions of a single
muscle fiber in cross-section.

Hypertrophy with satellite
cell recruitment
(no change in MND)

Control Hypertrophy with no
satellite cell recruitment

(increase in MND)
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3 h of the temperature change (Vézina et al., 2020). Within 3 h,
these birds are able to increase the number of nuclei per millimeter
of fiber by 15% (considering the raw data), and MND decreases by
the same amount. This suggests that the addition of satellite cells
into existing myofibers can be rapid (Vézina et al., 2020). However,
it is not clear where these extra nuclei originate from; are they
derived from endoreduplication or myogenic progenitor cells? It is
also not known whether they undergo division or if they become
depleted. Similarly, there are questions relating to the mitotic
profiles with respect to the potential nuclear division. Increases in
total protein synthesis due to a hypertrophic stimulus are evident
within hours of exposure to the stimulus (Bruusgaard et al., 2010).
There are several implications of decreased MND during an acute
thermal challenge. If all nuclei show a similar rate of production, a
decreased MND may represent a decrease in protein turnover load
per nucleus, reducing the nuclear workload. Alternatively, the
implication may be that nuclei are not producing products at a
sufficient rate, such that it is necessary to recruit more nuclei in order
to increase protein turnover rates (Brooks et al., 2009). Additionally,
the very quick incorporation of new nuclei into muscle fibers in
response to cold temperatures might precede a further increase in
fiber diameter (which could allow greater force production in order
to improve thermogenic capacity; Bruusgaard et al., 2010).

Aging

In aging black-legged kittiwakes, we found that the MND increased
with fiber diameter, indicating that the number of nuclei does not
increase in proportion to fiber size (Brown et al., 2019). Similar
results have been reported in the white muscle of fishes, which also
shows an increase in MND following muscle fiber hypertrophy
(Jimenez and Kinsey, 2012). However, in aging thick-billed murres,
we found a negative correlation between MND and age (Brown
et al., 2019). It has been reported that slow oxidative muscle fibers
(see Glossary) in rats display a decrease in MND with age, whereas
MND does not change with age in fast glycolytic muscle fibers (see
Glossary) in rats and humans (Brooks et al., 2009; Cristea et al.,
2010). Other studies in humans show a significant decrease in MND
with age (Manta et al., 1987; Cristea et al., 2010). In our study on
thick-billed murres (Brown et al., 2019), although MND decreased
with age, fiber diameter did not change, as predicted by mammalian
work. Thus, it may be that chronic exercise, as performed by these
foraging birds, may limit the sarcopenia and loss of satellite cell
function seen in aging mammals. It is thought that ‘filling up’
muscle fibers with nuclei by exercising throughout the lifetime may
prevent muscle weakness during old age (Bruusgaard et al., 2010); a
high level of exercise may also allow thick-billed murres to maintain
proper muscular function into old age.

Migration

There are currently no data on what happens to MND during avian
migration or exercise when the size of the pectoralis muscle increases
and decreases rapidly, as in the dramatic case of eared grebes (Gaunt
et al., 1990). Applying the August Krogh principle, a muscle mass that
undergoes cyclical yearly increases and decreases could be very
informative in providing generalizable principles regarding the
flexibility and plasticity of MND. To further elucidate these patterns,
work that could be done in this area would include time-point
experiments following structural changes in muscle mass in birds with
different migratory strategies. These experiments could provide answers
regarding phenotypic plasticity in muscle mass and could determine
whether exercise is associated with myonuclei filling up muscle fibers,
which seems to be unresolved in mammalian studies (Box 1).

Are all myonuclei equal?

In animals, cell size is highly correlated with DNA content (Conlon
and Raff, 1999; Gregory, 2001; Comai, 2005), with increases in ploidy
presumably leading to larger cell volumes (Vinogradov et al., 2001).
Thus, another option for compensating for increases in MND is an
increase in the ploidy of each nucleus. An increase in ploidy is often
associated with an alteration in cellular morphology, physiology and
behavior (Galitski et al., 1999; Comai, 2005). Animals that grow their
anaerobic muscle strictly through hypertrophic means, such as fish and
crustaceans, have demonstrated that this tissue is also endopolyploid
(see Glossary; Jimenez et al., 2010; Jimenez and Kinsey, 2012). Others
have found variation in DNA content in myotubes of Xenopus
(Daczewska and Saczko, 2003). A potential area of future work, then,
would be to quantify ploidy in avian musculature, as this concept has
not been tested in a system that undergoes rapid cycles of hypertrophy
and atrophy. This may also begin to address the question of whether the
amount of DNA correlates with cell size (Koztowski et al., 2020).

What are the potential molecular mechanisms?

Myostatin is an inhibitor of muscle growth, and it may regulate
hypertrophy and hyperplasia (Lee and McPherron, 2001; Price
etal., 2011). Myostatin is downregulated at low temperatures, which
might permit an increase in size and mass of the pectoralis muscle in
house sparrows (Swanson et al., 2009). Conversely, at higher
temperatures, increased levels of myostatin could prevent muscle
growth, leading to atrophy. However, some work has reported that
the expression of the myostatin gene remains unchanged across
seasons in house sparrows (Swanson et al., 2009; Swanson and
Merkord, 2013) or across temperature treatment groups in juncos
(Zhang et al., 2018), although other work does show differential
expression of myostatin across seasons in chickadees (Cheviron and
Swanson, 2017). Others have found reductions in myostatin protein
levels with cold or exercise training in house sparrows (Zhang et al.,
2015). In exercise-trained European starlings (Sturnus vulgaris) that
increased muscle mass there is no change in the expression of
myostatin mRNA, but there is a significant increase in the
expression of insulin growth factor-1 (IGF-1) (Price et al., 2011).
The cellular production of IGF-1 increases in response to growth
hormone produced by the pituitary (Dantzer and Swanson, 2012). In
vertebrates, the receptor for IGF-1 (IGF-1R) promotes growth
(Holzenberger et al., 2003). IGF-1 is also associated with the
activation of hypertrophic muscle growth (Stitt et al., 2004), protein
synthesis and satellite cell proliferation (Rennie et al., 2004). Thus,
IGF-1 signaling seems to be a determinant for muscle growth, and
may also be temperature sensitive. White-throated sparrows
(Zonotrichia albicollis) show increases in muscle size that can be
induced by changes in photoperiod, although this is associated with
simultaneous upregulation of both myostatin and IGF-1. The fact
that these seemingly antagonistic proteins are upregulated in tandem
may allude to a role in the regulation of cell size (Price et al., 2011)
as muscle mass increases. Of course, much remains to be done in
order to determine the ultimate and proximate mechanisms
underlying seasonal changes in muscle fiber diameter and those
that occur in response to temperature and migration. It will also be
necessary to investigate alternative molecular mechanisms (e.g.
BMR signaling; Cheviron and Swanson, 2017).

As noted above, Bruusgaard et al. (2010) found that it may be
beneficial for muscle fibers to “fill up” with myonuclei by increasing
workload or exercise prior to senescence; this may provide resistance to
atrophy. Satellite cells are recruited into the muscle fiber upon their
release from myostatin inhibition (Amthor et al., 2009). Work on
myostatin-null mice has demonstrated that post-natal muscle
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hypertrophy does not involve satellite cell recruitment, and myostatin-
null mice have fewer satellite cells compared with wild-type mice
(Amthor et al., 2009), thus challenging the tenet that myostatin-driven
hypertrophic growth involves satellite cell recruitment, and
demonstrating clear increases in MND. It may be that birds such as
the eared grebe, which shows tremendous and rapid pectoralis muscle
changes, employ this type of mechanism to be able to upregulate and
downregulate their muscle mass so efficiently (Gaunt et al., 1990).

Conclusions

Here, I have highlighted the fact that birds have an extremely plastic
pectoralis muscle which, in some species, changes in mass cyclically
across the year. This plasticity is unlike that noted in any mammalian
species [although Yacoe (1983) describes flexibility in pectoralis
muscle in bats], and yet the muscle structure literature contains more
data on mammals than birds. Structural studies of avian muscle are
lacking, but using this tissue to address structural questions could
allow us to clarify generalizable principles in muscle physiology.
Some important aspects of structure in muscle that could be better
understood by using the avian pectoralis as a study system include
muscle fiber diameter, which has been linked to whole-animal
metabolic rate, and MND, which could determine the rate of protein
turnover in muscle tissue. Additionally, the underlying molecular
mechanisms that may dictate these structural changes are of great
interest, and these mechanisms could also potentially be investigated
through studies of the avian pectoralis.
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