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Physiological and pharmacological characterization of a
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transporter impairment
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ABSTRACT
Plasma membrane efflux transporters play crucial roles in the
removal and release of both harmful and beneficial substances
from the interior of cells and tissue types in virtually every extant
species. They contribute to the clearance of a broad spectrum of
exogenous and endogenous toxicants and harmful metabolites,
including the reactive lipid aldehyde byproducts of lipid peroxidation
that are a hallmark of cellular ageing. Here, we tested whether
declining transporter functionality may contribute to functional decline
in a snail model of neuronal ageing. Through measuring the removal
of 5(6)-carboxyfluorescein, a known substrate for membrane efflux
transporters, we provide, for the first time, physiological evidence for
the existence of probenecid-, MK571- and glutathione-sensitive efflux
transporters in (gastropod) neurons and demonstrate that their
functionality declines with age. Our data support the idea that
waning cellular detoxification capacity might be a significant factor in
the escalation of (lipo-)toxicity observed in neuronal ageing.
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INTRODUCTION
Cellular homeostasis, the maintenance of a balanced and stable
physico-chemical intracellular environment, is critical to the
functional integrity and survival of cells and, ultimately,
organisms. Over the course of their lives, cells face many
potentially disruptive influences arising either as a side effect of
their normal functions, such as chemically reactive byproducts of
their own metabolism, or as a consequence of exogenous substances
such as drugs, agricultural and industrial chemicals, or other
xenobiotics they absorb from their environment. Often, particularly
in the case of membrane-impermeant molecules, cells respond to
these kinds of challenges with extrusion of the offending substance
through specialized plasma membrane transport mechanisms such
as members of the highly conserved cation transporters of the solute
carrier (SLC) and the ATP-binding cassette (ABC) transporter
protein families (Featherstone, 2011; Höglund et al., 2011). SLC
transporters function either passively or through secondary active
processes and they control transmembrane movement of many types

of substrates, including neurotransmitters, metabolites, drugs and
toxins (Hediger et al., 2004). ABC transporters constitute one of the
largest and evolutionarily oldest families of transmembrane
transporters, and representatives of most of the eight
(mammalian) subfamilies are found in virtually all extant phyla
(Baral, 2017; Dean et al., 2001; Dermauw and van Leeuwen, 2014;
Hartz and Bauer, 2011; Jeong et al., 2017). ABC family members
are expressed in most animal tissue and cell types, including
neurons and glial cells of the nervous system (Abuznait and
Kaddoumi, 2012; Brandmann et al., 2014; Dallas et al., 2006; Dean
et al., 2001; Falcão et al., 2007; Hartz and Bauer, 2011). The
majority of ABC proteins require the binding and hydrolysis of ATP
to transport substrates across lipid membranes. Although many
ABC transporters may mediate both influx and efflux processes, in
eukaryotes they primarily facilitate efflux of unwanted molecules
(Dean et al., 2001; Hartz and Bauer, 2011).

Extensive research in the biological correlates of drug resistance
or uptake in cells has provided substantial insight into the function
of members of the SLC and ABC subfamilies (Briz et al., 2019;
DeGorter et al., 2012; Nyquist et al., 2017; Willers et al., 2019).
Moreover, their role in the cellular response to environmental toxins
and xenobiotics has been well described (Dermauw and van
Leeuwen, 2014; Gott et al., 2017; Jeong et al., 2017). Also, although
there is a growing awareness of the significance of these transporters
in (age-related) neurodegenerative diseases, particularly in their
functioning at the blood–brain barrier (Erdő and Krajcsi, 2019;
Morris et al., 2017; Sultana and Butterfield, 2004), much less is
known of their role in dealing with endogenous chemical
perturbations in ageing neurons.

In this study, we investigated this question using the pond snail
Lymnaea stagnalis (L.), a gastropod model system of neuronal
ageing and age-associated learning and memory impairment
(Hermann et al., 2007, 2014). Capitalizing on L. stagnalis’s
unique large identifiable neurons, the current study investigated
non-pathological, age-associated functional changes of a
glutathione-dependent, probenecid- and MK-571-sensitive efflux
transporter functionality.

MATERIALS AND METHODS
Animal populations
Snails were bred and raised as described before under constant and
strictly controlled conditions in the laboratory (Hermann et al.,
2007; Watson et al., 2012a). Briefly, they were raised at a maximal
density of 1.5 snails per liter, on a 12 h:12 h light:dark cycle, at an
ambient temperature of 19–20°C and fed ad libitumwith lettuce and
Aquamax-carnivorous Grower 600 trout pellets (Purina Mills LLC,
St Louis, MO, USA). The facility uses reverse osmosis water that
has been subsequently reconditioned to a conductivity of
∼450 µS cm−1 by adding Instant Ocean salts (Aquarium SystemsReceived 3 September 2019; Accepted 6 January 2020
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USA) at 1 g per US gallon (∼3.8l). Calcium carbonate (light
powder; EMD Millipore) and sterilized cuttlefish bone were added
to the water to maintain a pH of 7.4–7.6 and to keep dissolved
calcium concentrations at saturation level (see Johnston et al., 2017,
for details of water composition). Survival characteristics of the
populations were continuously monitored and evaluated using
previously established methods based on the two-parameter
Weibull failure model (Janse et al., 1988; Slob and Janse, 1988).
Experimental animals were taken at random from differently aged
populations meeting Weibull parameters consistent with healthy
ageing. For the purpose of this study, old animals (20–24 months of
age) are defined as animals sampled from populations with a
survival percentage of 20% or less, whereas young sexually mature
animals (7–9 months of age) were taken from populations with
survival rates of 95% or better.

Neuronal dye labelling
The central nervous system (CNS) was dissected from anaesthetized
animals (Watson et al., 2012b) and pinned down in an elastomere-
covered dish filled with a Hepes-buffered saline (HBS; for
composition, see below). The large identified neuron RPD1 (right
parietal dorsal 1; Fig. 1A) was impaled with a microelectrode
without the use of proteolytic enzymes (Hermann and Bulloch,
1998; Hermann et al., 1997). Microelectrodes were pulled from
borosilicate glass (TW150F, World Precision Instruments, Sarasota,
FL, USA) and filled with 5(6)-carboxyfluorescein (CF; 4% w/v)
dissolved in 0.5 mol l−1 potassium acetate (CH3COOK)/
0.01 mol l−1 KCl. Intra-somatal iontophoretic injection of CF was
done through a 30 min pulse protocol of hyperpolarizing square
current pulses with duration 500 ms, amplitude 1 nA and
repetition rate of 1 Hz generated with a Model 2100 isolated
pulse stimulator (A-M Systems, Sequim, WA, USA) and delivered
through standard intracellular microelectrode techniques with the
aid of an Axoclamp 2A amplifier (Axon Instruments, Burlingame,
CA, USA; Fig. 1B).

Image acquisition and analysis
After injection of CF into the soma of RPD1, dye extrusion was
monitored for 3 h (unless indicated otherwise), with sets of five
images acquired at a rate of 12 h−1 for the first hour, 4 h−1 during the
next hour and 2 h−1 during the third and last hour. Exposure time of
individual images was 100 ms. Gain settings were optimized for
each experiment. Average fluorescence intensity for each of the sets
was calculated as the arithmetic mean of each quintuplet (ImageJ
version 1.51j8, NIH, Bethesda, MD, USA). Images were taken with
an MVX10 macro zoom fluorescence stereomicroscope (Olympus)
with 495 nm excitation/519 nm emission and a Retiga Exi-blue
cooled CCD camera (QImaging, Surrey, BC, Canada) controlled
through CellSense Dimensions Imaging software (v1.6, Olympus
Life Science).

Chemicals and solutions
Unless stated otherwise, chemicals were obtained from Sigma
Aldrich (St Louis, MO, USA) and dissolved in HBS. CF (Acros
Organics, Branchburg, NJ, USA) was dissolved in microelectrode
medium (0.5 mol l−1 potassium acetate/0.01 mol l−1 potassium
chloride) to a concentration of 4% with pH set at ∼7.5 with
5 mol l−1 NaOH, and subsequently filtered through a 0.45 µm
syringe filter. ABC transporter inhibitors MK-571 and probenecid
(water-soluble; Molecular Probes, Eugene, OR, USA),
γ-glutamylcysteine synthetase inhibitor buthionine sulphoximine
(BSO) and membrane-permeable ethyl ester of reduced glutathione

(GSH-EE) were dissolved in HBS at concentrations indicated in the
text. Adenosine 5′-triphosphate disodium salt hydrate (ATP) was
dissolved in microelectrode medium to a concentration of
10 mmol l−1 and co-injected with CF into the soma of RPD1 as
described before (note: to monitor the efficacy of ATP delivery,
electrical activity of the injected neurons was monitored for changes
indicative of closure of KATP background channels; Fathi-
Moghadam and Winlow, 2019). Isolated CNS was placed in
saline, BSO, MK-571 or probenecid starting 30 min before
impalement; treatment with GSH-EE started 60 min before
impalement. All drug applications continued during dye loading
and imaging. All experiments were performed in HBS (pH 7.9) with
the following composition (in mmol l−1): 51.3 NaCl, 1.7 KCl, 4.1
CaCl2, 1.5 MgCl2 and 10 Hepes.

Data analysis and statistics
Using least-squares non-linear regression techniques, one-phase
exponential decay models [Yt=(Y0−Y∞)−kt+Y∞; where Yt is the
concentration of dye remaining at time t, Y0 is the value of Y at t=0, k
is a rate constant and Y∞ is the asymptotic steady-state value] were
fitted to averaged CF fluorescence intensity decay time series. To
deal with slight variations in loading efficacy, the models were fitted
to data normalized to the mean intensity of the first frame (i.e. Y0=1).
Statistical significance was tested using Student’s t-test or one-way
ANOVA followed by Dunnett’s or Šidák’s multiple comparisons
test where specific hypothesis tests were required. All analyses were
performed and all figures madewith GraphPad Prism (version 8.0.1,
GraphPad Software Inc., La Jolla, CA, USA). All data are
represented as arithmetic mean and s.e.m.

RESULTS AND DISCUSSION
Characterization of a neuronal efflux transporter
To monitor the activity of the neuronal efflux transporter(s) in L.
stagnalis CNS, we iontophoretically injected the anionic
fluorescent dye CF directly into the cytosol of RPD1, thereby
circumventing potential (age-associated) variance in probe loading
and subcellular compartmentalization commonly associated with
esterified-probe loading protocols. Intracellular CF fluorescence
intensity in RPD1 from young snails decayed with a single-
exponential time course with half-times in the low twenties of
minutes (Fig. 1C). In the absence of inhibitors, mean intracellular
fluorescence intensity level declined exponentially to 21±1% of its
starting value in 60 min (n=6, R2=0.9846; Fig. 1B,C). Treatment
with the anion transport inhibitors probenecid or MK-571 slowed
CF fluorescence decay in a dose-dependent manner (Fig. 1B–D).
Both probenecid and MK-571 displayed steep dose–effect
characteristics with an IC50 of 189±51.9 µmol l−1 and 3.3±
0.85 µmol l−1, respectively (Fig. 1D), values consistent with or
even below previously reported data in mammalian and other
invertebrate cells and tissues (Campos et al., 2014; Della Torre et al.,
2014; Gekeler et al., 1995; Renes et al., 1999; Salerno and Garnier-
Suillerot, 2001). Treatment with maximal doses of probenecid
(10 mmol l−1, n=11) or MK-571 (300 µmol l−1, n=6) linearized
fluorescence-loss curves and slowed down decay rates to values as
low as −1.3(±0.021)×10−3 min−1 and −1.6(±0.014)×10−3 min−1,
respectively. Importantly, in both instances, residual fluorescence
intensity levels declined to only 91±2% and 90±6% of their
initial values after undergoing 60 min of exactly the same
sampling protocol and exposure conditions to the untreated
preparations (Fig. 1C), indicating that photobleaching had little
or no effect on the disappearance of CF fluorescence in the
latter preparations.
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Fig. 1. Characterization of an efflux transporter in a Lymnaea stagnalis neuron. (A) Photographic example of the location (left) of RPD1 and fluorescence
(right) after intra-somatal injection with 5(6)-carboxyfluorescein (CF). (B) Photographic time series of RPD1 CF fluorescence in either saline alone (control) or
saline plus the ABC transporter inhibitors probenecid or MK-571. (C) Average change over time in normalized RPD1 CF fluorescence in the absence (saline)
or presence of probenecid (10 mmol l−1) or MK-571 (300 µmol l−1). Note the relatively stable fluorescence levels in the presence of the ABC inhibitors.
(D) Dose–response curves of the effect of probenecid and MK-571 on CF extrusion rate. IC50 is indicated by the vertical dotted red (MK-571) and green
(probenecid) lines. (E) Average single-exponential CF fluorescence decline in RPD1 from young snails under control (saline) conditions or in the presence of
the γ-glutamylcysteine synthetase inhibitor BSO. Note the significant slow-down of extrusion in the presence of BSO. (F) Scatter plot of half-life of CF
fluorescence in saline or in the presence of BSO (means±s.e.m.). RFU, relative fluorescence units.
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Together, the above results show that RPD1 express an efflux
transporter with a pharmacological profile characteristic of ABCC
transporters (Hagos et al., 2017; Yamazaki et al., 2005).
Parenthetically, it is important to note that CF is a known
substrate for members of the ABCC subfamily (Da Costa et al.,
2018; Valdez et al., 2017; Van der Kolk et al., 1998).
Postulating involvement of an ABC transporter sharing

characteristics with the ABCC subfamily, we tested GSH
dependency of CF extrusion (Bachhawat et al., 2013; Ballatori
et al., 2009; Cole and Deeley, 2006). To this end, CNS isolated from
young animals was preincubated with the γ-glutamylcysteine
synthetase inhibitor BSO (10 mmol l−1; n=6). As shown in
Fig. 1E, pretreatment with BSO significantly slowed down CF
extrusion, yielding a (mean±s.e.m.) first-order decay rate constant of
0.019±0.001 RFU min−1 compared with 0.031±
0.001 RFU min−1 under control conditions (Student’s t=5.72,
P<0.001, d.f.=10; R2

saline=0.9860; R2
BSO=0.9625), corresponding to

an ,increase in average fluorescence intensity half-life from 22.8±
0.95 min to 36.7±2.76 min (Fig. 1F; Student’s t=4.79, P<0.001,
d.f.=10), thus corroborating the hypothesis that CF extrusion in RPD1
is mediated by a transporter sharing defining pharmacological and
physiological traits with the ABCC subfamily. A L. stagnalis
transcriptome data search indicated that L. stagnalis expresses a large
variety of ABC transporter homologues, including six members of
the ABCC subfamily (ABCC1–5 and ABCC12; Bouétard et al.,
2012; Rosenegger et al., 2010). At least twoMK571 and probenecid-
sensitive ABCC member homologues (ABCC1 and ABCC4) seem
to be expressed in L. stagnalis CNS (Feng et al., 2009). Although the
existence of mammalian neuronal ABCCefflux transporters has been
reported before (Brandmann et al., 2014; Falcão et al., 2007; Grube
et al., 2018), the data presented here provide the first physiological
and functional evidence for the existence of such an efflux transporter
in non-mammalian neurons.

Dye-extrusion rate declines with age
In the light of our earlier work on functional and metabolic decline
of the ageing L. stagnalis CNS (Lee, 2019; Hermann et al., 2014;
Watson et al., 2012a, 2013), we examined whether neuronal CF
extrusion capacity declines with age. To this end, the disappearance
of CF fluorescence from RPD1 in the CNS of six young and eight
old snails was measured and analysed as above (Fig. 2A). Again, the
time course of CF fluorescence decline followed single-exponential
kinetics (Fig. 2B; R2

young=0.9860; R2
old=0.9701). However,

fluorescence intensity levels declined significantly faster in young
neurons than in old neurons, with average decay rate constants of
0.031±0.001 RFU min−1 and 0.022±0.001 RFU min−1 in young
and old preparations, respectively (Fig. 2A,B; Student’s t=4.044,
P=0.016, d.f.=12), corresponding to an increase in fluorescence
half-life from 22.8±0.95 min to 32.4±1.81 min, respectively
(Fig. 2C; Student’s t=4.29, P=0.001, d.f.=12). Intriguingly, both
decay rate constants and half-life of old RPD1 are similar to those
reported above for the BSO-treated young RPD1 (cf. Figs 1F and
2C). Importantly, treatment with 10 mmol l−1 probenecid reduced
fluorescence decay in both young and old preparations to the same
minimal rate (Fig. 2D; ANOVA F3,29=217.8, P<0.0001; Šidák’s
multiple comparisons tests: young versus old, t4=2.71, P<0.04;
young versus young+probenecid t4=19.68, P<0.001; old versus
old+probenecid t4=16.07, P<0.001; young+probenecid versus
old+probenecid t4=1.05, P=0.76). Thus, after 60 min, fluorescence
levels were similar in young and old preparations, and still at 91±2%
and 88±3%, respectively, of their initial values (Fig. 2D). Again, this
indicates that photobleaching or other processes potentially

quenching CF fluorescence (Elliott and Kleindienst, 1990;
Song et al., 1995) had little or no effect on the current results.
Consequentially, the marked slow-down in CF fluorescence decay of
older neurons presumably involves an age-associated decline in the
extrusion capacity of the probenecid/MK-571-sensitive plasma
membrane efflux transporter(s).

GSH and/or ATP supplementation do not affect transporters
in aged neurons
All classes of ABC transporters operate at the expense of ATP and
some also require GSH (Cole and Deeley, 2006). As we
demonstrated above, RPD1’s CF transporter belongs to the latter
group. As reported previously, GSH and ATP supplies are
diminishing in ageing L. stagnalis neurons (Lee, 2019; Watson
et al., 2014), prompting us to test the effect of ATP, GSH or ATP
plus GSH supplementation on CF extrusion rates in old RPD1.
Fig. 3A,C illustrates that compared with saline-only controls,
neither supplementation of intracellular GSH by means of GSH-EE
(10 mmol l−1, n=6) or injection of ATP (10 mmol l−1, n=7) effected
significant changes in CF fluorescence decay kinetics (Fig. 3A–D).
As before, the fluorescence decay curves were fitted very well by
single-exponential decay models (R2

saline=0.9701; R2
GSH-EE=0.9651;

R2
ATP=0.9742) with mean decay rates of 0.022±0.001 RFU min−1,

0.019±0.002 RFU min−1 and 0.025±0.002 RFU min−1 for saline-
only, GSH-EE-treated or ATP-injected preparations, respectively.
These decay rates did not differ significantly from each other
(ANOVA F3,23=3.694, P=0.026; Dunnett’s test: saline-only versus
GSH-EE, Q=1.245, P=0.481, d.f.=23; saline-only versus ATP,
Q=1.044 P=0.615, d.f.=23). Likewise, CF fluorescence decay in
cells that received the GSH/ATP combination treatment (Fig. 3E)
could be fitted very well with a single-exponential decay model
(R2

GSH+ATP=0.9856) with a mean decay rate of 0.017±
0.001 RFU min−1. Notably, the combined treatment also failed to
reverse the slow-down of CF extrusion in older RPD1 (Fig. 3F). In
fact, the data suggest that even though this effect was not statistically
significant, the combined treatment may cause CF extrusion to
decelerate even further (ANOVA F3,23=3.694, P=0.026; Dunnett’s
test: saline-only versus GSH/ATP, Q=2.177, P=0.1023, d.f.=23).

Together, these results show that enhancing intracellular GSH
and/or ATP levels does not return old neurons to the higher CF
extrusion rates characteristic of young neurons. Importantly,
indicative of successful delivery of both compounds, we noticed
resting membrane potential depolarization and/or increased
electrical activity of injected RPD1 in all cases (data not shown).
Previous studies have shown that intracellular ATP concentrations
([ATP]i) >2 mmol l−1 are required to inhibit ATP-sensitive
background potassium channels in L. stagnalis neurons
underlying this ATP response (Fathi-Moghadam and Winlow,
2019; Lozovaya et al., 1993). Moreover, normal cytosolic ATP
concentration in (mammalian) neurons is estimated to be between 1
and 3 mmol l−1 (Ainscow et al., 2002; Chinopoulos et al., 2000;
Pathak et al., 2015; Rangaraju et al., 2014). Thus, even though we
could not measure final [ATP]i in our experiments, ATP injections
probably increased [ATP]i in excess of 1–2 mmol l−1.

Our results raise the question why probenecid/MK-571-sensitive
efflux transporter capacity of L. stagnalis neurons declines with age.
We can as yet not answer this question with certainty. However,
several studies have shown an age-related attenuation of expression
levels of efflux transporters (including ABC transporters) located at
the blood–brain barrier (Erdő and Krajcsi, 2019; Erickson and
Banks, 2019). Hence, it is conceivable that the CF efflux transporter
capacity of RPD1 is affected by an age-associated decline in
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Fig. 2. Age-associated reduction in efflux transporter functioning. (A) Time series of CF fluorescence decay in RPD1 from young and old snails. (B) Average
single-exponential CF fluorescence decline in RPD1 of young and old animals. Note the significant slow-down of dye extrusion in old RPD1. (C) Scatter
plot of half-life of CF fluorescence in young and old RPD1 (means±s.e.m.). (D) Average CF fluorescence after 60 min of saline or probenecid treatment in young
and old RPD1. Note that probenecid treatment prevents dye extrusion in both young and old preparations to the same extent. *P<0.05, ***P<0.001;
n.s., not significant; RFU, relative fluorescence units.
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transporter protein expression. Alternatively, many ABC transporter
proteins, including members of the ABCC subfamily, possess
redox-sensitive cysteine residues, the oxidation of which under
oxidative stress conditions disrupts their transporter activity (Kuo,
2009). Hence, age-associated escalation of oxidative stress, one of
the hallmarks of ageing in the vast majority of model systems
including the L. stagnalis nervous system, may contribute to the
phenomena reported here (Hermann et al., 2014; Watson et al.,
2012a). Last but not least, considering the important role ABC(C)
transporters play in the removal of toxic endogenous compounds
including reactive lipid aldehydes, reduced efflux capacity might
lead to an accumulation of these compounds and as a result further
negatively affect the functioning of these transporters (Ji et al.,
2002; Jungsuwadee et al., 2006; Renes et al., 2000; Sultana and
Butterfield, 2004; Zhang and Forman, 2017).
In conclusion, the results presented here provide evidence that

functioning of an efflux transporter, with the pharmacological
characteristics of an ABCC-like transporter, attenuates with age in
L. stagnalis neurons and furthers our theory that declining cellular
detoxification capacity is a factor in the functional decline of normal
ageing neurons.
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