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Different microcircuit responses to comparable input from one
versus both copies of an identified projection neuron
Gabriel F. Colton*, Aaron P. Cook* and Michael P. Nusbaum‡

ABSTRACT
Neuronal inputs to microcircuits are often present as multiple copies
of apparently equivalent neurons. Thus far, however, little is known
regarding the relative influence on microcircuit output of activating all
or only some copies of such an input. We examine this issue in the
crab (Cancer borealis) stomatogastric ganglion, where the gastric mill
(chewing) microcircuit is activated by modulatory commissural
neuron 1 (MCN1), a bilaterally paired modulatory projection neuron.
Both MCN1s contain the same co-transmitters, influence the same
gastric mill microcircuit neurons, can drive the biphasic gastric mill
rhythm, and are co-activated by all identified MCN1-activating
pathways. Here, we determine whether the gastric mill microcircuit
response is equivalent when stimulating one or both MCN1s under
conditions where the pair are matched to collectively fire at the same
overall rate and pattern as single MCN1 stimulation. The dual MCN1
stimulations elicited more consistently coordinated rhythms, and
these rhythms exhibited longer phases and cycle periods. These
different outcomes from single and dual MCN1 stimulation may have
resulted from the relatively modest, and equivalent, firing rate of the
gastric mill neuron LG (lateral gastric) during each matched set of
stimulations. The LG neuron-mediated, ionotropic inhibition of the
MCN1 axon terminals is the trigger for the transition from the
retraction to protraction phase. This LG neuron influence on MCN1
was more effective during the dual stimulations, where each MCN1
firing rate was half that occurring during the matched single
stimulations. Thus, equivalent individual- and co-activation of a
class of modulatory projection neurons does not necessarily drive
equivalent microcircuit output.

KEYWORDS: Central pattern generator, Descending control, Gastric
mill rhythm, Stomatogastric system

INTRODUCTION
Projection neurons that regulate microcircuit activity commonly
occur as multiple copies of apparently equivalent neurons (Rosen
et al., 1991; Blitz et al., 1999; Brodfuehrer and Thorogood, 2001;
Hägglund et al., 2010; Betley et al., 2013; Bidaye et al., 2014;
Gunaydin et al., 2014; Daghfous et al., 2016; Qiu et al., 2016; Li
et al., 2017; Fino et al., 2018; Li and Soffe, 2019; Ruder and Arber,
2019). Although the consequences of their co-activation for
microcircuit output and/or behavior are established in many

systems, there appears to be no systematic comparison of a circuit
response to co-activating all versus a defined subset of them. Such
comparisons would help elucidate how these systems operate, and
could inform whether continued normal behavior would be likely to
occur after loss of some copies of a projection neuron due to injury
or disease (Fink and Cafferty, 2016).

The microcircuit response to activating all or some copies of a
projection neuron might be equivalent, particularly when those
neurons act at least partly via peptide co-transmitters, because
neurally released peptides diffuse broadly and have long-lasting
effects on their targets (Marder, 2012; van den Pol, 2012; Nusbaum
et al., 2017; Svensson et al., 2019). Alternatively, the microcircuit
response might be skewed by the number of active projection
neurons and their firing rates, for example because neuropeptide
release often has a higher firing rate threshold than small molecule
co-transmitters and its release can be a non-linear function of firing
rate (Cazalis et al., 1985; Peng and Horn, 1991; Whim and Lloyd,
1994; Vilim et al., 1996, 2000; Arrigoni and Saper, 2014; Nusbaum
et al., 2017), and modulatory actions can be concentration specific
(Flamm andHarris-Warrick, 1986; Saideman et al., 2006; Fort et al.,
2007; Poels et al., 2007, 2009; Dickinson et al., 2015; Blitz et al.,
2019). There is also the additional challenge of establishing whether
an apparently equivalent set of projection neurons are indeed
functionally equivalent. In some cases, such sets of neurons were
subsequently determined to diverge and influence overlapping or
distinct sets of neurons (Lammel et al., 2011; Betley et al., 2013;
Luo et al., 2018). There can also be distinct responses to activating
all versus some copies of a projection neuron when they are
bilaterally symmetrical and normally operate separately to mediate
hemilateral movements (Shimazaki et al., 2019; Cregg et al., 2020).

Manipulating the activity of multiple copies of a projection
neuron in a controlled manner is possible, for example by
optogenetics, but it remains challenging to precisely manipulate a
defined subset of them. Such precision is possible, however, in
some smaller systems where identified projection neurons with a
known influence on a target microcircuit are present as small copy
numbers (Rosen et al., 1991; Frost and Katz, 1996; Blitz et al., 1999;
Brodfuehrer and Thorogood, 2001; Mesce et al., 2008; Jeanne and
Wilson, 2015).

One tractable system for such a study is the stomatogastric
nervous system (STNS) of the crab Cancer borealis (Marder and
Bucher, 2007; Daur et al., 2016; Nusbaum et al., 2017; Stein, 2017).
This system contains two well-characterized microcircuits in the
stomatogastric ganglion (STG) that generate the motor patterns for
chewing (gastric mill microcircuit), and the pumping and filtering of
chewed food (pyloric microcircuit) in vivo and in the isolated STNS.
These circuits are readily accessible in the isolated STNS because
most of the 26 STG neurons contribute to one or both of these
microcircuits, their somata are relatively large (diameter ∼35–
120 µm), and most microcircuit neurons occur as single copies
(Marder et al., 2017). There are also six different identifiedReceived 1 May 2020; Accepted 13 August 2020
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projection neuron pairs that regulate gastric mill and/or pyloric
circuit activity (Coleman et al., 1992; Norris et al., 1994, 1996; Blitz
et al., 1999; Christie et al., 2004).
The best characterized projection neuron in the C. borealis STNS

is modulatory commissural neuron 1 (MCN1) (Coleman and
Nusbaum, 1994; Hedrich et al., 2011; Nusbaum et al., 2017). Each
MCN1 projects an axon from one of the paired commissural ganglia
(CoGs), through the inferior oesophageal nerve (ion) and
stomatogastric nerve (stn), to innervate the STG and drive the
gastric mill and pyloric rhythms (Coleman et al., 1992; Coleman
and Nusbaum, 1994; Bartos and Nusbaum, 1997). MCN1 can be
selectively driven by extracellular ion stimulation, and both MCN1s
contain the same co-transmitters, influence the same STG circuit
neurons, and drive the gastric mill rhythm by the same mechanism
(Coleman et al., 1995; Bartos and Nusbaum, 1997; Bartos et al.,
1999; Blitz et al., 1999; Wood et al., 2000; Stein et al., 2007;
DeLong et al., 2009a,b; Nusbaum et al., 2017). Furthermore,
despite being present in separate ganglia, both MCN1s are co-
activated by all identified sensory and central nervous system (CNS)
pathways (Beenhakker et al., 2004, 2005; Blitz et al., 2004, 2008;
Christie et al., 2004; Hedrich et al., 2009; Blitz and Nusbaum, 2012;
White et al., 2017).
Here, we examine whether the gastric mill microcircuit response

to dual and single MCN1 stimulation, in preparations where the
CoGs are removed and the MCN1 axon in the ion is selectively

stimulated, is comparable when the two conditions have matched
firing rates and patterns. We ensure this match by co-stimulating the
two MCN1s in a one-to-one alternating pattern that produces an
inter-stimulus interval equivalent to that used for the matched single
MCN1 stimulation. These matched stimulations did not elicit
equivalent gastric mill rhythms. For example, the gastric mill
rhythm was more consistently coordinated during the dual MCN1
stimulations. These different outcomes likely resulted at least partly
from the similar firing frequency of the gastric mill rhythm
generator neuron LG (lateral gastric) across each set of matched
single and dual MCN1 stimulations. This similar LG neuron activity
was likely more effective in inhibiting each MCN1 during the dual
stimulations, where their firing frequency was half that of the same
neuron in the corresponding single stimulation. These results
indicate that at least some neural circuits are optimally driven by co-
activating all copies of circuit-driving projection neurons.

MATERIALS AND METHODS
Animals
Adult male Jonah crabs (Cancer borealis Stimpson 1859) were
obtained from commercial suppliers (Fresh Lobster, LLC; Marine
Biological Laboratory; Ocean Resources, Inc.) and maintained in
aerated, filtered artificial seawater at 10–12°C. Animals were cold
anesthetized by packing in ice for at least 30 min before dissection.
The foregut was then removed from the animal, after which the
STNS was dissected from the foregut in physiological saline at 4°C.
The dorsal connective tissue sheath of the STG was removed
immediately prior to recording to facilitate access for intrasomatic
recordings.

Solutions
Cancer borealis physiological saline contained the following
(mmol l−1): 440 NaCl, 26 MgCl2, 13 CaCl2, 11 KCl, 10 Trizma
base, 5 maleic acid and 5 glucose; pH 7.4–7.6. All preparations were
superfused continuously with C. borealis saline (8−12°C).

Electrophysiology
Electrophysiology experiments were performed using standard
techniques for this system (Beenhakker and Nusbaum, 2004). The
isolated STNS (Fig. 1A) was pinned down in a silicone elastomer-
lined (Sylgard 184, KR Anderson) Petri dish. Each extracellular
nerve recording resulted from a pair of stainless-steel wire electrodes
(reference and recording) whose ends were pressed into the Sylgard-
coated dish. A differential AC amplifier (model 1700, A-M
Systems) amplified the voltage difference between the reference
wire (placed in the bath) and the recording wire [placed near an
individual nerve and isolated from the bath by petroleum jelly
(Vaseline, Lab Safety Supply)]. This signal was then further
amplified and filtered (model 410 amplifier, Brownlee Precision).
Extracellular nerve stimulation was accomplished by placing the
pair of wires used to record nerve activity into a stimulus isolation
unit (SIU 5, AstroNova Inc.) that was connected to a stimulator
(model S88, AstroNova Inc.).

Intrasomatic recordings were made with sharp glass microelectrodes
(8–20 MΩ) filled with potassium acetate (4 mol l−1) plus KCl
(20 mmol l−1), or KCl alone (1 mol l−1). Intracellular signals were
amplified using Axoclamp 2B amplifiers (Molecular Devices), and
then further amplified and filtered (model 410 amplifier). Current
injections were performed in single-electrode discontinuous
current-clamp (DCC) mode with sampling rates between 2 and
3 kHz. To improve visibility for intracellular recording, the STG
was dorsally desheathed and viewed with light transmitted through a

List of symbols and abbreviations

AGR anterior gastric receptor (neuron)
AM anterior median (neuron)
CabTRP Ia Cancer borealis tachykinin-related peptide Ia
CoG commissural ganglion
DCC discontinuous current clamp
DG dorsal gastric (neuron)
dgn dorsal gastric nerve
dpon dorsal posterior oesophageal nerve
dvn dorsal ventricular nerve
GABA gamma aminobutyric acid
GM gastric mill (neuron)
GMI modulator-activated voltage-dependent inward

conductance
IC inferior cardiac (neuron)
IMI modulator-activated inward current
Int1 interneuron 1
ion inferior oesophageal nerve
LG lateral gastric (neuron)
lgn lateral gastric nerve
ln labral nerve
lvn lateral ventricular nerve
MCN1 modulatory commissural neuron 1
MCN1L left MCN1
MCN1R right MCN1
MCN1STG STG terminals of MCN1
MCN5 modulatory commissural neuron 5
MG medial gastric (neuron)
mvn medial ventricular nerve
PD pyloric dilator (neuron)
pdn pyloric dilator nerve
son superior oesophageal nerve
STG stomatogastric ganglion
stn stomatogastric nerve
STNS stomatogastric nervous system
VCNs ventral cardiac neurons
VD ventricular dilator (neuron)
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dark-field condenser (Nikon). STG neurons were identified on the
basis of their axonal projections, activity patterns and interactions
with other STG neurons (Weimann et al., 1991; Blitz et al., 2008).
In the displayed extracellular nerve recordings, all action potentials
of a given amplitude in a particular nerve are generated by the
neuron indicated above a subset of those action potentials
(Nusbaum et al., 2017).
Each ion was stimulated (duration per stimulus: 1 ms), just medial

to the labral nerve (ln; Fig. 1A), to selectively activate the left MCN1
(MCN1L) or the right MCN1 (MCN1R) (Bartos and Nusbaum,
1997). The left and right CoG, and hence MCN1L andMCN1R, were
defined based on the isolated STNS being pinned with the dorsal side
facing up. There is only one other CoG projection neuron (MCN5)
that innervates the STG which has an axon in the ion, and it has a
higher stimulus threshold than MCN1 as well as having no direct
influence on LG (Coleman et al., 1992; Norris et al., 1996; Blitz et al.,
2019). Each suprathreshold ion stimulus elicited a single MCN1
action potential, as established by recording the resulting unitary,
electrical excitatory postsynaptic potential (EPSP) in the LG neuron
(Coleman et al., 1995). Using a voltage setting on the stimulator that
was ≤0.5 V above threshold for eliciting MCN1 action potentials
prevented or minimized co-stimulation of MCN5 (Bartos and
Nusbaum, 1997). A tonic ion stimulation pattern (i.e. constant
inter-stimulus intervals) was used in all these experiments.

To determine the relative influence of matched dual versus single
MCN1 stimulation on the gastric mill rhythm, we used a range of
MCN1 firing rates that spanned its activity range in response to
input pathway stimulation. Specifically, we stimulated each MCN1
separately, at 10, 20 or 30 Hz using a tonic stimulation pattern. We
compared these single stimulations to matched dual MCN1
stimulation during which the two MCN1s were each stimulated at
50% of the firing rate of the associated single stimulations (e.g.
5 Hz+5 Hz compared with 10 Hz). During dual stimulation, each
MCN1 was activated to fire a single action potential alternately,
such that their combined firing rate and pattern was the same as the
matched single stimulation. To ensure the occurrence of the
same MCN1 inter-spike interval during the matched single and
dual MCN1 stimulations, we consistently tracked the presence of
MCN1-evoked EPSPs in the intracellular LG neuron recordings.

In some experiments where the activity of the retraction phase
neuron DG (dorsal gastric) persisted through the protraction phase
of the gastric mill rhythm, the ability of the protractor neuron LG to
regulate DG activity was examined by injecting LG with
suprathreshold depolarizing current pulses during some of its
bursts to increase its within-burst firing rate. In these same
experiments, we also determined the impact of these LG current
injections on the pyloric cycle period (see below). The LG current
injections (+1 to +4 nA) were done in DCC, using brief

MCN1
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dgn

lgn

Pro Ret

ion
son

Fig. 1. The projection neuron MCN1 drives the gastric mill
rhythm in the isolated stomatogastric nervous system of
the crab Cancer borealis. (A) STNS schematic, with the
parallel lines crossing the ions and sons representing the
nerve transections used to remove the CoGs. OG,
oesophageal ganglion; STG, stomatogastric ganglion.
(B) Selective MCN1 (ion) stimulation drives the gastric mill
rhythm. Before stimulation (‘Saline’), therewas an ongoing
pyloric rhythm [pyloric dilator nerve (pdn), mvn (medial
ventricular nerve)] but no gastric mill rhythm [dorsal gastric
nerve (dgn), lateral gastric nerve (lgn)]. Small unit in mvn:
GM neurons; small continuously present units in the lgn
are stimulation artifacts (SA). The AGR (anterior gastric
receptor) is a sensory neuron that only influences the
gastric mill rhythm via its actions in the CoGs (Simmers
and Moulins, 1988; Norris et al., 1994; Smarandache and
Stein, 2007; Hedrich et al., 2009). Pro, protraction; Ret,
retraction. (C) Schematic of the MCN1-driven gastric mill
microcircuit. Top row, protractor neurons; bottom row,
retractor neurons. Labels: filled circles, inhibition; T-bars,
excitation; resistors, non-rectifying electrical coupling;
diode, rectified electrical coupling; double slashed lines on
MCN1 axon, space break. Modified from Saideman et al.
(2007). (D) Top: schematic of the phase-specific operation
of the MCN1–gastric mill rhythm generator circuit. Labels:
blue, active neurons and synapses; grey, inactive neurons
and synapses. Bottom: computational model output of the
MCN1–gastric mill rhythm activity in the LG neuron plus
the associated, rhythmic waxing and waning of
MCN1-activated GMI in LG (GMI-MCN1). m, metabotropic
transmission; i, ionotropic transmission. Modified from
DeLong et al. (2009b).
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depolarizing pulses (pulse duration: 30–50 ms) that each elicited a
single action potential. Each within-burst current injection train was
turned on and off manually, and was timed to occur during a normal
LG burst for a duration similar to the LG burst duration during that
particular gastric mill rhythm. These manipulations were performed
in a subset of experiments during dual 10 Hz and single 20 Hz
MCN1 stimulated gastric mill rhythms. Two of these LG current
injections, separated by four to eight control LG bursts, were
performed during each gastric mill rhythm.
In control experiments, the mechanosensory ventral cardiac

neurons (VCNs) were activated by stimulating the dorsal posterior
oesophageal nerve (dpon; duration per stimulus: 1 ms), either
unilaterally or bilaterally, in preparations where the superior
oesophageal nerves (sons) were bisected between the dpon
and the stn. The VCNs innervate the ipsilateral CoG via the dpon
and son, and their stimulation triggers a version of the gastric mill
rhythm by eliciting a long-lasting activation of the CoG projection
neurons MCN1 and CPN2 (commissural projection neuron 2)
(Beenhakker et al., 2004; Beenhakker and Nusbaum, 2004).
Bisecting the sons, through which the CPN2 axon projects to the
STG, prevents CPN2 activity from influencing the STG, enabling
VCN stimulation to influence the gastric mill microcircuit
exclusively via its activation of MCN1 (Norris et al., 1994;
Beenhakker and Nusbaum, 2004). These experiments included both
bilateral (N=2) and unilateral VCN stimulations (N=3). In each
experiment, the MCN1 firing rate resulting from VCN stimulation
was determined on the stimulated side(s) and subsequently used as
the ipsilateral ion stimulation frequency, to compare the gastric mill
rhythm response to direct (ion stimulation) and indirect (dpon
stimulation) activation of MCN1. All ion stimulation experiments
were performed from September 2013 to March 2015. The dpon
versus ion stimulation experiments were performed during February
and March 2017.

Data analysis
Data were collected in parallel onto a chart recorder (AstroNova
Everest model) and computer. Acquisition onto computer
(sampling rate ∼5 kHz) used the Spike2 data acquisition and
analysis system (Cambridge Electronic Design). Some analyses,
including cycle period, burst durations, duty cycle, number of action
potentials per burst and intraburst firing frequency were conducted
on the digitized data using a custom-written Spike2 program (‘The
Crab Analyzer’). To facilitate data analysis and improve clarity in
some figures, a raw extracellular recording (e.g. dorsal gastric nerve,
dgn) was duplicated with the stimulation artifacts digitally
subtracted, reducing their amplitude or eliminating them. This is
indicated where appropriate in each figure legend, and is illustrated
in Fig. 2B. A custom-written script in Spike2 was used to digitally
subtract the artifacts after manually inspecting the trace to verify that
only that particular unit was selected for subtraction (Blitz and
Nusbaum, 2008).
Unless otherwise stated, each data point in a dataset was derived

by determining the mean for the analysed parameter from 8–20
consecutive gastric mill cycles. One gastric mill cycle was defined
as extending from the onset of consecutive LG neuron action
potential bursts (Beenhakker and Nusbaum, 2004; Wood et al.,
2004). Thus the gastric mill cycle period was measured as the
duration between the onset of two successive LG neuron bursts.
The protractor phase was measured as the LG burst duration,
whereas the retractor phase was measured as the LG interburst
duration. A gastric mill rhythm-timed burst duration was defined as
the duration between the onset of the first and last action potential

within an impulse burst, during which no interspike interval was
longer than 2 s (approximately twice the pyloric cycle period during
the gastric mill rhythm and no more than half the duration of each
gastric mill phase) (Beenhakker et al., 2004). The intraburst firing
rate of a neuron was defined as the number of action potentials
within a burst minus one, divided by the burst duration. The pyloric
cycle period was determined as the duration between the onset of
successive bursts in the pyloric dilator (PD) neuron (Fig. 1B). The
PD neuron is a pyloric pacemaker neuron component (Marder and
Bucher, 2007; Selverston and Miller, 1980).

To evaluate the influence of the LG neuron depolarizing current
injections on the pyloric cycle period, the longest pyloric cycle that
occurred after the start of the LG burst was selected for analysis
during (a) each LG burst that received depolarizing current pulses,
and (b) the two preceding LG bursts. The first pyloric cycle after LG
burst onset was always the slowest one (i.e. longest cycle period)
during the control LG bursts and was the slowest during 77% of the
depolarized LG bursts, likely reflecting the fact that the LG
instantaneous firing rate was often highest at the start of its burst. To
compare these pyloric cycle periods between the depolarized and
control LG bursts, we first determined and compared the ratios of
the pyloric cycle period from the (a) depolarized LG burst divided
by that from the preceding control LG burst, and (b) the same
preceding control LG burst divided by that from the control LG
burst two prior to the depolarized burst.

Data were plotted with Excel (version 2002; Microsoft) and
MATLAB (version 8; MathWorks). Figures were produced using
CorelDraw (version 13.0 for Windows). Statistical analyses were
performed by comparing the overall mean of individual mean
values for two different manipulated conditions, or control and
manipulated groups, from N experiments (see Results for each N
value) using Microsoft Excel, SigmaPlot 13.0 (SPSS Inc.) and
MATLAB. Unless otherwise indicated, the presented N values
represent the number of preparations. Comparisons were made to
determine statistical significance using (a) repeated-measures
ANOVA (RM-ANOVA), with the Holm–Šidák post hoc test
when the RM-ANOVA P-value was <0.05, (b) RM-ANOVA on
ranks, with post hoc Tukey’s test or chi-square test, (c) paired
Student’s t-test, (d) signed rank test, (e) chi-square test (different
from the aforementioned post hoc chi-square test), (f ) Fisher’s exact
test, (g) Wilcoxon signed rank test or (h) unpaired t-test. In all
experiments, the effect of each manipulation was reversible, and
there was no significant difference between the pre- and post-
manipulation groups. Significant differences were determined to
occur when P<0.05. Data are expressed as means±s.e.m.

RESULTS
The gastric mill rhythm is a two-phase motor pattern (protraction,
retraction) that drives the rhythmic contraction of striated muscles in
the middle (i.e. gastric mill) stomach compartment of decapod
crustaceans (Heinzel, 1988; Heinzel et al., 1993; Diehl et al., 2013).
The sequence of these muscle contractions causes the paired lateral
teeth and medial tooth within the gastric mill to rhythmically move
towards (protract) and away from (retract) the midline, macerating
food moved into the gastric mill from the anterior, cardiac sac
stomach compartment. The chewed food is then filtered and
pumped through the posterior stomach compartment, the pylorus,
to enter the midgut for nutrient absorption. The rhythmic chewing
pattern is generated by the gastric mill central pattern generator
circuit, an episodically active microcircuit in the STG that is
driven by projection neurons, including the paired MCN1s,
located in the CoGs (Fig. 1A,C) (Coleman and Nusbaum, 1994;
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Bartos et al., 1999; Beenhakker and Nusbaum, 2004; Blitz et al.,
2008, 2019). The gastric mill rhythm is episodically active, in vivo
and in vitro, because the projection neurons that drive it are
episodically active, requiring excitatory drive from sensory
neurons and other CNS neurons (Beenhakker et al., 2004; Blitz
et al., 2004, 2008; Christie et al., 2004; Hedrich et al., 2009, 2011;
Diehl et al., 2013).
There are eight gastric mill microcircuit neuron types, including

four protractor motor neurons [LG, MG, GM (gastric mill), IC
(inferior cardiac)] and four retraction phase neurons [one
interneuron: Int1; three motor neurons: DG, VD (ventricular
dilator), AM (anterior median)] (Fig. 1C) (Nusbaum et al., 2017).
All but GM are present as single copies; there are four GMs. The
neurons that are necessary and sufficient to generate the gastric mill
rhythm (i.e. the rhythm-generating sub-circuit) during selective
MCN1 activation includes the reciprocally inhibitory pair LG–Int1
plus the STG terminals of MCN1 (MCN1STG) (Fig. 1D) (Coleman
et al., 1995; Bartos et al., 1999; DeLong et al., 2009b; Nusbaum
et al., 2017).

MCN1 is a multi-transmitter neuron that uses only its peptide co-
transmitter CabTRP Ia (Cancer borealis tachykinin-related peptide
Ia) to influence LG, causing a slowly developing metabotropic
excitation by activating IMI (modulator-activated inward current),
while it uses only its small molecule co-transmitter GABA to
influence Int1, causing a fast ionotropic excitation (Blitz et al.,
1999; Wood et al., 2000; Stein et al., 2007). IMI is a voltage-
dependent depolarizing current with NMDA-like properties that is
activated in STG neurons by many neuromodulators (Golowasch
andMarder, 1992; Swensen andMarder, 2000, 2001; DeLong et al.,
2009b; Rodriguez et al., 2013). MCN1 also has a functionally
important electrical synapse with LG which strengthens the LG
burst (Coleman et al., 1995). The MCN1 transmitter-mediated
actions are limited to the retraction phase, because it receives fast
glutamatergic inhibition at its STG terminals during protraction
from LG (Coleman and Nusbaum, 1994). This LG-mediated
inhibition triggers the transition from retraction to protraction and,
by triggering decay of IMI amplitude, enables the eventual transition
from protraction to retraction (Fig. 1D) (Coleman et al., 1995;

10 Hz single: MCN1 stimulation 5 Hz single: MCN1 stimulation

30 Hz single: MCN1 stimulation 15 Hz dual: MCN1 stimulation

LGA

B

C

DG

LG

lgn

dgn

DG

SA

dgn
(filtered)

SA

LG

lgn

dgn

SA

SA

50 s

50 s

50 s

20 Hz single: MCN1 stimulation 10 Hz dual: MCN1 stimulation

SA SA

lgn

dgn

AGR

Fig. 2. Example recordings of gastric
mill rhythms in response to firing rate-
and pattern-matched dual and single
MCN1 stimulations on a compressed
time scale. Each rhythm is represented
by extracellular recordings of the
protractor LG (lgn) and retractor DG
(dgn) neurons. Thickened baseline
represents stimulation artifacts (SA).
AGR, anterior gastric receptor (neuron).
Eachmatched pair comes from the same
experiment, but the different panels
come from different experiments. Where
noted in this and succeeding figures,
nerve recordings were filtered to digitally
reduce SA size to better separate them
from the recorded action potentials. (A)
5 Hz dual versus 10 Hz single MCN1
stimulation. (B) 10 Hz dual versus 20 Hz
single MCN1 stimulation, including dgn
without versus with filtering in the ‘10 Hz
dual’ panel. (C) 15 Hz dual versus 30 Hz
single MCN1 stimulation. Filtered dgn:
all recordings except 20 Hz single
stimulation.
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DeLong et al., 2009b). Here, we use the LG neuron burst to
represent the protraction phase, and the LG neuron interburst burst
to represent the retraction phase (Fig. 1B).

Distinct LG and DG neuron coordination during dual versus
single MCN1 stimulation
We determined how consistently fully coordinated gastric mill
rhythms were generated from three sets of matched dual versus
single MCN1 stimulations (5 Hz dual versus 10 Hz single; 10 Hz
dual versus 20 Hz single; 15 Hz dual versus 30 Hz single) (Fig. 3).
A fully coordinated gastric mill rhythm exhibits consistent
alternating bursting between the protraction- and retraction-phase
neurons (Fig. 1B,C). Most aspects of this patterning during the
MCN1-driven gastric mill rhythm result directly from the
microcircuit synapses made by the rhythm generator neurons LG
and Int1 (Fig. 1C) (Bartos et al., 1999; White and Nusbaum, 2011).
Consequently, most gastric mill neuron activity is tightly linked to
that of LG and/or Int1. For example, IC neuron activity is
consistently limited to the protraction phase while VD neuron
activity is limited to the retraction phase (Figs 1B and 4). In contrast,
the gastric mill rhythm-timed bursting pattern of the retractor neuron
DG is an indirect consequence of LG neuron activity. Specifically,
the DG neuron burst pattern results from the LG ionotropic
inhibition of MCN1STG, which weakens or eliminates MCN1
metabotropic excitation of DG (Fig. 1C,D) (Coleman and
Nusbaum, 1994). As is evident in Fig. 2, in our matched MCN1
stimulation experiments DG neuron activity was not always limited
to the retraction phase.
As shown in Fig. 3, fully coordinated gastric mill cycles occurred

more consistently during 5 Hz dual MCN1 stimulation than 10 Hz
single stimulation (fraction of coordinated cycles per gastric mill
rhythm: 5 Hz dual, 0.91±0.08; 10 HzR single, 0.47±0.11; 10 HzL
single, 0.45±0.11; RM-ANOVA, P<0.001; Holm–Šidák post hoc
test: 5 Hz dual versus 10 HzR or 10 HzL, P=0.001; 10 HzR versus
10 HzL, P=0.90; N=10 preparations). Additionally, in eight of the
10 (80%) 5 Hz dual stimulation experiments, there was LG and DG
burst alternation in every gastric mill rhythm cycle (Fig. 3). In
contrast, a fully coordinated gastric mill rhythm occurred in only
one of 10 (10%) experiments each for the 10 HzL and 10 HzR single
stimulations (Fig. 3).

In contrast to the 5 Hz dual–10 Hz single stimulations, there was
no difference in the mean fraction of gastric mill cycles exhibiting
LG–DG alternation during the two higher matched pairs of MCN1
stimulation (10 Hz dual, 0.47±0.12; 20 HzL single, 0.29±0.13;
20 HzR single, 0.15±0.05; RM-ANOVA, P=0.09, N=11
preparations; 15 Hz dual, 0.36±0.14; 30 HzL single, 0.23±0.01;
30 HzR single, 0.06±0.05, RM-ANOVA, P=0.1, N=11) (Fig. 3).
However, the median values of the 10 Hz dual and 20 Hz single
matched pairs were offset considerably, due in part to there being a
higher percentage of rhythms with no cycles of LG–DG alternation
during the single stimulations [20 Hz single, 10/22 (45%); 10 Hz
dual, 2/11 (18%); Fig. 3]. This difference was also present, albeit to
a lesser degree, for the highest matched stimulations [30 Hz single,
15/22 (68%); 15 Hz dual, 6/11 (55%); Fig. 3].

There was also separation between the 10 Hz dual–20 Hz single
MCN1 stimulations with respect to the percentage of experiments in
which more than half of the cycles displayed LG–DG alternation
(10 Hz dual, N=6/11, 55%; 20 Hz single: N=3/22, 14%; P=0.033,
Fisher’s exact test), but this was not the case for the 15 Hz dual–
30 Hz single stimulations (P=0.186) (Fig. 3). However, unlike the
consistently coordinated gastric mill rhythms that occurred during
the dual 5 Hz stimulations, comparable full coordination for all
cycles only occurred during two of 11 preparations (18%) for both
10 Hz dual and 15 Hz dual stimulations (Fig. 3). During the single
MCN1 stimulations, full coordination during all cycles occurred in
only two of 20 (10%) 10 Hz stimulations, two of 22 (9.1%) 20 Hz
stimulations, and none of the 30 Hz (N=22) stimulations. Across all
three sets of matched MCN1 stimulations, at least 50% of cycles
exhibited LG–DG burst alternation in more of the dual (19/32; 59%)
than the single (19/64; 30%) stimulations (P=0.01, chi-square test
on contingency table).

During gastric mill rhythm cycles when LG–DG burst alternation
did not occur, DG neuron activity persisted through the LG burst
(Figs 2 and 4). When DG activity did continue through the
protraction phase, its firing rate was consistently reduced relative to
that during retraction (10 Hz single: P<0.001, N=9; 10 Hz dual:
P=0.002,N=5; 20 Hz single: P<0.001,N=10; 15 Hz dual: P=0.015,
N=4; 30 Hz single: P=0.008*, N=8; paired t-test, except *signed
rank test). This DG firing rate reduction during protraction was
greater during the dual 10 Hz and dual 15 Hz MCN1 stimulations

0
10 Hz
single

20 Hz
single

30 Hz
single

15 Hz
dual

5 Hz
dual

10 Hz
dual

20LG
–D

G
 a

lte
rn

at
io

ns
 (%

)

40

60

80

100
***

Fig. 3. Percentage of gastric mill rhythm cycles exhibiting alternating LG and DG neuron bursts during matched dual and single MCN1 stimulation.
Box and whisker plots display the percentage of cycles per gastric mill rhythm during which the LG and DG neurons burst in alternation during each pair of
matched MCN1 stimulations. Bottom and top of each box represents the first and third quartile for each data set, respectively, while the ‘whiskers’ extend
to 1.5× the interquartile range. The horizontal line within each box indicates the median value; filled diamonds indicate the mean value per experiment.
Note that due to the data distribution, the box and whiskers are collapsed into a single line for the 5 Hz dual stimulation data set, as are the first quartile,
median and whisker labels for the 15 Hz dual condition. Statistical analysis: RM-ANOVA, Holm–Šidák post hoc test: ***P≤0.001.
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than during their matched single stimulations (10 Hz dual versus
20 Hz single: N=5, P=0.027; 15 Hz dual versus 30 Hz single: N=4,
P=0.037, paired t-test). The larger DG firing rate reduction during
protraction when both MCN1s were co-stimulated occurred despite
the fact that the retraction phase firing rate of DG was equivalent
during the matched dual and single stimulations (10 Hz dual,
12.5±0.6 Hz, N=5; 20 Hz single, 12.0±0.5 Hz, N=8, P=0.83; 15 Hz
dual, 14.8±0.8 Hz, N=4; 30 Hz single, 13.4±0.3 Hz, N=8, P=0.35;
unpaired t-test).
The failure of DG activity to terminate during protraction was

particularly pronounced during 30 Hz single MCN1 stimulations.
These stimulations rarely elicited LG–DG alternation in 50% or
more gastric mill rhythm cycles (N=4/22, 18%), and only once
(N=1/22, 4.5%) elicited alternation during 75% of the cycles
(Fig. 3). Most of these 30 Hz single stimulations (15/22; 68%)
exhibited no cycles in which DG was silenced during protraction.
This latter type of response did not occur as frequently during the
other stimulation protocols (5 Hz dual, 0%; 10 Hz single, 10%;
10 Hz dual, 18%; 20 Hz single, 45%; 15 Hz dual, 55%) (Fig. 3).

Distinct gastricmill rhythm parameters duringmatched dual
and single MCN1 stimulations
There were also differences in several other gastric mill rhythm
parameters between the matched dual and single MCN1
stimulations. For example, there was a longer gastric mill cycle
period during the 5 Hz dual MCN1 stimulations than the 10 Hz
single stimulations (N=14, P<0.001, one-way RM-ANOVA, Holm–
Šidák post hoc test) (Figs 4A and 5A). Despite the rhythm being
slower during the dual 5 Hz stimulation, there was no difference in
protraction duration between the dual and single stimulations
(N=13, P=0.14, RM-ANOVA) (Fig. 5B). Instead, the longer cycle
period resulted from an increased retraction duration (N=14,
P<0.001, RM-ANOVA on ranks, post hoc Tukey’s test) (Fig. 5C).
This selective prolongation of retraction during the dual 5 Hz
MCN1 stimulations decreased the LG neuron duty cycle relative to
the matched single stimulations (N=14, P<0.01; RM-ANOVA,
Holm–Šidák post hoc t-test) (Fig. 5D). The effects of 10 HzL and 10
HzR single MCN1 stimulations were indistinguishable for this and
all other examined parameters (N=14, P>0.05) (Fig. 5).

10 Hz single: MCN1 stimulation 5 Hz single: MCN1 stimulation

30 Hz single: MCN1 stimulation 15 Hz dual: MCN1 stimulation

VDIC

LG
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dgn
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SA SA
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mvn
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lgn

SA

10 s

10 s

10 s

20 Hz single: MCN1 stimulation 10 Hz dual: MCN1 stimulation

SA SA

mvn

dgn

lgn

Fig. 4. Example recordings of
matched pairs of dual and single
MCN1-driven gastric mill rhythms on
an expanded time scale. Note that
unlike the poorly coordinated bursting
between LG and DG, particularly during
the single MCN1 stimulations, IC and
VD neuron activity (mvn) consistently
tracked LG activity. Each matched pair
was recorded in the same experiment,
but the different pairs come from
different experiments. Matched MCN1
stimulations are compared at: (A) 5 Hz
dual versus 10 Hz single; (B) 10 Hz
dual versus 20 Hz single; (C) 15 Hz
dual versus 30 Hz single. Filtered:mvn,
all recordings; dgn, 10 Hz dual, 15 Hz
dual, 30 Hz single. SA, stimulation
artifact.
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At the higher MCN1 stimulation frequency sets (10 Hz dual
versus 20 Hz single, N=19; 15 Hz dual versus 30 Hz single, N=18),
protraction and retraction were both prolonged, and thus so was
cycle period, during the dual MCN1 stimulations (Fig. 5A–C). In
contrast, there was no distinction in these parameters between the
singleMCN1L andMCN1R stimulations at the same stimulation rate
(Fig. 5A–C). The parallel increases in protraction and retraction
duration during the higher dual stimulation rates resulted in there
being no difference in the LG duty cycle between these conditions
and their matched set of single MCN1 stimulations (Fig. 5C).
We also determined whether the LG neuron burst characteristics

were differentially influenced by matched dual and single MCN1
stimulation. With respect to the number of LG spikes per burst, there
was no difference at the lowest matched MCN1 stimulation rate
(N=14, P=0.81, RM-ANOVA on ranks) (Fig. 5E). In contrast,
during both of the higher matched stimulation rates, the dual

stimulations consistently elicited more LG spikes per burst than
their matched single MCN1 stimulations (10 Hz dual versus 20 Hz
single: P<0.001, N=19; 15 Hz dual versus 30 Hz single: P<0.001,
N=18; RM-ANOVA, Holm–Šidák post hoc test) (Fig. 5E). There
was no change in the LG intraburst firing rate within any of the three
sets of stimulation conditions (Fig. 5F). Instead, the increased LG
spike numbers reflected the prolonged LG burst duration (Fig. 5B).

Because both MCN1s are co-activated by all identified input
pathways, we also compared the gastric mill rhythms when both
MCN1s were co-stimulated (10 Hz each) versus single MCN1
stimulation at the same frequency (N=13) (Fig. 6A,B). These
stimulation conditions again elicited differences in some gastric mill
rhythm parameters (Fig. 6B). For example, dual MCN1 stimulation
(10 Hz each) elicited gastric mill rhythms exhibiting a longer cycle
period (P=0.006) due to a prolonged protraction phase (P<0.001),
with an increased LG duty cycle (P=0.003) containing more LG
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spikes per burst (P<0.001) generated at a higher firing rate
(P<0.001) than during single MCN1 stimulation at 10 Hz
(Fig. 6B). There was no difference in the retraction phase duration
(P=0.455).
In addition to differences in the mean value of some gastric mill

rhythm parameters between matched dual and single MCN1
stimulation frequencies, we assessed parameter variability across
experiments in relation to the mean using the coefficient of variation
(CV). Statistically significant differences occurred primarily during
the 5 Hz dual versus 10 Hz single stimulations. For example, the CV
across experiments for cycle period was higher for the 10 Hz single
MCN1 stimulations (dual MCN1 versus: MCN1L, P=0.028;
MCN1R, P=0.031; RM-ANOVA, Holm–Šidák post hoc test;
N=14) (Fig. 7A). Some of the studied parameters whose mean
values were not different nevertheless exhibited differences in the
CV, as was the case for the protraction duration and number of LG
spikes per burst (Figs 5 and 7). For example, the protraction duration
CV during the single 10 Hz stimulations for MCN1L was 0.27±
0.01 s, while it was 0.17±0.01 s for the dual 5 Hz stimulation
(N=14; P=0.045, RM-ANOVA, Holm–Šidák post hoc test).

However, despite the 10 Hz stimulation of MCN1R having the
same protraction duration CV as MCN1L (0.27±0.01), this value
was not different from that of the matched 5 Hz dual stimulations
(P=0.062, RM-ANOVA, Holm–Šidák post hoc test). With respect
to the number of LG spikes per burst, single MCN1 stimulations at
10 Hz produced a higher CV across experiments than the dual 5 Hz
stimulation (dual MCN1 versus: MCN1L, P=0.03; MCN1R,
P=0.042; RM-ANOVA, Holm–Šidák post hoc test; N=14). In
contrast, the CV for retraction duration, LG duty cycle and LG firing
frequency was comparable for the matched dual (5 Hz each) and
single (10 Hz) MCN1 stimulations (Fig. 7C,D,F). Few parameters
exhibited CV differences between the higher frequency-matched
MCN1 stimulations, and in no cases did both single stimulations
differ from the matched dual stimulation (Fig. 7).

The LG neuron bursts weaken but do not eliminate MCN1STG
synaptic actions
The fact that DG neuron activity was not always limited to the
retraction phase in these experiments, but exhibited a reduced
firing rate when active during protraction (Figs 2–4), suggested
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that the LG firing frequency during these rhythms weakened but
did not eliminate MCN1STG transmitter release. We used
matched dual (10 Hz) and single (20 Hz) MCN1 stimulations to
test this hypothesis by comparing the influence of natural and
strengthened LG bursts on two targets that it only affects via its
inhibition of MCN1STG, including (a) DG neuron activity and (b)
the pyloric cycle period. The pyloric cycle period is a useful
assay because MCN1 directly excites the pyloric rhythm,
reducing the pyloric cycle period, whereas LG activity only
influences this rhythm (i.e. increases the pyloric cycle period)
via its inhibition of MCN1STG (Fig. 1C) (Bartos and
Nusbaum, 1997).
When LG neuron activity was strengthened during matched

dual (10 Hz) and single (20 Hz) MCN1 stimulations, its increased
firing rate was not different across protocols (20 HzL:
13.9±0.4 Hz; 20 HzR: 13.4±0.4 Hz; 10 Hzboth: 13.1±0.6 Hz;

N=5 experiments, 10 LG depolarizations per condition;
P=0.111, RM-ANOVA). These increased firing rates were
consistently higher than during the control LG bursts (P<0.001
for each protocol, RM-ANOVA, Holm–Šidák post hoc test), which
ranged from 4.5 to 6.0 Hz.

For gastric mill rhythm cycles where DG neuron activity
extended through the LG burst, enhanced LG activity eliminated
this prolonged DG activity in 9/20 cycles during 20 Hz single
MCN1 stimulations (45%; N=5 experiments, two LG current
injections per MCN1 stimulation). In the remaining 11 cycles, the
DG firing rate was weakened but not terminated. This extended DG
activity was more consistently eliminated during the dual 10 Hz
MCN1 stimulations (9/10 cycles 90%; n=5 experiments, two LG
current injections per MCN1 stimulation; P=0.024, Fisher’s exact
test), suggesting that LG more effectively regulates MCN1 activity
when MCN1 fires at a lower rate.

5D
10L

10R 10D
20L

20R 15D
30L

30R 5D
10L

10R 10D
20L

20R 15D
30L

30R 5D
10L

10R 10D
20L

20R 15D
30L

30R

5D
10L

10R 10D
20L

20R 15D
30L

30R 5D
10L

10R 10D
20L

20R 15D
30L

30R 5D
10L

10R 10D
20L

20R 15D
30L

30R

0

0.1

0.2

0.3

0.4

0.5

0.6

C
V:

 c
yc

le
 p

er
io

d 
(s

)

00

0.05

0.1

0.15

0.2

0.25

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.1

0.2

0.3

0.4

0.5

0.6

C
V:

 n
um

be
r o

f L
G

 s
pi

ke
s 

pe
r b

ur
st

C
V:

 L
G

 s
pi

ke
 fr

eq
ue

nc
y 

(H
z)

C
V:

 L
G

 d
ut

y 
cy

cl
e

0

0.1

0.2

0.3

0.4

0.5

0.6

C
V:

 re
tra

ct
io

n 
du

ra
tio

n 
(s

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
V:

 p
ro

tra
cc

tio
n 

du
ra

tio
n 

(s
)

A B C

D E F

MCN1 stimulations (Hz)

Fig. 7. The inter-experiment coefficient of variation for some gastric mill rhythm parameters is distinct between matched dual and single MCN1
stimulations. Bar graphs display the mean gastric mill rhythm coefficient of variation (CV) values during three sets of firing rate- and pattern-matched MCN1
stimulation protocols for (A) cycle period, (B) protraction duration, (C) retraction duration, (D) LG duty cycle, (E) number of LG spikes per burst and (F) LG intraburst
firing rate. The mean values for each experiment are shown as filled ovals. *P<0.05, RM-ANOVA plus Holm–Šidák post hoc test for all comparisons except cycle
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We evaluated the impact of an increased LG firing frequency on
the pyloric cycle period by first normalizing the pyloric cycle period
during strengthened LG firing to that during the preceding, control
LG burst (‘LG depolarization ratio’; see Materials and Methods).
We then compared this normalized value with a control value
obtained by dividing the pyloric cycle period during the same,
preceding control LG burst by the cycle period during the control
LG burst two prior to the depolarized LG burst (‘control ratio’). The
control pyloric cycle period ratios were comparable across all
MCN1 stimulation protocols (N=10 stimulations per protocol,
P=0.407, repeated measures ANOVA on ranks).
During all three sets of MCN1 stimulation, the LG depolarization

ratio was larger than the control ratio [20 HzL: LG depolarization
ratio, 1.11±0.03; control ratio, 1.00±0.03, P=0.004; 20 HzR: LG
depolarization ratio, 1.18±0.06; control ratio, 0.99±0.01, P=0.004;
10 HzBoth: LG depolarization ratio, 1.07±0.01; control ratio, 0.99
±0.01, P=0.001; N=5, signed rank test (20 HzL,R), paired t-test
(10 Hzboth)] (Fig. 8). The increased ratios that occurred during the
LG current injections indicated that the pyloric cycle period at these
times was prolonged relative to that during the control LG bursts.
Consistent with the limited LG–DG alternation reported above
(Figs 2–4), and the impact of an increased LG firing rate on the
timing of DG neuron bursts, these pyloric rhythm results suggested
that the strengthened LG bursts more strongly inhibit MCN1STG
transmitter release.

Long-lasting activation of MCN1 mimics the effects of
extracellular MCN1 stimulation
We used ion stimulation to selectively drive MCN1 despite the
presence of another CoG neuron (MCN5) that projects to the STG
through the ion because MCN1 has a lower stimulation threshold
(see Materials and Methods). We nevertheless considered the
possibility that some MCN5 stimulation contributed to our results
by comparing the influence of ion stimulation with that resulting

from activating MCN1 by stimulating the dpon, after bisecting the
son medial to the dpon (see Materials and Methods) (Fig. 1A).

TheMCN1 firing rate resulting from dpon stimulation in different
experiments ranged from 9.5 to 26 Hz. To match the ion and dpon
activation of MCN1 in each experiment, we first triggered a VCN
activation of MCN1 and recorded the resulting gastric mill rhythm.
In parallel, we determined the VCN-triggered MCN1 firing rate and
used that same rate to subsequently stimulate the ion. We then
followed each ion stimulation with a second dpon stimulation. Little
or no MCN5 activity was evident in the ion recordings during the
VCN-triggered gastric mill rhythms. We assayed the gastric mill
rhythm response by analysing the same gastric mill rhythm
parameters as above (Fig. 5) and determining the gastric mill
rhythm-timed activity of the DG neuron.

The gastric mill microcircuit response to dpon and ion stimulation
was comparable for five of the six analysed parameters, including
cycle period, protraction and retraction duration, number of LG
spikes per burst, and the LG duty cycle (N=5) (Fig. 9). The only
analysed parameter with distinct values was the LG neuron firing
frequency (dpon stimulation 1: 6.6±1.1 Hz; ion stimulation:
5.9±0.9 Hz; dpon stimulation 2: 6.5±1.0 Hz; N=5; dpon1 versus
ion: P=0.03; dpon2 versus ion: P=0.04; dpon1 versus dpon2:
P=0.67, RM-ANOVA, Holm–Šidák post hoc test) (Fig. 9F).
Similarly, the matched MCN1 firing rates from dpon and ion
stimulations resulted in comparable DG neuron activity patterns. In
none of these experiments was DG activity limited to the retraction
phase, nor were there any gastric mill rhythms in which the LG and
DG bursts alternated in at least 50% of the cycles (N=5).

DISCUSSION
In this paper we determined that firing rate- and pattern-matched
dual and single stimulation of the paired projection neuron MCN1
does not elicit equivalent gastric mill motor patterns. These different
outcomes appear due, at least partly, to a mismatch in the firing rate
of MCN1 and the gastric mill microcircuit neuron LG, which
regulates MCN1 transmission in the STG via presynaptic inhibition
(Fig. 1D) (Coleman and Nusbaum, 1994; Coleman et al., 1995).
Specifically, the dual MCN1 stimulations more consistently elicited
completely coordinated gastric mill cycles. This coordination
distinction was particularly pronounced at the lowest MCN1
stimulation frequency comparison, during which the dual
stimulations also exhibited lower variability in several parameters
across experiments. This outcome suggests that acute loss of one
MCN1 would compromise behavioral performance to the extent
that effective chewing involves coordinated rhythmic protraction
and retraction of the teeth (Heinzel et al., 1993; Diehl et al., 2013).
Functional recovery after such a loss might be facilitated, however,
by long-term compensatory mechanisms that are known to occur in
some motor systems (Büschges et al., 1992; Sánchez et al., 2000;
Sakurai and Katz, 2009; Fink and Cafferty, 2016; Sakurai et al.,
2016; Brown and Martinez, 2018; Puhl et al., 2018).

Insofar as most gastric mill microcircuit neurons are also the
motor neurons for the system, the other rhythm parameter
differences that we identified suggest that differences would also
occur in the response dynamics of at least some gastric mill muscles,
producing changes in the timing and/or strength of teeth movements
(Stein et al., 2006; Diehl et al., 2013). Whether these latter changes
would compromise chewing behavior, however, remains to be
determined. In all comparisons, there were no differences between
the matched single stimulations (MCN1L versus MCN1R), which is
consistent with previous evidence suggesting that the two MCN1s
are functionally equivalent. There do not appear to be other studies
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that performed such a comparison on different copies of a projection
neuron within the same preparations.
The role(s) of presynaptic regulation of projection- and sensory

neuron inputs to microcircuits remains under-explored despite its
established presence, often at multiple locations, in several neural
systems (Nusbaum, 1994; Sillar and Simmers, 1994; Krieger et al.,
1996; Cochilla and Alford, 1999; Westberg et al., 2000; Takahashi
and Alford, 2002; Evans et al., 2003; Hurwitz et al., 2005; Barrier̀e
et al., 2008; Blitz and Nusbaum, 2008, 2012; Jing et al., 2011;
Wang, 2012; McGann, 2013; Sirois et al., 2013; Blitz et al., 2019).
For the MCN1–gastric mill rhythm, the pivotal role of LG neuron
presynaptic inhibition of MCN1STG suggests that this circuit design
favors dual MCN1 activity over firing rate-matched single MCN1
activity. This suggestion is consistent with the greater effectiveness
of this presynaptic action during the dual MCN1 stimulations,
where eachMCN1 fired at half the rate of the matched single MCN1
stimulations, and by our finding that the LG firing rate was
equivalent within each matched set of MCN1 stimulations. This
outcome resulted from the LG synaptic action reducing but not
eliminating MCN1 transmitter release in these experiments, insofar
as increasing the LG intraburst firing rate during both dual and
single MCN1 stimulation more consistently limited DG neuron
activity to the retraction phase, and further weakened the pyloric
rhythm. LG only regulates these two events via its inhibitory action
onMCN1STG (Coleman and Nusbaum, 1994; Bartos and Nusbaum,
1997). This is the first indication in the biological system that the
gastric mill rhythm-timed LG bursts reduce but do not eliminate
MCN1STG transmitter release, although a previous computational
model did support this possibility (DeLong et al., 2009b).
The prolonged gastric mill cycle period during the dual MCN1

stimulations resulted from selectively prolonged retraction during
dual 5 Hz MCN1 stimulation, whereas both phases were prolonged
during the dual 10 Hz and 15 Hz MCN1 stimulations. This
distinction suggests that different cellular/synaptic mechanisms
underlie cycle period regulation during different MCN1 firing rates.

Selectively prolonged retraction occurs when the accumulation rate
of the voltage-dependent inward current IMI in LG is reduced at
times when there is little or no change in the strength of Int1-mediated
inhibition (Beenhakker et al., 2005; DeLong et al., 2009a,b). During
each retraction phase, MCN1-released CabTRP Ia peptide re-initiates
a slow build-up of IMI in LG, because the previous build-up had
decayed during protraction (Fig. 1D). In the present study, this
prolonged retraction phase may have resulted from a relatively low
release rate of CabTRP Ia peptide when eachMCN1 is firing at 5 Hz,
a firing rate that commonly generates a near-threshold level of
neuropeptide release (Vilim et al., 1996, 2000; Liu et al., 2011; Ding
et al., 2019). MCN1-released CabTRP Ia peptide activates IMI in LG,
and 5 Hz is the approximate threshold firing frequency for the
MCN1-driven gastric mill rhythm (Wood et al., 2000; Kirby and
Nusbaum, 2007; DeLong et al., 2009b). Selectively prolonged
retraction may also result from IMI declining to a lower level at the
end of each LG burst during the 5 Hz dual MCN1 stimulations
relative to the matched 10 Hz single stimulations, owing to LG
more strongly inhibiting MCN1STG transmitter release at the lower
MCN1 firing rate. After a stronger LG inhibition of MCN1STG,
more time would be needed for sufficient IMI to build up and
trigger the next LG burst (DeLong et al., 2009b).

How the dual 10 Hz and 15 Hz MCN1 stimulations prolonged
both gastric mill rhythm phases relative to their matched single
stimulations is less clear. However, MCN1 activity does prolong
both phases when Int1 inhibition of LG is strengthened to a greater
degree than the parallel rate of IMI build-up (Beenhakker et al.,
2005). At the higher MCN1 stimulation frequencies the dual
stimulations may alter the balance of CabTRP Ia and GABA release,
relative to their matched single stimulations, such that the MCN1
GABAergic excitation of Int1 becomes relatively more strengthened
than the peptidergic excitation of LG. Neuropeptide and small
molecule transmitter release can have different Ca2+ and/or firing
rate dependencies (Whim and Lloyd, 1989; Peng and Zucker, 1993;
Liu et al., 2011; Nusbaum et al., 2017). Also, as above, the more
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effective LG inhibition of MCN1STG during the dual stimulations
would be likely to more completely reduce IMI amplitude at the end
of each LG burst, contributing to a longer duration for IMI build-up
during each subsequent retraction phase.
In contrast to these experiments, where optimal generation of a

fully coordinated gastric mill rhythm resulted from dual MCN1
stimulation at 5 Hz, the MCN1 firing rate is often considerably
higher (25–30 Hz) during fully coordinated gastric mill rhythms
triggered by the VCN or POC neurons in the complete STNS
(Beenhakker and Nusbaum, 2004; Blitz and Nusbaum, 2012).
However, the VCN- and POC-triggered gastric mill rhythms are
driven by co-activating MCN1 and CPN2, another CoG projection
neuron. Also, during these latter rhythms the firing pattern of both
projection neurons is not tonic but is rhythmically coordinated with
the gastric mill and pyloric rhythms, due to synaptic input from the
gastric mill and pyloric microcircuit interneurons Int1 and AB.
Microcircuit output-linked activity patterns in projection neurons
that drive rhythmic motor patterns are common across systems
(Weeks and Kristan, 1978; Rosen et al., 1991; Norris et al., 1994,
1996; Puhl et al., 2012; Grillner and El Manira, 2020). It remains to
be determined whether some or all of these distinctions, as well as
the rhythmic sensory feedback that would be present in vivo,
compensate for the degraded coordinated activity that occurred
under many of our experimental conditions in the isolated STG.
Although rhythmic sensory feedback is not necessary for core
rhythm generation in most motor systems, such feedback
commonly sculpts the final motor pattern in vivo (Wolf and
Pearson, 1988; Hooper et al., 1990; Büschges et al., 1992; Combes
et al., 1999; Eisenhart et al., 2000; Marder and Bucher, 2001;
Smarandache and Stein, 2007; Hedrich et al., 2009; Büschges
et al., 2011; Akay et al., 2014). Additionally, regarding this latter
issue, DG neuron-mediated muscle contraction activates the
muscle stretch-sensitive neuron GPR (Katz et al., 1989). GPR
activity, in turn, excites MCN1 and CPN2 in both CoGs,
influences the gastric mill rhythm generator neurons in the STG,
and can entrain the gastric mill rhythm (Blitz et al., 2004;
Beenhakker et al., 2005). Thus, this sensory feedback pathway may
normally provide a correction signal that maintains MCN1-driven
gastric mill rhythm coordination in vivo.
The superior coordination of gastric mill rhythms driven by dual

MCN1 stimulation provides a reasonable explanation for why all
identified inputs to MCN1 influence both copies, despite their
presence in separate ganglia (Beenhakker et al., 2004, 2005; Blitz
et al., 2004, 2008; Christie et al., 2004; Hedrich et al., 2009; Blitz
and Nusbaum, 2012; White et al., 2017). This system design also
provides a cautionary note for efforts focused on enabling recovery
of function after partial loss of pathways that drive behavior.
Increasing the firing rate of the remaining copies in a compromised
pathway might be expected to compensate for partial loss of some
copy members, but this is not the only possible outcome. For
example, as noted above, neurons often exhibit firing rate-
dependent changes in neurotransmitter release that can alter the
balance of their ionotropic and metabotropic actions, leading to
qualitative changes in microcircuit output. Additionally, insofar as
neurotransmitter release for many neurons is also regulated locally
at axon terminals, the balance between the projection neuron firing
rate and that of the regulating presynaptic neuron can be pivotal to
maintaining a coordinated motor pattern, as is the case forMCN1. In
conclusion, the gastric mill microcircuit is more effectively driven
by co-activating the paired projection neuron MCN1 than by its
firing rate- and pattern matched single stimulation, at least in the
isolated nervous system.
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