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Trail pheromone modulates subjective reward evaluation
in Argentine ants
Natacha Rossi1,2,*,‡, Muriel Pereyra1, Mariel A. Moauro1, Martin Giurfa2,4, Patrizia d’Ettorre3,4 and
Roxana Josens1,‡

ABSTRACT
The Argentine ant, Linepithema humile, is native to South America
but has become one of the most invasive species in the world. These
ants heavily rely on trail pheromones for foraging, and previous
studies have focused on such signals to develop a strategy for
chemical control. Here, we studied the effects of pre-exposure to the
trail pheromone on sugar acceptance and olfactory learning in
Argentine ants. We used the synthetic trail pheromone component
(Z)-9-hexadecenal, which triggers the same attraction and trail-
following behavior as the natural trail pheromone. We found that pre-
exposure to (Z)-9-hexadecenal increases the acceptance of sucrose
solutions of different concentrations, thus changing the ants’
subjective evaluation of a food reward. However, although ants
learned to associate an odor with a sucrose reward, pheromone pre-
exposure affected neither the learning nor the mid-term memory of
the odor-reward association. Taking into account the importance of
the Argentine ant as a pest and invasive organism, our results
highlight the importance of pheromonal cues in resource evaluation, a
fact that could be useful in control strategies implemented for this
species.

KEY WORDS: Social insects, Linepithema humile, Trail pheromone,
Sucrose acceptance, Appetitive olfactory learning

INTRODUCTION
The Argentine ant, Linepithema humile, is a well-known invasive
pest species. It is native to South America and one of the most
successful and widely distributed invaders, having expanded
towards Mediterranean and subtropical areas all around the world
(Suarez et al., 2001). One of the reasons for this expansive success is
a genetic bottleneck (Tsutsui et al., 2000), which has led to reduced
intraspecific aggression, allowing the species to redirect resources to
colony growth (Holway et al., 1998) and thus reach high population
densities. These introduced populations are able to displace native
ants (Suarez et al., 1998), other arthropods (Cole et al., 1992) and

vertebrates (Alvarez-Blanco et al., 2017; Suarez and Case, 2002),
disrupt mutualisms (Bond and Slingsby, 1984) and facilitate
honeydew-producing hemipteran pests such as mealybugs
(Holway et al., 2002). Another potential factor facilitating the
ants’ invasive success is their mass recruitment strategy towards
food sources through the use of trail pheromones (Carpintero and
Reyes-López, 2008).

Pheromones are ubiquitous chemical signals used in animal
communication. They are released to the environment by exogenous
glands, and elicit behavioral or physiological responses in
individuals of the same species (Karlson and Lüscher, 1959).
Pheromones typically elicit stereotyped, innate responses that are
species specific (Karlson and Lüscher, 1959; Wyatt, 2014). Among
social insects, ants make extensive use of pheromones in a broad
spectrum of behavioral contexts [including nest defense and alarm,
foraging, social recognition and social interactions, and sexual
communication (Vander Meer et al., 1998)]. A conspicuous
pheromone-dependent behavior in various ant species is the
pheromonal marking of trails leading to and from a profitable
food source. Information about the quality of these sources is
encoded in the variable amount of trail pheromone released, by
increasing or reducing the scent-marking intensity per ant (Jackson
and Châline, 2007) or the percentage of marking ants (Mailleux
et al., 2000).

The trail pheromone of Argentine ants is produced by the ventral
gland of workers (Cavill et al., 1980; Wilson and Pavan, 1959) and
has (Z)-9-hexadecenal as a main aggregation compound (Cavill
et al., 1979). Early studies showed that (Z)-9-hexadecenal alone was
able to elicit trail following (Cavill et al., 1979; Van Vorhis Key and
Baker, 1982) and generate attraction towards treated areas (Choe
et al., 2014). In the field, this trail following can be disrupted by a
high concentration of synthetic (Z)-9-hexadecenal, which can thus
be used as an efficient and natural control method (Nishisue et al.,
2010). Dispensers of this component positioned appropriately
resulted in a reduction of Argentine ants’ foraging activity
(Tanaka et al., 2009; Westermann et al., 2016). However, only
combining these dispensers with insecticidal sugary bait had a
significant effect of population reduction after a year (Sunamura
et al., 2011).

In the framework of animal communication, the study of
pheromones remains limited to their capacity to trigger
stereotyped responses at the time of pheromone detection.
However, recent findings indicate that the biological effects of
pheromones are more complex than previously thought. Pre-
exposure to pheromones modulates behaviors that are not
explicitly related to the specific message that they convey, such as
responsiveness to reward and noxious stimuli (Baracchi et al., 2017,
2020; Rossi et al., 2018). They can also replace reinforcement
stimuli in learning experiments (Carew et al., 2018; Coureaud et al.,
2006), or modulate experience-dependent behaviors such asReceived 4 June 2020; Accepted 15 July 2020
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associative learning (Baracchi et al., 2020; Urlacher et al., 2010;
Vergoz et al., 2007), even when the pheromone is no longer present.
Associative learning is an essential component of the foraging

and recruitment behavior of social insects. Ants learn landmark
configurations characterizing sites of interest (food sources and the
nest) and also the routes connecting them (Collett and Collett,
2002). In addition, they can learn visual and olfactory cues at the
food source (Dupuy et al., 2006; Josens et al., 2009; Yilmaz et al.,
2017). Robust olfactory memories arise via individual experience or
via odor perception in the context of trophallaxis (mouth-to-mouth
contacts). These memories play a fundamental role in subsequent
individual foraging decisions and, therefore, in the foraging
organization of the colony (Provecho and Josens, 2009).
Even though the Argentine ant is a species of global relevance, its

learning abilities have not been well explored. In one study, it was
found that ants learned visual cues, but when conflictive
information was presented, chemical trails were preferred to visual
and spatial cues (Aron et al., 1993). In another work, Argentine ants
were shown to learn and discriminate cuticular hydrocarbons
appetitively in harnessing conditions (van Wilgenburg et al., 2012).
Thus, investigating the cognitive abilities of Argentine ants could
provide further cues to understand the ecological and evolutionary
success of this species in the colonization of new habitats.
Here, we studied the effect of (Z)-9-hexadecenal on the

evaluation of appetitive resources (sucrose) and on the learning of
odors associated with such resources. In our experiments, we
analyzed the effect of the trail pheromone component when it was
no longer present and in a context different from the one in which
the pheromone was presented. We thus aimed at assessing the
response modulation of the individual’s appetitive motivation rather
than the reflexive response of trail-following behavior. Specifically,
we pre-exposed ants to different doses of (Z)-9-hexadecenal and
examined whether this pre-exposure affected their ingestion of
sucrose solution. After identifying an adequate dose of synthetic
pheromone to modify ingestion, we tested whether its pre-exposure
also changed the subjective evaluation of sucrose rewards of
varying concentration. Finally, we investigated whether ants can
learn to associate an odor spot within a circular arena with sucrose
solution, and whether pheromone pre-exposure modulates learning.

MATERIALS AND METHODS
Experiments were performed between May 2017 and January 2020
using three queenright Linepithema humile (Mayr 1868) colonies
that had been collected between March 2017 and August 2019 from
the native range in Argentina on the campus of the University of
Buenos Aires (34°32″48.3′S, 58°26″21.0′W). Ants were kept under
controlled conditions (26±1°C, 56±6% humidity, natural light:dark
cycle) for at least 2 months before experiments. Colonies were
reared in artificial nests that consisted of large plastic boxes
(30×50×30 cm) with Fluon-painted walls to prevent escapes. The
floor was covered with plaster (Paris type), on which a stack of
acrylic plates (12×8 cm) separated from each other by ∼2 mm
served as a refuge. Colonies were fed daily with honey water
(outside the experimental periods, except for Experiment 2, for
which ants were deprived of food a few days before the experiment
to increase their motivation to forage) and once a week with
cockroaches (Blaptica dubia). Water was provided ad libitum.

Experiment 1: sucrose solution acceptance
Pheromone dose effects
We first established the effects of different volumes of pheromone
(0.2, 0.4, 0.8, 1.6 and 3.2 µl) on the feeding behavior of ants. Ants

were collected each day from the nest and separated into groups of
three, maintained in acrylic pots (2.6 cm diameter, 3 cm height). As
L. humile workers are monomorphic, all ants were of similar size.
After 2 h of rest in darkness, each pot containing the three ants was
placed within a larger plastic pot containing a filter paper (1×5 cm)
soaked with either 0.2, 0.4, 0.8, 1.6 or 3.2 µl (Z)-9-hexadecenal
(Carbosynth, Compton, UK). This larger pot (216 ml) was covered
with a lid, and ants were confined therein for 15 min. Therefore, ants
were exposed to the pheromone as a vapor but had no direct contact
with it. The whole procedure was performed under air extraction.
Control ants were subjected to the same conditions but no
pheromone was presented within the larger pot.

After the 15-min pre-exposure, each pot with the three ants was
removed from the larger one. Ants were then offered a 3-µl drop of
5% w/w sucrose solution at the center of their container. They were
video recorded over 3 min using a SONY Handycam HDR-XR260
camera, and videos were analyzed using BORIS software (Friard
and Gamba, 2016). Ants’ feeding responses were coded as a binary
response (feeding, 1; not feeding, 0). Ants that did not touch the
drop of sucrose solution were excluded from analyses (∼14% of the
total ants).

Sucrose acceptance
We next studied whether and how pheromone pre-exposure affects
the subjective evaluation of sucrose solutions. To this end, we
compared the acceptance of sucrose solutions of different
concentrations between pheromone-pre-exposed and non-pre-
exposed ants, as sucrose concentration is a crucial parameter for
foragers as an estimator of food quality (Scheiner et al., 2004).

The pheromone pre-exposure was performed as described above,
but in groups of four ants, and lasted 20 min. Half of the four-ant
groups were pre-exposed to 1.6 µl (Z)-9-hexadecenal and the other
half was subjected to the same confining conditions but in the
absence of pheromone (control groups). The whole procedure was
performed under air extraction. After pre-exposure, each ant of one
group was individually offered only one of four different sucrose
concentrations: 1, 5, 10 or 20% w/w. Thus, in no case were two ants
of the same group tested for the same concentration; they were never
in the same sucrose concentration group, and each ant was only used
once. The ants’ acceptance responses were evaluated individually
based on a protocol established by Sola et al. (2013). Briefly, an ant
was gently placed on a bridge (2×50 mm2) that ended in a feeding
arena containing a 3-µl drop of sucrose solution. The individual
responses of each of the four ants were observed while the
following group of four ants was pre-exposed to the synthetic
pheromone.

We compared the feeding behavior of pheromone-pre-exposed and
non-pre-exposed ants for the four different sucrose concentrations.
Individual feeding responses to the sucrose concentrations were
recorded as a binary response (feeding or not). We excluded ants that
did not touch the drop or fell from the bridge, which constituted
∼15% of the total ants assayed. Ants were filmed from a lateral view
for 3 min while they were drinking, using a camera-fitted
stereomicroscope (Leica MZ8 at 25× magnification with a Leica
ICA camera). Feeding time (s) was obtained from the videos and was
defined as the time during which an ant’s mandibles were in contact
with the solution until the ant had finished ingesting and left the
feeding arena. As the video recording lasted 3 min, ants that fed
longer were only considered for the binary response, but not for the
feeding time (∼5% of the total ants). We also excluded ants for which
the feeding time could not be recorded (∼2% of the total ants, i.e.
owing to recording errors or poor visibility of the ants’ mouthparts).
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Experiment 2: appetitive olfactory conditioning of free-
walking ants
Ants were trained to choose an odorant that was associated with
sucrose solution within an experimental arena. Before conditioning,
we made sure that the odorant used as a conditioning stimulus did
not elicit spontaneous responses in ants.

Acquisition
The protocol was based on Piqueret et al. (2019). Linalool was used
as the conditioned stimulus (CS) and was paired with 20% (w/w)
sucrose solution as an unconditioned stimulus (US). Before
conditioning, foragers were individually marked with water-based
paint while ingesting a sucrose solution in the foraging area of their
colony. They were then pre-exposed to (Z)-9-hexadecenal for
20 min (Ph+O+ group) or not pre-exposed for the same amount of
time (Ph–O+ group), as in Experiment 1. After pre-exposure, ants
were placed in another context where the pheromone was no longer
present. A marked ant was placed in the center of the experimental
arena (a circular plastic pot; 5.5 cm diameter, 4.5 cm height), with a
clean filter paper covering the bottom and lateral walls painted with
Fluon to prevent escapes. A semi-circular white wall was placed
around the setup to prevent external visual stimulation. The arena
had two holes in the wall facing each other. Eppendorf tubes were
inserted into the holes with their openings pointing towards the
center of the arena. A semi-circular zone (3 cm2) was drawn on the
floor around each tube. One tube contained a piece of filter paper
(1 cm2) soaked with 1 µl of 3% (v/v) linalool (Sigma-Aldrich, 97%
pure) diluted in mineral oil. The opposite tube facing the odor tube
contained a piece of filter paper soaked with 1 µl solvent (mineral
oil). On each tube, a mesh prevented the ant from entering it. A
small plastic disc (6 mm diameter) was placed in front of each tube,
where 1 µl of 20% (w/w) sugar solution (US) or water was offered.
The reward was placed in front of the odor, with the water placed in
front of the solvent.
Every time an ant was placed in the experimental arena, it was

allowed to familiarize for 1 min with the new environment within a
central circular ring (3 cm diameter, 4.5 cm height) with Fluon-
painted walls. Then, the ant was released and the time needed to find
the sucrose solution (latency) was recorded during each
conditioning trial. The ant was allowed to drink the drop of sugar
solution and was then transported back to its colony, where it could
perform trophallaxis to ensure high and stable motivation along
trials. The inter-trial interval depended on the individual’s
motivation and whether or not it performed trophallaxis (∼8 min).
During this interval, the filter paper at the bottom of the arena and
the plastic discs were replaced with clean ones, and the Eppendorf
tubes were cleaned with ethanol (96%) to remove possible chemical
cues left by the ant. The orientation of the arena was also randomly
changed between trials to prevent the use of visual or spatial cues.
Ants were subjected to three consecutive conditioning trials. Trials
were video recorded using a SONY Handycam HDR-XR260
camera, and videos were analyzed with BORIS software (Friard and
Gamba, 2016). From the videos, the latency to find sucrose was
measured as the time (s) from the moment at which the ring was
removed until the ant found the sucrose solution.

Memory test
Memory tests were performed in the absence of reward. This
evaluation took place ∼9 min after the third conditioning trial,
depending on the ant’s motivation and whether they spent time
performing trophallaxis in the nest. For the tests, we used the same
experimental arena but empty plastic discs were placed in front of

the two tubes containing either linalool or mineral oil. As for
conditioning, a semi-circular zone was drawn around each tube,
which allowed recording of the time spent by the ant near the odor
(CS) or the solvent over 2 min (duration), as well as the number of
times the ant entered each zone (occurrence). The orientation of the
arena was also randomly changed between the last conditioning trial
and the memory test to prevent the use of visual or spatial cues. Each
ant underwent only one memory test.

Memory tests were video recorded using a SONY Handycam
HDR-XR260 camera, and videos were analyzed with BORIS
software (Friard and Gamba, 2016). From the videos, we quantified
the occurrence as the number of times the ant entered each zone
(linalool or mineral oil) and the duration as the time (s) the ant spent
in each zone.

Control group for the associative learning process
The protocol of appetitive olfactory conditioning of free-walking
ants used in Experiment 2 had never previously been used in
L. humile. To make sure that the behavior observed for the two other
groups of ants (Ph+O+ and Ph−O+) was the sole result of
associative learning, we submitted an additional group (Ph−O−) to
the same training procedure without any odorant (US-only group).
This group was not exposed to the pheromone and faced tubes with
no odor during three visits to the arena. The reward was placed in
front of one of the empty tubes and water in front of the other one.
The rest of the protocol was exactly the same.

The evaluation for this control group, at the fourth visit, was
exactly the same as the memory tests for the odor groups (Ph+O+,
Ph−O+); all cases were performed in the absence of reward. To this
end, we used the same arena as during training, but empty plastic
discs were placed in front of the two tubes containing either linalool
or mineral oil. As for training, a semi-circular zone was drawn
around each tube, which allowed recording of the time spent by the
ant near the odor or the solvent over 2 min (duration), as well as the
number of times the ant entered each zone (occurrence). The
orientation of the arena was also randomly changed between the last
training trial and the evaluation test to limit the use of visual or
spatial cues. Each ant underwent only one evaluation test.

Evaluation tests were video recorded using a SONY Handycam
HDR-XR260 camera, and videos were analyzed with BORIS
software (Friard and Gamba, 2016). From the videos, we quantified
the occurrence as the number of times the ant entered each zone
(linalool or mineral oil) and the duration as the time (s) the ant spent
in each zone.

Data analysis
Ants’ feeding responses to the sucrose drop after pre-exposure to the
different doses of pheromone (Experiment 1) were examined using
a binomial generalized linear mixed model (GLMM; binomial error
structure with logit-link function, glmer function, lme4 package;
Bates et al., 2015). The response variable was ‘feeding’ (i.e. 1/0)
and ‘dose’ (i.e. 0, 0.2, 0.4, 0.8, 1.6 and 3.2 μl) was the predictor. The
container of the three-ant group was added as random factor to
account for the fact that the experiment was performed in groups,
although ants’ responses were assessed individually. Post hoc
comparisons between treatments and control were performed with
the emmeans package (https://github.com/rvlenth/emmeans), and
the false discovery rate correction was applied.

The ants’ sucrose solution acceptance after pre-exposure to the
pheromone or not (Experiment 1) was examined using a binomial
(logit-link function) additive GLMM (glmer function, lme4
package; Bates et al., 2015) with ‘concentration’ (i.e. 1, 5, 10 and
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20%) and ‘treatment’ (i.e. pheromone or nothing) as predictors, and
‘colony’ as a random factor. Feeding time was log transformed and
analyzed using a linear mixed model (LMM; lme function, nlme
package; https://svn.r-project.org/R-packages/trunk/nlme/) with
‘concentration’ (i.e. 1, 5, 10 and 20%) as predictor and ‘colony’
as a random factor.
The model used to analyze the time spent by the ants (latency) to

find the drop of sucrose solution during acquisition (Experiment 2)
was an LMMwith ‘trial’ (i.e. Trial 1, Trial 2, Trial 3) as the predictor
and individual as a random factor to account for the data
dependency (lme function, nlme package). Individuals were
nested into the colonies of origin to account for the fact that ants
belonging to a given colony were more likely to behave similarly
than those tested in different colonies. The response variable was
log transformed to meet the criteria of the LMM.
For the memory tests (Experiment 2), two response variables

were analyzed separately: the time spent close to each tube
(duration) over 2 min and the visit frequency (occurrence) of
these zones. The GLMM retained to analyze the visit frequency
contained ‘zone’ (i.e. linalool or solvent) as predictor and
individuals nested in colonies as random factors, given the
dependence of the data. A Poisson family and a log link were
chosen, given the data distribution (glmer function, lme4 package;
Bates et al., 2015). The LMM retained to analyze the time spent in
each zone contained ‘zone’ (i.e. linalool or solvent) as predictor and
individuals nested in colonies as random factors (lme function, nlme
package). The response variable was log transformed to meet the
criteria of the LMM.
The visitation occurrence of the two zones surrounding the

linalool and mineral oil for the Ph–O– group (Experiment 2) was
analyzed with a Poisson (log-link function) GLMM (glmer
function, lme4 package; Bates et al., 2015) with ‘zone’ as
predictor and individuals nested in their colonies as random
factors. The time spent by the ants in the two zones was square-
root transformed before analysis with a similar LMM (lme function,
nlme package).
Tukey post hoc tests were performed for comparisons after

LMMs with the emmeans package. In all analyses, we retained the
significant model with the highest explanatory power (i.e. the lowest
Akaike’s information criterion value). All statistical analyses were
two-tailed tests performed with R 3.6.1 (https://www.r-project.org/)
and the significance threshold was set at 0.05.

RESULTS
Experiment 1: sucrose solution acceptance
Pheromone dose effects
The dose of pheromone used during pre-exposure (in a pot of
216 ml) had a significant effect on ants’ feeding behavior (GLMM;
dose: χ2=15.95, d.f.=5, P=0.007), with more ants feeding on the
sucrose solution (88.10±5.06%, mean±s.d.) after pre-exposure to
1.6 µl pheromone compared with the control (51.02±7.22%)
(GLMM post hoc test; 0 versus 1.6, P=0.002; others, n.s.) (Fig. 1).

Sucrose acceptance
We next determined whether pheromone pre-exposure affected the
subjective evaluation of sucrose solutions differing in their
concentration. The percentage of feeding ants increased with
sucrose concentration, both for the pheromone-pre-exposed and the
control groups (GLMM; concentration: χ2=85.69, d.f.=3, P<0.001;
Fig. 2A). Pheromone pre-exposure effectively increased the
acceptance of the sucrose solutions, i.e. in the number of feeding
ants at a given concentration (GLMM; treatment: χ2=7.96, d.f.=1,

P=0.005; Fig. 2A). Despite the fact that the interaction between
treatment and concentration was not significant and therefore
removed from the statistical model, the difference between pre-
exposed and control ants was particularly visible at the lowest
sucrose concentration (control 21.52±4.65% versus pheromone
39.47±5.64%), and almost inexistent at the highest sucrose
concentration (control 79.75±4.55% versus pheromone 78.21±
4.70%; Fig. 2A). The time spent feeding also increased with sucrose
concentration (LMM; concentration: F=70.13, d.f.=3, P<0.001) but
was not influenced by pheromone pre-exposure (Fig. 2B). Thus,
pheromone pre-exposure affected the subjective evaluation of
appetitive resources. This effect may have rendered food sources of
low-level quality more attractive. This change in evaluation was
translated into the decision to feed but not to stay longer on a food
source.

Experiment 2: appetitive olfactory conditioning of free-
walking ants
Acquisition
Ants trained to find the odor spot associated with sucrose solution
within the experimental arena reduced the latency to find the food
during the three consecutive learning trials (LMM; trial: F=5.37,
d.f.=2, P=0.006; Fig. 3A). This reduction was particularly visible
when comparing the latency of the first and the third trial (LMM
post hoc test, P=0.005; others, n.s.; Fig. 3A). The interaction
between treatment and trial was not significant and therefore
removed from the model. Pheromone pre-exposure did not affect
this variable so that both groups showed similar performances.

Memory test
Ants tested for memory retention ∼9 min after the last conditioning
trial remembered the rewarded odor and preferred the zone of the
arena containing it to an equivalent zone presenting mineral oil
(solvent), despite the absence of reinforcement. Pre-exposed and
control ants visited the odor zone more times (Ph−O+: 6.30±4.64;
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Fig. 1. Volume-dependent feeding responses after pheromone pre-
exposure. Percentage of ants feeding on a 5% w/w sucrose drop (3 µl) after
pre-exposure to different volumes of (Z)-9-hexadecenal (0, 0.2, 0.4, 0.8, 1.6,
and 3.2 µl) in a 216 ml closed pot. The dose of 1.6 µl (Z)-9-hexadecenal
induced an increase in the percentage of ants feeding compared with control
ants. Bars represent means±s.e.m.; numbers inside bars indicate sample
sizes. Generalized linear mixed model (GLMM) post hoc test with estimated
means and false discovery rate correction.
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Ph+O+: 5.81±3.06, means±s.d.) than the solvent one (Ph−O+: 3.77±
3.05; Ph+O+: 3.13±2.31) (GLMM; zone: χ2=44.73, d.f.=1,P<0.001;
Fig. 3B). The interaction between treatment and zone was not
significant and therefore removed from the model. Pheromone pre-
exposure had no effect on memory retention, consistently with the
absence of effect on learning (Fig. 3A).
A similar pattern of results was obtained when analyzing the time

spent by the ants in the two zones (LMM; zone: F=30.32, d.f.=1,
P<0.001; Fig. 3C). Both groups of ants spent more time in the odor
zone (Ph−O+: 46.60±29.06 s; Ph+O+: 49.07±28.44 s, means±s.d.)
than in the solvent one (Ph−O+: 26.33±28.75 s; Ph+O+: 19.56±
21.71 s), and there was no effect of pheromone pre-exposure

(Fig. 3C). The interaction between treatment and zone was not
significant and therefore removed from the model. Thus, Argentine
ants established a memory of the odor–sucrose association that
could be retrieved at least a few minutes after learning.

Control group for the associative learning process
The US-only group that was not pre-exposed to the pheromone
component and that experienced three consecutive rewarded visits
to the arena with no odor (Ph−O−) did not visit one zone of the
arena significantly more than the other (linalool: 5.30±1.56; mineral
oil: 6.47±3.04, means±s.d.) (GLMM; zone: χ2=3.46, d.f.=1,
P=0.063; Fig. 4A). The same results were obtained when
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Fig. 3. Appetitive olfactory
conditioning of free-walking ants. Ants
were trained to associate linalool with a
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comparing the time spent by the ants in the two zones (linalool:
28.83±23.63 s; mineral oil: 32.95±17.30 s) (LMM; zone: F=0.65,
d.f.=1, P=0.427; Fig. 4B). Thus, the test results of the group
conditioned with odor and sucrosewere not affected by spontaneous
odor biases during the memory test.
Taken together, these results indicate that Argentine ants were

able to learn and retained the odor-reward association after a short/
mid-term delay, but were unaffected in their performance by
pheromone pre-exposure.

DISCUSSION
Pre-exposure to the trail pheromone component modulates
subjective reward evaluation
In this study, we analyzed if and how a pheromonal signal affected
the subjective evaluation of reward (Experiment 1) and the
cognitive capacities (Experiment 2) of Argentine ants, L. humile.
We pre-exposed ants to (Z)-9-hexadecenal, a component of the trail
pheromone that triggers the same trail-following response as the
entire trail pheromone in this species, and determined whether this
treatment affected these behavioral traits when the pheromone was
no longer present. In doing this, we investigated, for the first time,
olfactory learning and memory in a foraging context in L. humile.
In Experiment 1, (Z)-9-hexadecenal significantly modulated the

acceptance of sucrose solutions of varying concentration by ant
foragers. These results should be differentiated from previous
reports indicating that the presence of trail pheromone, or of a trail
pheromone component, increases the number of feeding ants at a
food source. For instance, Greenberg and Klotz (2000) showed that
adding (Z)-9-hexadecenal to a sucrose solution in the foraging area
of Argentine ants’ colonies increased both the number of ants
attracted to the solution and its consumption at the population level.

Such an effect is expected for a trail pheromone leading to or
marking an appetitive resource. In our work, the pheromone
component did not mark the path to the food or the food itself. The
pheromone was pre-exposed before foraging so that the effects
observed reflected a prior tuning of the insects’motivation to search
for and subsequently respond to food. Moreover, pre-exposure
occurred in a context (a closed pot) unrelated to foraging, and ants
were only exposed to the pheromone vapor (i.e. they had no direct
contact with it on a substrate as in natural conditions). In nature,
during foraging or recruitment, ants have access to other signals
provided by recruiters, which deposit the trail pheromone, and by
other foragers on the trail itself (Czaczkes et al., 2015). In our
study, these sources of information were deliberately absent. This
shows that the prior stimulation with the trail pheromone prepared
the ants for foraging, enhancing their subjective evaluation of
reward. Another difference between our study and that of
Greenberg and Klotz (2000) is that we analyzed ants’
consumption behavior at the individual level, not at the
population one. This level of analysis allows us to infer about
the mechanisms underlying such behaviors.

In honey bees, a similar increase in sucrose responsiveness was
found after pre-exposure to geraniol, a pheromone associated with
appetitive events (Baracchi et al., 2017, 2020). Accordingly, in the
same work, pre-exposure to 2-heptanone, a pheromone that signals
aversive events, decreased sucrose responsiveness. Pheromones
thus modulate the subjective value of reward according to their
valence. In our experiment, (Z)-9-hexadecenal increased the ants’
acceptance of sucrose solutions, but the largest effect was observed
for the lowest-concentration sucrose solution (1%), which generated
an increase of nearly two times the percentage of ants feeding
compared with ants without pheromone pre-exposure (from ∼20%
to 40%). However, no differences were found for the highest sucrose
concentration (20%). The modulation of appetitive motivation
would thus be particularly visible for food sources perceived as poor
under normal conditions and would become ‘valuable’ after
pheromone pre-exposure. In honey bees, modulation of
responsiveness by pheromone components has typically been
found in the case of low intensities of reinforcing stimuli (sucrose
solution, electric shock) (Baracchi et al., 2017; Rossi et al., 2018).
This can be understood by considering that responses to lower
intensities can experience upward modulation, whereas in the case
of higher intensities, such modulation would not be possible due to
a ceiling effect. In honey bees, the observed change in appetitive
responsiveness as a consequence of pheromone exposure is due to a
modulation of aminergic circuits controlling appetitive motivation.
This effect therefore accounts for the changes observed in subjective
reward evaluation (Baracchi et al., 2020).

Trail-laying behavior is strongly modulated by the quality
(Jackson and Châline, 2007; Verhaeghe, 1982) and quantity
(Mailleux et al., 2000) of food sources. Therefore, trail
pheromones provide both directional information leading to the
food source and information on the food quality assessed by the
recruiting ant. The latter informational component would make ants
more prone to accepting poor-quality solutions.

The significant effect of pheromone pre-exposure on feeding
acceptance was not verified when considering the feeding time.
Ants spent more time feeding at higher concentrations of sucrose,
but pheromone pre-exposure did not modify the time spent feeding.
Thus, although the pheromone enhanced the acceptance of low-
quality food sources, the resource quality could still eventually be
assessed to avoid spending too much time and energy exploiting
these resources to optimize foraging.
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In a study conducted in parallel to our work (Oberhauser et al.,
2020), the presence of pheromone trails leading to a sucrose
solution did not influence food acceptance or feeding behavior of
Lasius niger ants, a result that, in principle, contradicts our findings.
These ants had to run once on a 20-cm channel covered with filter
paper, onto which different amounts of trail pheromone were
applied. At the end of the channel, a low-quality sucrose solution
was offered to determine whether the immediate experience of
running on the trail pheromone enhanced acceptance of that food
source. Ants were analyzed during a single run in all experiments, in
which starvation and food properties were varied. Important
differences between this work and ours are the duration and
method chosen for pheromone exposure. Whereas in our work,
Argentine ants were pre-exposed for 20 min in an enclosure before
they departed to the food source, in Oberhauser et al. (2020),
L. niger ants were not pre-exposed to the pheromone, but exposed
during a single short run in the channel. This means that their
experience with the pheromonewas significantly shorter than that of
the Argentine ants in our work. As the L. niger ants were allowed to
run only once to the food source, evaluation of the cumulative
effects of the trail pheromone on their foraging behavior was not
possible. Had the exposure to the pheromone been longer
and continuous, it could have perhaps affected the foraging
decisions of the L. niger ants in a way similar to that observed for
our Argentine ants.
Alternatively, the difference in the impact of trail pheromone on

foraging decisions observed between these two species could reflect
differences in social information use and relevance. Whereas
L. niger seems to prioritize individually acquired information over
social information (Grüter et al., 2011), Argentine ants follow the
opposite trend (Aron et al., 1993; von Thienen et al., 2016). The
relative weight of trail pheromone use in L. niger and L. humile can
be discussed in the light of their respective ecologies: L. niger forms
smaller colonies than L. humile (Aron et al., 1993; Beckers et al.,
1989; Stradling, 1970) and is a sedentary species usually foraging at
long-lasting food sources (Völkl et al., 1999), whereas L. humile
forms large societies (Beckers et al., 1989) and frequently emigrates
during the course of a single season (Markin, 1970). In changing
environments with unpredictable resources, pheromones would
allow rapid displacement in response to any local disturbance for
opportunistic species such as L. humile, rather than relying on the
development of individual memories leading to spatial fidelity
(Aron et al., 1993).

Pre-exposure to the trail pheromone component does not
affect appetitive learning or memory retention
In Experiment 2, and irrespective of the treatment received, ants
learned the odor-reward association and retrieved the olfactory
memory to find the food during a retention test. We can assure that
this was the result of an associative learning process as the Ph–O–
control ants that underwent the same training procedure without any
odor did not show any preference between linalool and mineral oil
during the evaluation (Fig. 4).
To our knowledge, this is the first evidence of olfactory

associative learning and memory in L. humile studied in a
foraging context and in free-walking conditions. Previous studies
showed that this species can orient towards learned visual cues
(Aron et al., 1993) and form associations between cuticular
hydrocarbons and sucrose in harnessing conditions (van
Wilgenburg et al., 2012).
The fact that L. humile ants retrieved the olfactory memory

∼9 min after the last conditioning trial indicates that olfactory

memories can drive their foraging choices, at least during the
interval used in our experiments. In current models of honey bee
memory (Menzel, 1999), this interval corresponds to the
interface between short-term (from seconds to a few minutes)
and mid-term (from a few minutes to ∼24 h) memories, defined
on the basis of the different molecular cascades activated by
learning trials during these temporal windows. Our study thus
raises the question of the durability of olfactory memories
formed in the brain of Argentine ants. Future studies should
address the issue of long-term memory formation and its
temporal characterization in these ants.

No changes were detected in learning and memory retention with
respect to pheromone pre-exposure. Both pheromone-pre-exposed
and non-pre-exposed ants reduced to the same extent the latency to
find the rewarded odor in the arena during the three conditioning
trials, and exhibited a similar preference for that odor in the retention
test. This result was unexpected, given the fact that the trail
pheromone component changed the subjective evaluation (i.e. the
salience) of sucrose solution, which was used as the US during
conditioning. Experiments in honey bees have shown that a high
responsiveness to sucrose solutions of variable concentration
correlates with better olfactory and tactile learning (Scheiner
et al., 2001a,b). Similarly, in ants, foragers with higher
responsiveness to sucrose concentrations than nurses learn better
appetitive associations between odor and sucrose (Perez et al.,
2013). Moreover, in honey bees, pre-exposure to pheromones
modulates not only reward responsiveness but also appetitive
olfactory learning and memory formation (Baracchi et al., 2020).
There are, however, at least two plausible explanations for the
absence of effect of the trail pheromone component on the cognitive
performances studied. First, the sucrose concentration used for
conditioning was 20%, which yielded the same level of acceptance
in pre-exposed and control ants (ceiling effect; see above and
Fig. 2A). It is thus possible that the modulatory effect of the trail
pheromone component was lost owing to the intrinsic high-
motivational value of the sucrose solution used as reward. The
slightly bigger difference in the time spent by the pheromone-pre-
exposed ants in the two zones of the memory test compared with
non-pheromone-pre-exposed ants could be the manifestation of
such modulation. Using a lower sucrose concentration during
olfactory conditioning could have revealed a modulatory effect of
the pheromone on learning; however, the possibility of conditioning
the ants with such a low-quality reward would have been
significantly reduced. Second, the size of the arena was small
(5 cm diameter), thus diminishing the potential penalty of
wandering around in search of the reward. In a large arena, with
an increased surface area, rendering the localization of the odor spot
more difficult, differences between pheromone-pre-exposed and
control ants could have been visible. Alternatively, keeping the
same arena but rendering the problem more complex by adding a
second odor during the memory test (instead of mineral oil), or even
conditioning pheromone-pre-exposed and control ants to
discriminate two odorants with different outcomes, could reveal a
modulatory effect of the pheromone component on cognition.

The neural underpinnings of pheromone-based modulation
of reward evaluation
The neural mechanisms underlying the observed modulation of
sucrose acceptance by the trail pheromone component remain
unknown in Argentine ants. Nonetheless, in honey bees, a recent
work has shown that biogenic amines are involved in the
modulation of appetitive responsiveness and learning (Baracchi
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et al., 2020). This effect is consistent with their well-known role as
neuromodulators of several aspects of animal behavior, including
appetitive responsiveness (Scheiner et al., 2002). In honey bees,
octopamine mediates appetitive responses (Scheiner et al., 2006)
and the reinforcing properties of sucrose rewards (Hammer, 1993).
Recent work also indicates the involvement of tyramine in similar
functions (Scheiner et al., 2017). In the fruit fly Drosophila
melanogaster, sucrose reward is represented by a specific subset of
dopaminergic neurons in the brain (Burke et al., 2012; Liu et al.,
2012). In all these cases, providing that octopaminergic,
tyraminergic and dopaminergic neurons play a similar role in
Argentine ants, pheromone pre-exposure could activate these
signaling circuits, resulting in a direct enhancement of appetitive
motivation. Alternatively, the modulation by the trail pheromone
component may be inhibitory rather than excitatory. In this case,
serotonergic signaling could be the target of pheromonal action,
given its depressing role in feeding behaviors. In Camponotus mus
ants, for instance, serotonin diminishes feeding activity (Falibene
et al., 2012) without modifying the sucrose acceptance threshold.
Thus, if serotonin depresses feeding responses, the trail pheromone
component could disinhibit such depression, rendering animals
more responsive to food.
In Pheidole dentata ants, lowering serotonin levels

experimentally by oral administration of the serotonin-synthesis
inhibitor α-methyltryptophan resulted in reduced trail-following
behaviors (Muscedere et al., 2012). Treated ants were less likely to
initiate trail following, and oriented along pheromone trails for
significantly shorter distances than untreated, similar-age workers.
Exposure to the trail pheromone could modulate this behavioral
component rather than the feeding itself. As a result, pheromone-
exposed ants would be both more responsive to food and more
accurate in trail following.

Social and individual information use and food-source
profitability
By studying the effect of social information on individual foraging
behavior, we set individual foraging decisions within a social
context, thus raising the question of how individuals value these two
informational sources. In leaf-cutting ants, appetitive motivation is
modulated by both the social information received during
recruitment and by their own evaluation of the resource (Roces,
1990, 1993). In carpenter ants, social information seems to
dominate in this evaluation process, as ants receiving social
instructions via trophallaxis followed such instructions even when
the food presented to themwas toxic (Josens et al., 2016). Argentine
ants rely heavily on their trail pheromone, even more than other
mass-recruiting ants (Aron et al., 1993). Aron and colleagues (1993)
found that more than 90% of the foragers laid a trail during their first
trip to and from the nest, and a great majority of them chose to
follow the trail pheromone over visual cues learned in a Y maze,
even when presented with very weak trail concentrations. Whether
Argentine ants would drink more of poor or toxic solutions
following social instructions provided by a recruiter remains to be
studied. It has been suggested that following social instructions,
instead of evaluating the food quality and weighing up the gains and
losses of energy in engaging in foraging behavior, is less costly and
much faster for individuals (Rendell et al., 2010). This social bias
can help groups to monopolize food sources in a competitive
environment (Detrain and Deneubourg, 2008). This mechanism
could therefore be a key point to explain the invasive success
of mass-recruiting ants such as Argentine ants (Carpintero and
Reyes-López, 2008).

Perspectives for Argentine ant control
The synthetic trail pheromone component (Z)-9-hexadecenal as a
disruptor of the trail-following behavior has received attention as a
novel control agent for this invasive species (Nishisue et al., 2010;
Suckling et al., 2008, 2011; Tanaka et al., 2009). This synthetic
component has several advantages for control strategies: it is
commercially available, species specific and non-toxic. However,
the use of pheromone dispensers alone to disrupt the ants’ trails is
not effective enough to decrease ants’ populations (Nishisue et al.,
2010). Sunamura et al. (2011) showed that combining synthetic trail
pheromone dispensers with insecticidal bait effectively reduced
Argentine ants’ populations. This study demonstrated the validity of
combining pheromone and bait treatments as a novel strategy to
manage Argentine invasive ants in a small area, but could also be
applicable to larger-scale eradication programs. Here, we show an
additional advantage of using (Z)-9-hexadecenal combined with
toxic baits, namely the fact that the pheromone component not only
disrupts the trails of the ants but also predisposes them to a better
evaluation of the bait, thereby increasing its potential acceptance.

Given the scarcity of studies on the learning abilities of L. humile
and the species’ high environmental and economic impact, more
studies are required to characterize the cognitive processes involved
in its foraging activities and invasive success. Integrating the study
of cognition with control strategies in the case of target species is
still a relatively unexplored field of research, which could provide
important advantages to manipulate the decision-making processes
of the Argentine ant. This approach could be used in specific
scenarios, allowing us, for example, to transform the rejection of
toxic bait into a better acceptance of the harmful food, both at the
individual and colony level (Josens et al., 2016).
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