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Origin and role of path integration in the cognitive representations
of the hippocampus: computational insights into open questions
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ABSTRACT

Path integration is a straightforward concept with varied connotations
that are important to different disciplines concerned with navigation,
such as ethology, cognitive science, robotics and neuroscience. In
studying the hippocampal formation, it is fruitful to think of path
integration as a computation that transforms a sense of motion into a
sense of location, continuously integrated with landmark perception.
Here, we review experimental evidence that path integration is
intimately involved in fundamental properties of place cells and other
spatial cells that are thought to support a cognitive abstraction of
space in this brain system. We discuss hypotheses about the
anatomical and computational origin of path integration in the well-
characterized circuits of the rodent limbic system. We highlight how
computational frameworks for map-building in robotics and cognitive
science alike suggest an essential role for path integration in the
creation of a new map in unfamiliar territory, and how this very role can
help us make sense of differences in neurophysiological data from
novel versus familiar and small versus large environments. Similar
computational principles could be at work when the hippocampus
builds certain non-spatial representations, such as time intervals or
trajectories defined in a sensory stimulus space.

KEY WORDS: Cognitive map, Limbic system, Place cell, Grid cell,
Boundary cell, Robot navigation

Introduction

In essence, path integration is an internal computation that
transforms a sense of motion into a sense of location. It requires
tracking angular movements and distances traveled to estimate one’s
current position and orientation relative to a world-based
(“allocentric’) frame of reference. Mathematically, this estimate is
a vector in a system of positional and directional coordinates
associated with the allocentric reference frame. Position and
orientation combined together are termed a ‘pose’ in mobile
robotics and sometimes in biology (e.g. Heinze et al., 2018; Thrun
et al., 2005) — not to be confused with a more comprehensive
account of an animal’s posture (e.g. Mimica et al., 2018). If path
integration is calculated in a step-wise manner, the new pose update
can be obtained by adding a movement vector estimating changes in
position and orientation to the last pose update. If not, a continuous
pose update can be obtained by integrating in time momentary
angular and linear velocities. In either case, the necessary inputs are
assumed to be derived from self-motion (‘idiothetic’) cues produced
by locomotion (Barlow, 1964; Etienne et al., 1996; Etienne and
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Jeffery, 2004; Gallistel, 1990; McNaughton et al., 2006). These cues
are typically internally generated, such as vestibular (inertial) cues,
proprioceptive cues or motor efference copy (e.g. step counting).
Hence, path integration is sometimes defined as the processing of
these internal cues. However, some idiothetic cues that are not
internally generated can be used for path integration, for example,
optic flow, airstream detection (e.g. by a rat’s whiskers) or other
sensory reafference inputs produced by locomotion. Comparable
sensors (gyroscopes, odometers, etc.) afford the application of path
integration to artificial systems ranging from ships to robots.

To further complicate a comprehensive definition of path
integration, the term is sometimes used to refer to components of
the general problem of pose estimation. For example, a source of
reliable directional information may be available, such as a compass
to a sailor or polarized skylight to a desert ant (Fent and Wehner,
1985). In these instances, directional uncertainty is largely removed
on a short time scale (on longer ones, compass recalibration or sun
movements still need to be dealt with), and path integration only
concerns the estimate of position. Vice versa, a process conceptually
and computationally equivalent to path integration can be applied to
a purely directional reference frame — based on the integration of
angular velocity to update orientation irrespective of position — as
occurs in the nervous system (Green et al., 2017; Knierim and
Zhang, 2012; Skaggs et al., 1995; Taube, 2007; Turner-Evans et al.,
2017; Zhang, 1996).

Path integration is typically conceptualized as supporting a
navigation strategy that is complementary to ‘allothetic’ navigation.
Allothetic navigation makes direct use of distinctive and stable
environmental features and of the allocentric spatial relationships
they specify. Where perceptual access to these landmarks is
interrupted, path integration can be used for continued self-
localization. But the pose estimate obtained by path integration in
these conditions is expected to drift as a result of sensory and
computational noise accruing over time, and therefore allothetic
cues are required to prevent or correct this cumulative error.

Because allothetic and idiothetic navigation are often imagined as
alternating behavioral strategies depending on the momentary
availability of particular spatial inputs, path integration is often
considered in isolation from landmark processing. This view
originates in at least two contexts. In maritime navigation, self-
localization in the open sea, where charted features are out of sight,
represented an inescapable and critical problem for centuries until
the advent of contemporary technology such as GPS. This problem
was addressed via formal path integration calculations carried over a
map by a ship officer. These calculations were referred to as ‘dead
reckoning’ and must have contributed in no small measure to the
formulation of the concept of path integration as was later used in
biology (Gallistel, 1990). To demonstrate that animals are capable
of path integration/dead reckoning via behavioral analysis, the
experimenter must subject an animal to a (temporary) removal of
allothetic cues or choose an animal that evolved to pay limited
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List of abbreviations

BVC  boundary vector cell

HD head direction

MEC  medial entorhinal cortex

MS medial septum

SLAM simultaneous localization and mapping

attention to these cues owing to exceptional ecological constraints
(such as the desert ant; Wehner and Srinivasan, 1981). These
experimental settings may reinforce the operational views of path
integration as a standalone computation and of allothetic versus
idiothetic navigation as functionally segregated strategies.

A separate issue is that the behavior called ‘homing’ and the
computation called ‘path integration’ are often conflated in the animal
behavior literature. Homing refers to an organism’s navigation to a
home base, often the starting point of a journey. It is the most
common behavior used to study path integration, because it is
ethologically natural, requires little training, is easy to measure and
can be performed in the absence of allothetic landmarks. Because of
this prevalence, path integration is often referred to as the process of
updating a homing vector. However, homing and path integration are
distinct concepts. The behavior of homing can be solved with
navigation strategies other than path integration (e.g. a beacon that
identifies the home base or starting point). Conversely, the
computation of path integration can be used to continuously update
a homing vector (Fig. 1A), but it can also be used to update a vector
representation to any other fixed point in the environment (Fig. 1B) or
to update a position coordinate on a map (Fig. 1C).

Here, we adopt a view of path integration as a continuous pose
update that works in tandem, as opposed to alternately, with
landmark processing — relative to an arbitrary (but stable) metrical
coordinate system (the scenario in Fig. 1C). This view is particularly
relevant to the hippocampal cognitive mapping system of the
mammalian brain (Etienne and Jeffery, 2004; McNaughton et al.,
1996; O’Keefe, 1976; Redish and Touretzky, 1997), where the
neural computations underlying path integration and landmark
processing are likely to be highly integrated.

Path integration is implicated in fundamental properties of
place cells and their interpretation as a cognitive map

Place cells and other spatial cells found in the hippocampal
formation signal the position of the animal with respect to an

allocentric frame of reference, like the ‘you-are-here’ tag found on a
map. After O’Keefe and Dostrovsky’s (1971) initial report on place
cells, early experimental efforts were dedicated to demonstrating
that place cell activity reflected self-localization relative to a
cognitive abstraction of allocentric space — the ‘cognitive map’ —
and not merely a collection of landmark views or local stimuli that
vary systematically with the animal’s position (Knierim and
Hamilton, 2011). These studies confirmed that place cells can
continue to track location when the allothetic spatial cues were
removed (Gothard et al., 2001; Quirk et al., 1990; Save et al., 1998),
thus implicating idiothetic cues and path integration in the
expression of the place cells’ firing fields. One of the earliest and
most insightful investigations was that of O’Keefe and Speakman
(1987), who showed that place fields on a plus maze were controlled
by an array of distal landmarks when this array was rotated relative
to the maze. However, the place fields could fire in the correct
locations on the maze even when the landmarks were removed, as
long as the rat was allowed a brief perceptual ‘registration’ period
beforehand. Although the rat was confined to a small area of the
apparatus during the registration period, place fields were later
correctly recalled even when the rat occupied locations outside of
this area. These observations revealed a persistent encoding of
allocentric self-location and a mechanism capable of extrapolating
the registration experience to the remainder of a previously learned
map (see also Quirk et al., 1990). Save and colleagues (1998)
subsequently showed that blind rats can produce normal place fields
in an open arena in which the only salient orientation cues were a
peripheral configuration of three objects. Remarkably, reproducible
place fields were created even away from these objects. As with
sighted rats in a similar apparatus (Cressant et al., 1997), the place
fields followed rotation of the object configuration — including place
fields located far away from the objects — after the animal had the
opportunity to contact the objects. These observations revealed the
ability of the place cell representation to persist when the familiar
landmarks were not readily available, as well as to interpolate
positions ranging between these landmarks.

Although other experiments have corroborated the role of
idiothetic cues and the fundamental role played by path integration
in hippocampal representations (e.g. Gothard et al., 1996; Terrazas
et al., 2005; Bjerknes et al., 2018; Arleo et al., 2013; Knierim et al.,
1995, 1998; Sharp et al., 1995; Knierim, 2002; see Moser et al., 2017
for a comprehensive review), direct investigations have proved more
challenging than those addressing allothetic cues and landmark
processing. Classic laboratory tasks do not lend themselves to the

>

Fig. 1. Possible neural representations of position based on path integration. (A) A homing vector. (B) A vector to a landmark in the environment.
(C) A position in a Cartesian coordinate system. Each figure represents an organism’s trajectory (black line) from a starting point (black star) to an end point
(black hexagon) through an environment that contains landmarks (colored shapes).
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continuous manipulation of idiothetic cues as required by the analysis
of path integration, and they are typically limited in space, making it
difficult to reveal path integration errors presumably occurring at
more ethologically relevant spatial scales. The advent of virtual
reality systems has helped overcome some of these limitations
(Harvey et al., 2009; Chen et al., 2013; Ravassard et al., 2013;
Jayakumar et al., 2019). The discovery of grid cells (Hafting et al.,
2005) has further provided new opportunities to make inroads into the
neural basis of path integration in the cognitive map.

Grid cells probably reflect path integration and its
interaction with allothetic information

Since their discovery in the medial entorhinal cortex (MEC)
(Hafting et al., 2005) and the adjacent para- and pre-subiculum areas
(Boccaraetal., 2010), ‘grid cells’ have offered a fruitful clue into the
neural substrate of the metrics of the cognitive map. A single grid
cell fires at regular intervals in space, yielding a hexagonal grid of
place fields (or, more precisely, a regular grid of equilateral
triangles) that spans the full navigation range available to the animal
(Figs 2B and 3A). Grid patterns of different cells vary in scale,
orientation and phase (Barry et al., 2007; Stensola et al., 2012), and
they can maintain consistent geometric relationships to each other
across environments or experimental manipulations (Fyhn et al.,
2007; Savelli et al., 2017; Yoon et al., 2013).

Every grid cell develops firing locations in any environment
(Fyhnetal., 2007; Hafting et al., 2005). It is hard to imagine how the
geometric arrangement of these firing locations could be directly
imparted by a matching arrangement of environmental stimuli, in
every environment and for all the different coexisting grids. Rather,
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an internal process seems at play, which geometrically interrelates
environment locations that are experienced serially, based on a
metric inherent in the animal’s movements. Path integration is an
obvious candidate for this process, as it can be used to keep track of
the distance between grid firing positions relative to a single
coordinate frame (Fig. 1C). Intermixed anatomically with grid cells
are neural correlates of speed, direction and conjunctive
locationxdirection (Cacucci et al., 2004; Sargolini et al., 2006;
Kropff et al., 2015) that conjure the tell-tale computational
signatures of a path integrator at work in the hippocampal
formation (discussed below). Moreover, genetic manipulations of
entorhinal cells support a causal role of these cells in the behavioral
performance of tasks requiring path integration (Gil et al., 2018;
Tennant et al., 2018; but see Bjerknes et al., 2018 for evidence that
place cells can reflect path integration in darkness before well-
formed grid cells develop postnatally). Accordingly, theoretical
models implicate grid cells in path planning functions (Banino et al.,
2018; Bush et al., 2015; Erdem and Hasselmo, 2012, 2014; Kubie
and Fenton, 2012; Stemmler et al., 2015), and several computational
models of grid signal generation are based on neural models of path
integration (discussed below). Grid-like firing has also been shown
to emerge in general-purpose machine-learning systems trained to
perform path integration (Banino et al., 2018; Cueva and Wei, 2018
preprint). [Models of grid cells that are not formally based on path
integration have nonetheless been proposed (Franzius et al., 2007,
Kropff and Treves, 2008; Si and Treves, 2013; Urdapilleta et al.,
2017; Weber and Sprekeler, 2018).]

However, in spite of path integration being an inherently noisy
computation, the firing patterns of grid cells remain spatially stable
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Fig. 2. Grid and boundary cells in affine transformations (). (A) Schematic of an experimental apparatus in which rats foraged on a 1.4x1.4 m platform
[standard (Std)] placed in a room enriched with remote visual cues (top). This platform was rotated (Rot)/shifted (Shift) between recording sessions (center and
bottom). (B) Example of two grid cells of different scale and two boundary cells that were recorded simultaneously across consecutive manipulations. The color
code in each rate map represents the average firing rate of the cell in each position on the platform (red: high firing rate; blue: lack of activity). The rate maps have
been rotated to a common orientation so as to aid visual comparison. The geometric relationships between each grid pattern and the boundaries (as well as the
firing fields of the boundary cells) remain constant across most manipulations, consistent with the idea that boundary cells can predictably anchor the grid
representation to an allocentric reference frame. However, in some cases, these relationships can be reconfigured because the grids drifted relative to the platform
reference frame (marked by dashed red lines) while controlled by distal cues (not illustrated). Adapted from Savelli et al. (2017).
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Fig. 3. Grid and boundary cells in affine
A B transformations (ll). Rate maps of grid cells (A) and
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over prolonged and repeated trials, suggesting that landmarks
provide a spatial reference for path integration. In other words, while
the grid spatial code seems to reflect the animal’s ability to
egocentrically parse the metrical structure of the external world by
path integration, the resulting neural representation is nonetheless
allocentric. Prominent landmarks that exert strong influence over
spatial behavior are the geometric boundaries of the environment
(Cheng, 2008, 1986; Cheng and Newcombe, 2005; Tommasi et al.,
2012). Based on the responses of place cells to boundary
manipulations, Burgess, O’Keefe and colleagues proposed the
existence of ‘boundary vector cells’ (BVCs) (Barry et al., 2006;
Hartley et al., 2000; O’Keefe and Burgess, 1996). A BVC is
postulated to fire whenever the animal is at a certain distance from
any boundary in a certain allocentric direction. Subsequent
experimental studies discovered cells that encoded the animal’s
position relative to boundaries — the walls or edges constituting
the perimeter of the recording arena (‘boundary’ or ‘border’
cells) (Lever et al., 2009; Savelli et al., 2008; Solstad et al., 2008)
(Figs 2B and 3B). Boundary cells are intermixed with grid cells in
all brain areas where the latter have been also found (with perhaps
the exception of the subiculum, which does not seem to contain grid
cells, but see Brotons-Mas et al., 2017; Sharp, 1999). Do boundary
cells functionally complement path integration by endowing the
grid representation with allocentric properties? Recent analyses
have shown that the positional signal encoded by grid cells tends to
drift in open space until the animal encounters a boundary, where
the drift is corrected by ‘resetting’ the encoded position (Hardcastle
etal., 2015). Because a drift is indeed expected to occur because of
accumulating errors in path integration, this finding is consistent
with the idea that synaptic inputs from boundary cells episodically
reset a grid cell signal that is produced continuously through path
integration (Barry et al., 2007; Burgess et al., 2007; Cheung et al.,
2012; Fuhs and Touretzky, 2006; Hasselmo, 2008; Knierim and

boundary cells (B) recorded first in a small box
Ve (58%58 cm) and then in a larger box (135%135 cm) in
a single, uninterrupted session (these cells were not
simultaneously recorded). Darker shades indicate a
higher level of firing. Dashed red line indicates the
prior position of the small box in the large box. The
larger box revealed the qualitatively different firing
patterns of these two types of cells, but in the small
box it is usually impossible to tell one type from the
other just based on the appearance of their firing
fields (compare, for example, cell in A versus cell in B
on each row). The specific influence of grid cells on
downstream place cells is thus likely to become
greater in larger environments where the rat can
travel far from the boundaries encoded by boundary
cells. Data from Savelli et al. (2008).
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Hamilton, 2011; McNaughton et al., 1996; Redish and Touretzky,
1997; Savelli et al., 2008; Solstad et al., 2008; Zhang et al., 2014).
The consistency of these corrections across boundaries guarantees
that this signal is transformed into a proper allocentric
representation.

There are, however, two caveats concerning the relationship
between grid cells, boundary cells and path integration. First, grid
firing patterns can exhibit elliptical compression/stretching,
shearing or other types of distortion (Barry et al., 2007; Krupic
et al., 2015; Savelli et al., 2017, 2008; Stensola et al., 2012, 2015).
Some of these distortions can develop in time-averaged data plots if
different boundaries reset the grid in a slightly inconsistent way
relative to a single reference frame (Keinath et al., 2018). If so, the
distortions observed in these plots result, to some degree, from
the allocentric ‘jittering” of the coordinate system produced by
encountering specific boundaries, rather than from metrical errors
of the path integrator. An alternative interpretation of the grid
distortions is that the grid representation is not a universal metric for
the cognitive map; rather, it purposely reflects the geometric
peculiarities of the environment (Krupic et al., 2016). Resolving
the function and origin of grid distortions is a crucial future
direction in grid cell research as it promises to reveal more of their
function and neural mechanisms, especially as to their relation with
path integration and with path integration’s computational limits
in the rat.

A second caveat concerns the likely existence of other strategies
for stabilizing the grid representation besides the use of boundaries.
The grid representation can be distally controlled by remote
landmarks beyond the navigation range experienced by the
animal, causing grids to geometrically dissociate from both the
physical local boundaries and their neural representation via
boundary cells (Savelli et al., 2017) (Fig. 2B). This scenario
implies a plastic relationship between grid and boundary cells,
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which may be reconfigured by BVCs anchoring the grid
representation to the remote laboratory walls, or by landmark
vector cells (Deshmukh and Knierim, 2013, 2011; Hoydal et al.,
2018 preprint; McNaughton et al., 1995; Wilber et al., 2014)
doing the same relative to discrete remote landmarks (or by a
yet-undiscovered representation of the geometrical center of the
environment; see discussion in Savelli et al., 2017).

The ubiquitous, ‘universal’ manifestation of grid cells’ periodic
firing patterns in any environment evokes the image of a reusable
stock of graph paper on which cognitive maps could be charted at
multiple spatial resolutions. Does the grid cell system set the metrics
and reference frame for the whole cognitive map across the
hippocampal formation (Moser and Moser, 2008)? A recent study
shows that place-cell maps inherit at least some of the grid-map
geometrical properties, as knockout of HCN1 channels in the MEC
increased the scale of the grids in the MEC as well as place field size
in the downstream hippocampus (Mallory et al., 2018). The
influence of grid inputs on the place-cell map is additionally
supported by experimental manipulations of entorhinal cells leading
to place cell ‘remapping’ (Fyhn et al., 2007; Kanter et al., 2017,
Miao et al., 2015; Rueckemann et al., 2016).

Where, and how, does path integration occur?

There seem to be at least two main scenarios to consider for the
anatomical and computational origin of path integration
contributions to hippocampal cognitive maps.

Cortical attractors

In the first scenario, path integration is computed in the cerebral
cortex, in the MEC and possibly in other cortical regions of the
hippocampal formation. Putative path integration inputs are present
in the MEC in the form of velocity signals. Speed is encoded in
multiple ways (Hinman et al., 2016) by speed cells (Kropff et al.,
2015), by speed-modulated firing rates of spatial cells (Sargolini
et al., 20006) or by the exact frequency of theta-modulated bursts of
these cells (Jeewajee et al., 2008). Orientation can be provided by
head direction (HD) cells (Sargolini et al., 2006), which fire
selectively when the animal’s head is pointed in a particular
allocentric direction (Taube, 2007) (but see Raudies et al., 2015 for
a discussion about a critical difference between head and moving
direction). Putative path integration outputs — or its intermediate
computational results — are also present in the MEC in the form of
allocentric positional and directional representations encoded by
grid cells (Hafting et al., 2005), grid<xHD cells (Sargolini et al.,
2006) and possibly other non-periodic spatial cells (Diehl et al.,
2017; Hardcastle et al., 2017; Keene et al., 2016). This collection of
experimental phenomena supports models of grid-pattern
generation by path-integration-performing ‘continuous attractor’
networks (Knierim and Zhang, 2012; McNaughton et al., 2006). In
this class of models, a persistent pattern of neural activity (the
‘activity bump’) propagates through the network in lockstep with
the animal’s locomotion, guided by velocity signals and mediated
by recurrent connections. If the network is topologically arranged as
a torus, any cell fires every time the bump returns to the same cell,
possibly after completing an arbitrary loop around the torus, thus
giving rise to a rectangular grid of firing fields repeating in space
(McNaughton et al., 2006). If the neural connections on the torus are
systematically twisted, this grid becomes rhomboidal (instead of
rectangular), similar to that expressed by a real grid cell (Guanella
et al,, 2007). Alternatively, multiple bumps are continuously
generated and move in concert in the network. Repeating fields in
this case result from different bumps riding over the same cell. The

hexagonal pattern of bumps that would make the cell fire as a real
grid cell can spontaneously emerge in such a network if lateral
excitation and inhibition are fashioned as a Turing reaction—
diffusion system (Burak and Fiete, 2009; Fuhs and Touretzky, 2006;
McNaughton et al., 2006). More recently, the recurrent connections
between putative grid cells were primarily found to involve
inhibitory interneurons, and attractor models have been
successfully refined to accommodate this finding (Couey et al.,
2013; Pastoll et al., 2013; Shipston-Sharman et al., 2016).

Subcortical oscillators
In the second scenario, only allothetic information is processed
cortically, whereas path integration computations are carried out
subcortically, similar to the anatomical and computational
organization of the HD cell system (Blair et al., 2008). Like place
and grid cells, HD cells also depend on the consistent processing of
both idiothetic and allothetic cues, albeit restricted to a purely
angular reference frame. The HD signal originates from subcortical
regions processing angular velocity signals, presumably based on
motor and vestibular inputs (Cullen and Taube, 2017; Taube, 2007).
This signal then reaches the cortical postsubiculum, where it is
aligned with visual landmarks (Goodridge and Taube, 1997). Last,
the landmark-aligned signal is fed back to the same subcortical areas
where the HD signal originated (Yoder et al., 2015). Thus, the HD
representation is initiated in subcortical circuits performing angular
path integration, but its allocentric character is acquired in a cortical
area and propagated back to the originating circuits, to ensure the
coherence of the internal sense of direction throughout the brain.

The cortical versus subcortical contributions to the place/grid cell
system may be similarly organized. First, the positional signals of
this system could be initiated via path integration in the medial
septum (MS) or upstream of it. The MS contains theta cells, which
are interneurons modulated by the 6-12 Hz theta rhythm that
dominates hippocampal activity during locomotion (see Buzsaki,
2002 for a review). The bursting frequency of these cells is
modulated by speed and direction of locomotion (King et al., 1998;
Welday et al., 2011), providing a representation of velocity based on
a temporal code. They have been proposed to additionally encode
the position of the animal via their relative theta firing phase — a
‘phase code’ (Blair et al., 2008; Monaco et al., 2011; Welday et al.,
2011) — building on previous theoretical work on ‘velocity-
modulated oscillatory interference models’ (Burgess et al., 2007;
Hasselmo et al., 2007). The proposed neural architecture comprises
subcortical banks of velocity-modulated ‘ring attractors’ (Blair
etal., 2014, 2008; Burgess and Burgess, 2014), in which a bump of
activity is hypothesized to periodically traverse a network that is
topologically arranged as a ring. Each ring works as a path integrator
that tracks the distance traveled in a particular direction by the
velocity-modulated precession of its phase relative to a reference
theta oscillation. Ring attractors had previously been hypothesized
to explain angular path integration in HD cells (Cullen and Taube,
2017; Green et al., 2017; Kim et al., 2017; Knierim and Zhang,
2012; Turner-Evans et al., 2017). Thus, path integration in two-
dimensional space may have evolved by duplicating and
repurposing pre-existing subcortical circuitry originally dedicated
to a one-dimensional version of ‘path integration’ in angular space
for HD cells (Blair et al., 2008). Besides the work of Welday et al.
(2011), recent studies have implicated the MS in the processing or
relaying of idiothetic information (Fuhrmann et al., 2015; Hinman
et al., 2016; Justus et al., 2017).

Second, the positional estimate represented by the distribution of
phases across the subcortical bank of velocity-controlled ring

5

)
(@)}
9
je
(2]
©
-+
c
Q
£
—
()
o
x
NN
Y
(©)
‘©
c
—
>
(®)
-_




REVIEW

Journal of Experimental Biology (2019) 222, jeb188912. doi:10.1242/jeb.188912

attractors may be projected to cortical areas such as the MEC
(Gonzalez-Sulser et al., 2014; Justus et al., 2017). Here, this signal
would be allocentrically reconciled with the representations of
boundaries or other landmarks. Grid cells could be a neural product of
this process, whereby the subcortical phase-coded output is converted
to a rate code that is presumably more amenable to the type of cortical
plasticity necessary to bind it to landmark representations (Blair et al.,
2014, 2008; Burgess and Burgess, 2014; Burgess et al., 2007; Evans
et al., 2016; Hasselmo et al., 2007; Hasselmo and Brandon, 2012).
MS pharmacological inactivation severely disrupts the firing patterns
of grid cells, although they can still display multiple place fields
(Koenig et al., 2011) and preserve any directional modulation
(Brandon et al., 2011), suggesting that the disruption is specific to the
processing or relaying of metrical information to the grid cell system.
Accordingly, rats’ ability to estimate linear distances is impaired after
MS lesions (Jacob et al., 2017), and the firing locations of place cells
shift toward landmarks during MS inactivation (Fattahi et al., 2018).

Last, the allocentric stabilization produced in these cortical
areas — or as further processed by the hippocampus proper — would
be relayed back to the subcortical representations, making them
allocentric as well. Indeed, neurons of the lateral septum signal
allocentric self-position by both firing rate and theta phase (Leutgeb
and Mizumori, 2002; Takamura et al., 2006; Tingley and Buzsaki,
2018; Monaco et al., 2019), while neurons in other subcortical areas
also encode position by firing rate (Jankowski et al., 2015;
Jankowski and O’Mara, 2015). [Similarly, speed is encoded both
by rate and phase in the MEC, but with a different degree of
sensitivity to MS lesions (Hinman et al., 2016).]

Bel(Sy)=p(Si| O1,A1,02,A;, ...,OpAy)

Landmark fixes Path integration
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What is path integration good for in the mammalian brain?

In all the scenarios considered above, path integration is viewed as a
continuously operating, automatic process closely integrated with
landmark processing. Although this computational strategy has long
been central to certain theoretical views of hippocampal function
(Etienne and Jeffery, 2004; McNaughton et al., 1996; O’Keefe,
1976; Redish and Touretzky, 1997; Taube, 2007), it found practical
validation and mathematical formulations in the field of mobile
robotics (Thrun et al., 2005). Here, the robot’s perceptual and spatial
uncertainty is explicitly quantified by probability distributions over
a suitable set of random variables modeling: (1) noisy sensory
inputs (from both idiothetic sensors, such as odometers and
gyroscopes, and allothetic ones, such as cameras, sonar and laser
range finders); (2) the effect of locomotor commands (also an
idiothetic cue by analogy to motor efference copy); and (3) the
robot’s pose (i.e. its position and orientation relative to the
allocentric reference frame) — all with respect to a given map.
Bayesian algorithms perform continuous autonomous localization
as a live update of the probability distribution on (3) by integrating
the information from (1) and (2) (Fig. 4).

Because of its clear computational abstraction, the Bayesian
framework may help refine and advance theoretical thinking on
hippocampal spatial function (Cheung, 2016; Erdem et al., 2015;
Finkelstein et al., 2016; Kanitscheider and Fiete, 2017; Touretzky
et al., 2005). Concerning the role of path integration, one advantage
of its continuous integration in the process of self-localization may
be a rapid, moment-by-moment updating of the position estimate.
Landmark identification and distance estimation relative to an

Landmark

t=1 2 3 4 5 6 7

Fig. 4. Path integration and landmark processing are closely integrated in recursive Bayesian filters for robot self-localization. A ‘belief’ on a state is
modeled as a random vector and its multidimensional probability distribution. The cartoon illustrates a self-localization problem where S; is a pose, and the
associated posterior distribution Bel(S;) is conditioned to the history of locomotion actions A;...A;and landmark observations O;...O, i.e. all that the robot knows.
The robot sets on a linear path by sending a series of identical forward motor commands to its wheel actuators (green). The actual path followed by the robot
(black) drifts from the intended path. At each step, an update of the self-location estimate is given by recursive equations that calculate Bel(S;) from Bel(S;_). The
term p(O4S;) is a conditional distribution on the landmark observations given the current state — it contributes landmark fixes to self-localization. The term p(SyA;,
S¢_1) is the conditional distribution on the possible current poses given the action just taken and the previous pose — it contributes path integration to self-
localization. The dashed ellipses denote the mean and variance of Bel(S;) derived by the filter at each step (heading is not represented in this illustration), i.e. they
represent the robot’s belief of where it is and its associated degree of confidence. When the landmark is out of sight, p(O4S) is not informative, and both spatial
error and uncertainty grow. When the landmark becomes visible (steps 4-6), both p(O4S;) and p(S4AsSe1) meaningfully contribute to the estimate, and the
landmark is used to reduce both the error and uncertainty (see Thrun et al., 2005 for more details). Note how path integration and landmark fixes are seamlessly
and dynamically integrated in this mathematical framework. The idiothetic cue used for path integration in this example is akin to a biological motor efference copy.
Other idiothetic cues can also be used, such as given by a gyroscope (vestibular system), odometer (proprioceptive inputs), etc. Also note that p(OyS;) contains
information on what landmark observations are expected at any pose, i.e. it amounts to a map of the environment given to the robot.
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internal map are presumably slower perceptual and cognitive
processes than the mathematical integration of acceleration/velocity
signals, which can be produced in thalamic or primary sensory
areas, and partly during sensory transduction (e.g. with vestibular
inputs). A system that activated path integration computations only
when landmarks become unavailable would arguably be less
reactive to rapid movements compared with a system that
continually employed path integration; that is, a ‘quick and dirty’
update from path integration (later corrected by landmarks if
needed) may be better than a delayed update directly from
landmarks. A further related advantage of path integration for
navigation is a more reactive response to the sudden or intermittent
occlusion of key landmark inputs, for example, in darkness. The
equation in Fig. 4 would simply account for this situation as a
temporary lack of allothetic inputs in the corresponding term of the
equation. These inputs would therefore be subtracted from the self-
localization computations, leaving path integration alone
performing this job, rather than path integration being added as a
‘backup’ system — a mechanistic difference that may be difficult to
detect in behavioral studies.

The tremendous success of the Bayesian approach to mobile
robotics, however, is best proven in situations where the robot is not
given a reliable map but needs to build it from scratch in the process
of exploring a novel environment. In this situation — called
concurrent mapping and localization (CML) or simultaneous
localization and mapping (SLAM) (Thrun et al., 2005) — the robot
faces a chicken-or-egg problem: it needs a map with respect to

A N
|

7\ !
Start -~ I’ II

which it can perform self-localization, but it needs accurate self-
localization to stitch together its perceptual views into a map.
Therefore, the map itself is subject to uncertainty and it too must be
represented by a complex set of multidimensional random variables
and their associated probability distributions. SLAM can be solved
by a recursive Bayesian update of the joint distribution on the pose
and map, thus embracing the circular nature of this problem, but at
the cost of adding considerable computational complexity to its
algorithmic solution (Thrun et al., 2005) (Fig. 5).

The intuitions derived by this engineering framework converge
with theoretical insights from ethological, behavioral and cognitive
studies (Fig. 6A) (Gallistel, 1990), in which some form of path
integration is deemed necessary for integrating egocentric percepts
into a consistent allocentric representation (Alexander and Nitz, 2017,
2015; Byrne et al., 2007; Holmes et al., 2018; Nitz, 2009, 2006;
Peyrache etal., 2017; Whitlock et al., 2012; Wilber et al., 2014; Wang
et al., 2018). When the map of a new environment is first learned,
landmarks are of no immediate help for correcting path integration
drift if they are not first charted relative to the allocentric reference
frame in use, a task requiring path integration to begin with (Fig. 5).
Consideration of how animals explore novel environments is
informative here (see also review by Thompson et al., 2018). In a
new environment, animals quickly adopt a ‘home base’, often near a
salient landmark (Hines and Whishaw, 2005; Wallace et al., 2002),
from which they initiate bouts of exploratory excursions and to which
they frequently return (Eilam and Golani, 1989). Initial excursions are
short, characterized by forward movement interspersed with

B
[\

Start

Fig. 5. Path integration and landmark processing in robot simultaneous localization and mapping (SLAM). In this case, a distribution on the observations
of landmarks such as p(O|S;), described in Fig. 4, is not given to the robot. Instead, a map needs to be built during the exploration of the environment. A circular
problem arises in which a map is needed for self-localization, but accurate self-localization relative to this map is needed to extend it to new territory. In this
example, the map is a collection of unknown allocentric coordinates for consecutively encountered landmarks. This information can be modeled as a random
vector M, so that the goal of the robot is to estimate its joint belief on both the map and its pose relative to it: p(S;,M|O04,A1,0,,A,,...,0; Ay (compare with target
belief distribution in Fig. 4, in which M does not appear). This problem can still be addressed by recurrent Bayes filters similar in principle to those described in
Fig. 4, but with greater mathematical complexity and computational cost. (A) The robot’s path is depicted in black, the distribution on its pose at each step is
depicted by the fine-dashed ellipses (red) as in Fig. 4, and the distributions on the allocentric landmark poses (contained in M) are similarly depicted as coarse-
dashed ellipses (blue). Note how the spatial error and uncertainty progressively grow along the trajectory as in Fig. 4 for both the robot and the landmark poses —
unlike in Fig. 4, the landmarks are not useful for self-localization the first time they are encountered. (B) However, when the robot comes back to a position where
the first landmark is recognized, the Bayesian algorithm is able to reduce at once the error and uncertainty on its current pose (small red ellipse) and all the
landmark poses (shrunken blue ellipses), because the relationships between robot and landmark poses had been embedded along the way within a single
coordinate system. These relationships, however erroneous at first, are initially afforded by path integration. Further excursions beyond the initial trajectory can
iteratively build up a representation of an extended environment. Other types of map representations, and various mathematical formulations and algorithmic
strategies for Bayesian solutions to SLAM, are reviewed in Thrun et al. (2005).
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Fig. 6. Converging insights into the role of path integration in map building: cognitive models and neurophysiological data are broadly consistent with
approaches to robot SLAM. (A) Behavioral studies suggest the existence of map-like cognitive representations in many species. In a novel environment, such a
representation needs to be populated by salient environmental features. These features are egocentrically perceived (e.g. coordinates Xe,y, of a visual landmark,
left plot), but they eventually need to be charted relative to the stable allocentric reference frame adopted for the map (coordinates x,,y,, right plot). This

can be achieved mathematically by a coordinate transformation (translation+rotation) based on parameters derived from path integration (red translation vector
and rotation angle in red defining the animal’s pose in the map frame, right plot). Albeit much simpler, this general model assigns a similar role to path integration in
map-building as does the SLAM framework of Fig. 5. [See fig. 5.1 of Gallistel (1990) for more details and analysis extended to algebraic representations of
curves and surfaces, reminiscent of the boundaries of an environment.] (B) One implication of this perspective is that the disruption of path integration or its
outputs should lead to reduced spatial modulation of the firing fields of place cells in novel environments, but not necessarily in familiar ones, where self-
localization can rely on previously charted landmarks (as in Fig. 4). Top: place fields from the same place cells are disrupted in a novel, large enclosure if the
medial septum is inactivated (MS with strikethrough), but not when the platform is highly familiar (adapted from Wang et al., 2015). Bottom: when the medial
septum is inactivated, grid cells lose their characteristically regular firing pattern, which may be sustained by path integration (adapted from Koenig et al., 2011).

intermittent pauses (Benjamini et al., 2011; Golani et al., 1993;
Kramer and McLaughlin, 2001). During these pauses, animals
engage in a behavior called ‘head scanning’, in which they perform
lateral head movements to gather information about landmarks and
other sensory information available at that location. This behavior has
been associated with the rapid, one-shot formation of new place fields
at the site of the scan (Monaco et al., 2014; see also Bittner et al.,
2017; Diamantaki et al., 2018; Dragoi et al., 2003; Frank et al., 2004).
Successive excursions originating from and returning to the home
base (interleaving forward motion with head scanning epochs) cover
ever-increasing areas of the environment. It is likely that that this
pattern of behavior reflects nature’s solution to the SLAM problem.
During the initial, brief excursion, the animal updates its position
based on path integration, providing a spatial framework upon which
landmarks are incorporated during head scans. Before excessive path
integration error can accumulate, the animal returns to its home base,
where any small error can be corrected and the path integrator
coordinate system can be reset. Because of the incorporation of
landmarks in the initial excursion, the animal can explore a larger
area of terrain on its next excursion, as the landmarks prevent error
accumulation during the portion of the excursion that repeats the
first excursion. Thus, with this iterative process, in which path
integration sets the metric of a spatial framework upon which
allothetic cues are bound, the animal is able to construct a map ofa
novel environment. [It is important to keep in mind that
compartmentalized environments and large-scale spaces may not
be mapped within a single reference frame. Alternative mapping
strategies have been the subject of multidisciplinary research (e.g.
Derdikman et al., 2009; Kuipers, 2000; Kuipers et al., 2004; Nitz,
2009; Redish, 1999).]

Recent observations appear consistent with the role of path
integration in the creation of a new place cell map. As mentioned
before, inactivation of the MS suppresses the regular structure in
grid cell firing (Brandon et al., 2011; Koenig et al., 2011), consistent
with the loss of path integration. In one experiment in a large, novel
environment, place cells did not form spatial firing fields during MS
inactivation (Wang et al., 2015) (Fig. 6B). If MS inputs (and/or grid
cells) convey self-motion cues or the output of path integration per
se (as discussed above), these observations are consistent with a
pivotal role of path integration in creating allocentric representations
of novel environments based on perceptual inputs that are
egocentrically experienced, as pointed out by Gallistel (1990) and
studied in SLAM (Figs 5 and 6A).

By contrast, in a similar experiment in a novel but smaller
environment, CA1 place fields developed normally (Brandon et al.,
2014). A possible explanation for this difference is that in a small
enclosure, boundary cells can look indistinguishable from grid cells
(Savelli et al., 2008) (Fig. 3); thus, place field formation may be less
vulnerable to the disruption of grid inputs if boundary cells are
spared. Moreover, path integration is probably less critical for self-
localization or map-building in small environments. In familiar
environments both small (Koenig et al., 2011) and large (Wang
etal., 2015), CA1 place cells also seem to function normally during
MS inactivation [although the spatial firing of CA3 place cells can
be disrupted compared with control animals (Mizumori et al.,
1989)]. In a familiar environment, place cells may be able to keep
their firing fields by relying on previously learned associations with
landmarks (i.e. the known map), even if path integration is
compromised by MS inactivation (similar to the Bayes filter with
a given map described in Fig. 4, but in which the path integration
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term is suppressed). Thus, future work could experimentally
investigate whether these place cells regress to plain sensory
representations of allothetic cues/relationships while losing the very
properties that have historically implicated place cells in a genuinely
abstract representation of space and that may be obtained through
path integration. As discussed at the beginning of this Review, the
crucial distinction is between a spatial firing correlate owing to a
sensory cue (the cell fires at a corner) versus a place representation
that is not dependent on any particular sensory feature. For example,
it is known that in normal animals, place cells remain intact in
darkness and/or in the absence of salient landmarks (Markus et al.,
1994; O’Keefe and Speakman, 1987; Quirk et al., 1990); they can
decouple completely from the set of local and global landmarks yet
maintain their own internal coherence (i.e. the map can rotate
coherently relative to all allocentric cues) (Knierim et al., 1998,
1995); and the cells can maintain firing when any subset of
landmarks are available, showing that they do not rely on the
presence of a specific sensory cue (O’Keefe and Conway, 1978). It
will be important to determine whether place fields unaffected by
MS inactivation have similar properties. Earlier studies showed that
CA3 and CA1 place fields were present after MS lesions (Miller and
Best, 1980; Shapiro et al., 1989), but the cells were less stable in
darkness than in control animals (Leutgeb and Mizumori, 1999),
and were more controlled by local cues on an apparatus than by
global landmarks on the wall (Miller and Best, 1980). Control by
peripheral landmarks such as global cues or environmental
boundaries is associated with directional orientation and the
MEC system (Knierim and Hamilton, 2011; Neunuebel et al.,
2013; Savelli et al., 2017; Zugaro et al., 2001), whereas control by
local cues has been associated with the lateral entorhinal cortex
system (Neunuebel et al., 2013). Lesions of the MEC that leave the
lateral entorhinal cortex intact compromise CAl place fields in
relatively larger and novel environments (see fig. 2C of Hales
et al., 2014), similar to the MS inactivation experiment discussed
above (Wang et al., 2015). Thus, there is some evidence in the
literature to suggest that the spatial firing that survives MS
inactivation and grid cell disruption in smaller or familiar
environments may be the result of spatial computations based on
local landmarks (Deshmukh and Knierim, 2011; Wang et al.,
2018) rather than path integration.

Are path-integration-like computations used in non-spatial
domains?

The neural circuitry and dynamics that allow path integration
computations in the hippocampal system may also explain a
number of other phenomenological properties of neurons in this
system. A growing body of evidence shows that hippocampal cells
that represent locations when the animal is moving (i.e. place cells)
can also represent time when the animal is running in place or is
otherwise stationary but attentive (Gill et al., 2011; Kraus et al., 2015,
2013; MacDonald et al., 2011; Pastalkova et al., 2008; Salz et al.,
2016). Under other conditions, the cells encode the distance traveled
along a path (Gothard et al., 1996; Kraus et al., 2015, 2013;
Ravassard et al., 2013). These three phenomenologically distinct
representations (space, distance and time), encoded by the same
population of cells, can in principle be explained by a single
computational mechanism, as shown by Hasselmo (2007) using the
oscillatory interference model of Burgess and colleagues (2007). Two
fixed oscillators produce an interference pattern with a temporally
constant beat frequency of its envelope (i.e. a time cell). However, if
one of the oscillators was variable and its frequency was appropriately
modulated by the running speed of the animal, the beat frequency of

the interference pattern envelope would be a function of the distance
traveled along a path (i.e. a distance cell). Further, if the variable
oscillator was appropriately modulated by both speed and movement
direction (a movement/velocity vector), the beat frequency of the
envelope would be a function of location (i.e. a place cell or grid cell).
Thus, three distinct phenomenological properties of the same set of
neurons can be explained and unified based on computational
principles, as the output of the network was determined only by
changes to the inputs that adjust the frequency of the variable
oscillator. Although Hasselmo (2007) used oscillatory interference
models to demonstrate the principle, in theory the principle can be
applied to attractor network models of place cells and grid cells as
well. In support of this principle, the time cell properties of
hippocampal neurons in a running wheel were disrupted when the
MS inputs were silenced, in the same way as place cells were disrupted
in large and novel environments (Wang et al., 2015).

The same arguments can unify the path integration models with
the apparent representation by hippocampal cells of non-spatial
variables. In one experiment, stationary rats were trained to listen to
an auditory tone of monotonically increasing frequency and release
a lever within a small frequency window (Aronov et al., 2017). The
firing of different hippocampal cells was correlated with different
auditory frequencies. Although one might interpret this result as a
completely different computation than path integration, it is actually
completely consistent with the ideas expressed above. When the rat
is stationary, one can assume that the network is in the mode in
which it acts like a clock (i.e. time cells). How does one explain the
auditory frequency tuning? Just as when the system performs path
integration during movement, with the external landmarks able to
correct error in the path integration output and keep it calibrated with
the external world, the only salient external cue in the auditory
experiment is the varying frequency of the tone. The same neural
plasticity that ties landmarks or scenes to spatial representations
during path integration would allow the auditory cues to control the
exact timing of the hippocampal cells after experience.

Does this reasoning imply that the auditory responses are somehow
an artifact? Not at all. Our point here is that understanding path
integration as a computational mechanism allows a unifying
explanation of seemingly disparate neurophysiological phenomena.
The hippocampal circuitry likely evolved to perform ethologically
critical spatial mapping functions, and later became co-opted by the
opportunistic process of natural selection to allow the animals to solve
other tasks using the same neural hardware and computational
principles. More precisely, a system that evolved to rapidly bind
landmarks onto a path-integration-based mapping system could
subsequently evolve to perform other rapid binding tasks of diverse
external sensory input onto a sequential code. This way of thinking
may be the link between disparate viewpoints of the roles of
hippocampus in spatial mapping in rodents and declarative memory
in humans (Burgess et al., 2002; Buzsaki, 2005; Buzsaki and Moser,
2013; Eichenbaum et al., 2016, 1999; Lisman, 1999; O’Keefe and
Nadel, 1978).
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