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Regression dilution in energy management patterns
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ABSTRACT

Analysis of some experimental biology data involves linear regression
and interpretation of the resulting slope value. Usually, the x-axis
measurements include noise. Noise in the x-variable can create
regression dilution, and many biologists are not aware of the
implications: regression dilution results in an underestimation of the
true slope value. This is particularly problematic when the slope value
is diagnostic. For example, energy management strategies of animals
can be determined from the regression slope estimate of mean
energy expenditure against resting energy expenditure. Typically,
energy expenditure is represented by a proxy such as heart rate,
which adds substantive measurement error. With simulations and
analysis of empirical data, we explore the possible effect of regression
dilution on interpretations of energy management strategies.
We conclude that unless the coefficient of determination r? is very
high, there is a good possibility that regression dilution will affect
qualitative interpretation. We recommend some ways to contend with
regression dilution, including the application of alternative available
regression approaches under certain circumstances.

KEY WORDS: Energy expenditure, Heart rate, Metabolic rate,
Regression bias

INTRODUCTION

In experimental biology, the results of linear regressions are usually
interpreted in terms of whether the relationship differs from the
usual null hypothesis of 0, or by predicting values of y from x.
Interpretation is less often based on the regression slope value. It is
perhaps for this reason that many researchers are not aware of some
of'the problems arising from bias in linear regression slope estimates,
which occurs due to random measurement noise in the x-axis. This
bias in slope estimates is termed ‘regression dilution’ or ‘attenuation
bias’, and results in an underestimate of the true slope value when the
regression slope is calculated using the ordinary least squares (OLS)
approach, which assumes that the x-axis values are error free (Frost
and Thompson, 2000; Smith, 2009). Regression dilution occurs
because lower values of x tend to include a disproportionate number
of values that are underestimates while higher values of x tend to
include a disproportionate number of values that are overestimates
(MacMabhon et al., 1990) (for further explanation, see Fig. 1). The
result is an increase in the x-value range, serving to spuriously
attenuate the slope gradient towards 0. Measurement noise occurs as
a result of any variation that causes the observed values to be
randomly different to the ‘true’ values (McArdle, 2003), such as
inaccuracies during the recording of the x-value variable, sampling
error and/or when the x-value variable is being used as a proxy.

Department of Life Sciences, University of Roehampton, London SW15 4JD, UK.
*Author for correspondence (l.halsey@roehampton.ac.uk)

L.G.H., 0000-0002-0786-7585

Received 10 January 2019; Accepted 26 February 2019

Although some comparative physiologists have highlighted the
regression dilution problem (e.g. Green, 2001; Herrera, 1992;
LaBarbera, 1989; Mclnerny and Purves, 2011; White, 2011; White
and Kearney, 2014), there is value in revisiting this issue through
application to an en vogue subfield of comparative physiology.

An area of comparative physiology for which analysis is based on
interpretation of the gradient of linear regression slopes is energy
management modelling. The amount of energy that animals can use
to fuel their lives is finite and thus we expect animals to be strategic
with their energy expenditure. One aspect of this energetics strategy
is represented by patterns of energy management, which indicate the
broad relationships between the energy an animal spends on
‘background’ processes such as cell growth and immune function
against the energy it spends on ‘auxiliary’ processes such as
locomotion (Halsey et al., 2019). The slope of the relationship
between daily energy expenditure and background energy
expenditure provides quick and easy insight into animals’ energy
management (Mathot and Dingemanse, 2015; Ricklefs et al., 1996).
Slope estimates <1 indicate the constraint pattern of energy
management whereby an animal compensates during periods
when auxiliary energy expenditure is high by decreasing
background energy expenditure, and vice versa, thus constraining
daily energy expenditure. A slope estimate of 1 is predicted by the
independent pattern whereby variations in auxiliary energy
expenditure do not correlate with variations in background energy
expenditure (i.e. there is a lack of constraint of energy expenditure).
Slope estimates >1 indicate the performance pattern of energy
management whereby greater auxiliary energy expenditure is
associated with greater background energy expenditure. For a
visual representation of this explanation, see Fig. 2. Hence, this
analytical process for categorising energy expenditure into one of
three management strategies based on the relationship between daily
and background energy expenditure is reliant on interpreting the
gradient of the linear regression line. However, the x-value variable
in analyses of energy management patterns from linear regression is
prone to multiple sources of noise, particularly when a proxy for
energy expenditure, such as heart rate, has been measured (Portugal
et al., 2016).

These interpretations of slope estimates can strongly influence
how we perceive animals respond to variations in their daily activity
levels. For example, where the slope estimate <1, animals appear to
be trading off the energy they expend on background metabolic
costs with that which they expend on auxiliary costs, indicating a
clear limit to their energy expenditure. In the case of humans, if they
exhibit the constraint pattern then prescribed increases in exercise
may be less effective at reducing weight than currently presumed;
this is particularly pertinent for modern-living human populations in
the midst of an obesity epidemic. It is therefore important that the
slope estimates are accurate, yet the phenomenon of regression
dilution may be causing inaccuracies and in turn encouraging a
misinterpretation of the data.

We investigated the possibility of regression dilution affecting the
slope estimates interpreted in the context of energy management
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Fig. 1. Regression dilution. Regression dilution arises as a consequence of
measurement noise in the x-axis variable and results in an attenuation of the
regression line towards 0, which is depicted visually as the line flattening out.
(A) Where values of x are measured without noise (‘true values’; blue circles),
ordinary least squares (OLS) regression returns the regression represented by
the blue line. Where values of x include random noise, then the ‘observed values’
are different to the true values (denoted by each blue circle moving in the direction
shown by its associated arrow to positions on the x axis represented by green
circles). While the mean of the central x values tends to remain stable in the
presence of random noise, because of the cancelling out of under-measured and
over-measured data points, this is not the case at particularly low or high values.
Particularly low observed values of x are either truly low values or have been
under-measured; the latter are not cancelled out by even lower true values that
are over-measured, because such extremely low true values do not exist in the
population. The reciprocal is true for particularly high observed values of x. This
results in an extended range of x values (the range of the green circles is greater
than the range of the blue circles) and consequently the OLS regression returns a
flatter line (lower slope estimate; green line, fitted through the green circles).

(B) A simulation of ecologically valid heart rate ( f;) data, presented as daily mean
heart rate against daily minimum heart rate. The blue data points represent noise-
free values, and the blue line represents the OLS regression of those data. The
green data points represent the same data but with measurement noise induced
to the x-axis variable (daily minimum heart rate); the green line represents the
equivalentregression. Note that the x-axis range of the green data points is greater
while the y range is unchanged, and thus the regression has an attenuated slope.

patterns by: (1) running simulations of ecologically valid
randomised samples of heart rate measurements to elucidate how
different levels of measurement noise variance affect the slope
estimate; and (2) revisiting some of the data presented in Halsey
et al. (2019) and comparing the slope estimates of simple linear
regressions fitted to those data by different approaches, and then
quantifying how the strength of the relationship appears to relate to
the degree of regression dilution.

MATERIALS AND METHODS

Four approaches to linear regression were applied in the analyses of
the present study: ordinary least squares, OLS; and three major axis
approaches: major axis, MA; standard major axis, SMA; and ranged
major axis, RMA (note this is not reduced major axis regression).
While the OLS approach assumes that measurement noise only
exists in the y-axis values, major axis approaches accept
measurement noise in both axes, but each approach assumes
different ratios in the magnitude of that noise between y and x
(Legendre and Legendre, 1998; Quinn and Keough, 2002). This
ratio is termed lambda (), and thus in the current study lambda is
calculated as the ratio of measurement noise in daily mean heart rate
and measurement noise in daily minimum heart rate.

Through analysis of both simulated data and empirical data, we
investigated the regression dilution caused by different values of
lambda. The analyses were conducted in R v.3.4.0, and the various
regression approaches were applied using the package Imodel2().

Simulations

To investigate the effects of different measurement noise ratios of daily
mean heart rate and daily minimum heart rate (lambda), simulations
were run involving 1000 iterations of datasets generated to represent
ecologically valid ranges of heart rate values (beats min~!). Each
iteration was based on 100 values of daily mean heart rate, each
associated with a value of daily minimum heart rate. Daily minimum
heart rate values were randomly drawn from a distribution with mean
60 and standard deviation between 0 and 5 (see below). Daily mean
heart rate is the summation of daily minimum heart rate and daily
auxiliary heart rate (Halsey et al., 2019); thus, 100 values of daily
auxiliary heart rate were generated by drawing randomly from a
distribution also with mean 60 and standard deviation 3. This process
provided 100 values of true (i.e. without measurement noise) daily
mean heart rate and daily minimum heart rate generated according to
the independent energy expenditure pattern (no correlation between
the two variables). Measurement noise was induced into the values of
daily mean heart rate by randomly drawing values of noise from a
normal distribution of mean 0 and standard deviation 3. Measurement
noise was induced into the values of daily minimum heart rate also by
randomly drawing from a normal distribution of mean 0; however, the
magnitude of the standard deviation was varied for each simulation in
order to affect lambda.

Six simulations were run, the first with a standard deviation for
the distribution of daily minimum heart rate of 0, and each
subsequent simulation incorporating a unitary increase in that value,
producing lambda values for each simulation of infinity (o), 3, 1.5,
1, 0.75 and 0.6. For each iteration of each simulation, daily mean
heart rate was regressed against daily minimum heart rate using four
approaches to linear regression. By plotting each simulation
separately and including the average slope estimates across all
iterations, along with the average correct value across all iterations
(very close to 1), it is possible to infer which approaches to the
regression of daily mean heart rate against daily minimum heart rate
are most accurate at various values of lambda.
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Empirical data

Empirical data were taken from the dataset presented in Halsey et al.
(2019), which represents daily mean and minimum heart rate values
for multiple individuals of each of 16 vertebrate species. To account
for temporal autocorrelation in the data, for each species the dataset
was reduced to every fifth data point. Certain species were then
removed from the dataset because of typically small sample sizes per
individual. For the remaining 11 species (represented by 12 datasets),
a single individual was randomly selected (with the stipulation that the
selected individual represented at least 20 data points, which is
arguably important for SMA regression; Jolicoeur, 1990) and daily
mean heart rate was linearly regressed against daily minimum heart
rate using the four regression approaches stated above. This process
resulted in a single coefficient of determination (+%) value and slope
estimate calculated from each regression approach per species. Finally,
to investigate whether the correlations between daily mean heart rate
and daily minimum heart rate with lower 7> values are subjected to
greater regression dilution, the difference between the OLS slope
estimate and each of the major axis fitted slope estimates was regressed
against 72,

RESULTS

Simulations

The outputs from the six simulations are presented in Fig. 3, in both
graphical and tabulated forms. When there is no noise in the

A Independent model

B Constrained model

Fig. 2. Hypothetical representations of three
energy management patterns. Modified from Careau
(2017), where a full explanation is given. Comparing
the middle versus right stacks shows the effect of an
increase in auxiliary energy expenditure on daily
energy expenditure and maintenance energy
expenditure. Comparing the middle versus left stacks
shows the effect of an increase in maintenance energy
expenditure on daily energy expenditure and auxiliary
energy expenditure. The right-hand panel shows

the predicted relationship between daily energy
expenditure and maintenance energy expenditure,
along with the predicted slope (b) of the relationship,
as suggested by Mathot and Dingemanse (2015).

(A) The independent pattern, where maintenance and
auxiliary energy expenditure are independent of each
other. (B) The constrained pattern, where increases in
maintenance energy expenditure are associated with
decreases in auxiliary energy expenditure and vice
versa. (C) The performance pattern, defined by
increases in maintenance energy expenditure in
response to increases in auxiliary energy expenditure
and vice versa.

C Performance model

measurements of daily minimum heart rate (the x-axis variable),
A=co and the strength of the correlation (measured by ) is high, as
would be expected. As the measurement noise in the x-axis variable
is increased (and lambda decreases), 7> decreases. While all four
regression approaches exhibit a decrease in slope estimate as lambda
decreases, thus arguably all showing regression dilution, different
regression approaches provide the most accurate slope estimate at
different lambda values.

When A=o0, the OLS slope estimate is almost identical to the
correct slope of 1. The other regression approaches (MA, SMA and
RMA) all return substantially greater slope estimates. The case is
similar at A=3, where the noise variance in the measures of daily
minimum heart rate is one-third the magnitude of the noise variance
in the measures of daily mean heart rate. At A=1.5, all major axis
regression approaches somewhat overestimate the slope while OLS
somewhat underestimates it. At A=1, indicating the same magnitude
of noise variance in the two heart rate variables, OLS no longer
provides the most accurate slope estimate, and SMA and RMA are
both quite close to the true value of 1. In the last two simulations,
where the noise variance in daily mean heart rate is larger than the
noise variance in daily minimum heart rate (A=0.75 and 0.6), all
three major axis regression approaches provide at least reasonably
accurate slope estimates while OLS returns a considerable
underestimate. In all simulations, the MA approach provides a
less accurate slope estimate than either SMA or RMA.
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Fig. 3. The ratio of noise variance in daily mean
heart rate to noise variance in daily minimum
heart rate (lambda) influences which regression
approach provides the most accurate slope
estimate. Each panel represents a different value of
lambda. The blue data points represent the true
values of daily mean heart rate (f;) and daily
minimum fy, while the green values represent

the observed values, i.e. including measurement
noise. Note that where lambda is greater than 0,
noise variance is present in the x-axis and this
results in the range of observed values of the

x-variable (daily minimum fy) being greater than the
range of true values. The dashed line (slope=1 in
every panel) represents the correct slope value for

the true dataset. Each full line represents the slope
estimate returned by each of the regression
approaches (black: OLS; red: major axis, MA;
orange: standard major axis, SMA; purple: ranged
major axis, RMA). The mean slope estimates and
coefficient of determination (r?) for each value of
lambda plotted are tabulated below the panels. All
data presented are means of 1000 iterations.
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oLSs MA SMA RMA
A slope slope slope slope r2
o 1.00 2.46 1.74 1.75 0.57
3 0.88 2.34 1.63 1.65 0.54
1.5 0.69 2.14 1.45 1.47 0.48
1 0.50 1.72 1.23 1.28 0.41
0.75 0.37 1.14 1.03 1.08 0.35
0.6 0.26 0.70 0.89 1.61 0.30

Empirical data

The 7 value for the regression of each single individual representing
each species, along with the simple linear regression slope estimate
determined by each regression approach, is presented in Table 1. 7> was
typically high (>0.7 for 8 of the 11 datasets), suggesting that the
correlation between daily mean heart rate and daily minimum heart rate
is often strong for these types of data. For every species, the slope
estimate calculated from the OLS regression approach was lower than
the slope estimate calculated for all of the major axis approaches. The
difference between the OLS slope estimate and each of the major axis
slope estimates covaried negatively with the 72 value of the relationship

(Fig. 4).

DISCUSSION

The energy management patterns exhibited by animals can be
inferred from the slope estimates of linear regressions between daily
mean heart rate and daily minimum heart rate. The present study
examined how noise variance in heart rate measures could affect the
accuracy of these regression slope estimates.

The simulations (Fig. 3) show that when the noise variance in
daily minimum heart rate is either non-existent or at least low
compared with the noise variance in daily mean heart rate
(thus lambda is high), OLS regression provides an accurate
slope estimate; there is no appreciable regression dilution. This
slope estimate is more accurate than the estimates returned from
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Table 1. r? and slope estimates calculated from the simple linear
regression fits, for daily mean heart rate against daily minimum heart
rate of single individuals from a range of vertebrate species

Mean
Species r? OLSs MA SMA RMA MA n
Barnacle goose 077 102 118 116 116 1.17 73
Greylag goose 072 074 085 087 086 0.86 79
Great cormorant 023 069 206 145 137 163 21
Australasian gannet 047 1.09 1.9 1.58 154 167 40
Little penguin 064 097 128 122 124 125 39
Macaroni penguin 077 1.09 128 124 125 1.26 56
Eider duck 026 048 088 093 1.08 0.96 42
Przewalski’s horse 095 1.04 1.07 1.07 1.07 1.07 41
Alpine ibex 0.8 146 171 163 165 1.66 31
Red deer (dataset1) 093 097 1.01 1.01 1.01 1.01 95
Red deer (dataset2) 082 1.19 135 131 133 1.33 122
Roe deer 071 132 17 1.57 149 159 25
Mean 0.67 1 136 125 125 1.29 55.3
1s.em. 0.02 0.02 0.03 002 0.02 0.02 2

OLS, ordinary least squares; MA, major axis; SMA, standard major axis; RMA,
ranged major axis. Mean MA is the mean of the MA, SMA and RMA values.

other regression approaches, which overestimate. However, once
the noise variance in daily minimum heart rate is at least as large
as that in daily mean heart rate (i.e. A<I), the OLS slope
estimate attenuates considerably, thus becoming an inaccurate
underestimate, while in contrast certain other regression
approaches provide an accurate slope estimate. This is to be
expected because whereas OLS regression assumes that the y-axis
variable, but not the x-axis variable, is measured with noise
(Quinn and Keough, 2002), the various major axes regression
approaches (MA, SMA, RMA) accept noise in both variables
(Herrera, 1992).

There is of course noise in real measurements of daily minimum
heart rate, and thus A#oco. Lambda might be estimated at ~1 as
both daily mean and minimum heart rate are likely to incur the
same forms of measurement noise: measurement technique
imperfections, sampling variation and being used as a proxy for
energy expenditure (but see Smith, 2009). Moreover, minimum
heart rate possibly has even greater noise variance than mean heart
rate because while estimates of mean heart rate remain centred on
the real value independently of the sample used for the estimation,
estimates of minimum heart rate are affected by the duration of time
over which minimum heart rate is calculated. The simulations
indicate that if indeed A~1 or A<, OLS is not a viable regression
analysis for interpreting energy management patterns.

Regression dilution will be greater when the #? value is smaller,
because measurement noise is here defined as any deviation from a
perfect fit between the y- and x-variables (Smith, 2009). This
phenomenon was confirmed by the simulations, and we also showed
this in the empirical heart rate datasets (Fig. 4); a higher 72 value fora
species is associated with a higher slope estimate calculated using
OLS regression. This suggests that lambda is sufficiently low in some
of these regressions that regression dilution is clearly apparent. Of
course, we do not know the true value of each regression slope of
empirical data. However, comparing the reduction in the OLS slope
estimate with the three other regression approaches (Fig. 3), it appears
that when 72>0.8 the difference in slope estimate is minimal (<0.1),
while 2 values of around 0.6 have a slope estimate difference of
around 0.3, and substantially smaller 7 values have differences that
are considerably larger.

How might regression dilution affect previous reports of energy
management patterns based on analysis of the regression slope
estimate of daily mean heart rate against daily minimum heart rate?
Here, we consider three published papers as brief case studies.

2.0 Fig. 4. Regression dilution of single linear
1.0 A O% B relationships between daily mean f;; and daily
minimum f; of empirical multi-species data
0.8 - 1.5 — increases as r? of the relationship decreases.
8 This is evidenced by (A) the positive relationship
0.6 — (@] <§( between OLS slope estimate and r?, and also by the
f ' . 1.0 o negative relationships between the difference in
(@) 0.4 — 9 slope estimate calculated using OLS simple linear
’ @) regression and a major axis method (B: MA; C: SMA;
0.5 D: RMA).
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Vézina et al. (2006) report a slope of 1.1 for captive, non-breeding
zebra finches, with an 72 for the OLS regression of 0.35. This
relatively low 72 value might suggest that the true slope value is
somewhat higher than 1.1, which in turn could move interpretation
of the energy management pattern exhibited by these birds from an
independent pattern to a performance pattern. Careau (2017) reports
that people training for a half-marathon exhibit an among-
individuals slope of 2.60 (#>=0.39). Again, this > value is
sufficiently low that we might be concerned the analysis includes
a substantial degree of regression dilution. However, in this case, the
qualitative interpretation made of the slope estimate is perhaps
unlikely to be affected because the among-individuals slope is
already >>1 (performance pattern).

Third, Halsey et al. (2019) argue that the species they analysed
predominantly exhibit either the independent (slope=1) or
performance (slope>1) pattern at the across-individuals level; the
evidence for this claim would be strengthened if regression dilution
was not present as slope estimates would be higher. They also suggest
that at the within-individual level there is a general tendency for
species to exhibit an element of the compensation pattern (slope<1).
For some species this interpretation is likely to be robust as the 72
values associated with the slope estimates are very high (e.g. red deer,
1?=0.96; grey seals, *=0.83; Halsey et al., 2019). For other species,
however, where the 72 values are relatively low, regression dilution
might falsely indicate that individual animals are exhibiting an
element of energy compensation (e.g. Australasian gannets, #>=0.40;
human beings, 72=0.64; Halsey et al., 2019). Halsey et al. (2019) also
make the claim that there is generally a ‘left shunt’ in slope estimates
from the across-individuals level to the within-individual level (see
fig. 3 in Halsey et al., 2019). This observation should be robust
because the slope estimate confidence intervals are always larger at
the across-individuals level (and hence measurement noise is greater),
suggesting that the regression dilution is probably attenuating the size
of'this left shunt. Finally, the regression dilution in these analyses did
not hide the insightful negative correlations found between slope
value and mean heart rate per month (see fig. 3 in Halsey et al., 2019),
which suggest that species exhibit more energetic constraints during
periods when daily energy expenditure is higher.

How should we conduct energy management regressions?

It is not the case that OLS should be substituted for an alternative
approach simply because daily minimum heart rate includes noise
variance. If the noise variance associated with daily minimum heart
rate is fairly small compared with the daily mean heart rate noise
variance (i.e. lambda is large), our simulations confirm the advice of
McArdle (1988) that OLS is appropriate (see also White, 2011).
Smith (2009) argues it is usually the case in regression analyses of
biological data that lambda is large. In turn, he suggests that OLS is
appropriate when the x-variable is thought to be affecting the y-
variable, which is indeed the case in regressions of daily mean heart
rate against daily minimum heart rate. However, at low 72 values,
OLS can underestimate the slope considerably; indeed, low slope
estimates associated with a low 7 are suggestive of an inappropriate
regression model (LaBarbera, 1989). Yet, in this situation, major axes
methods can overestimate the slope (Fig. 3; see also Kimura, 1992).
Unfortunately, for datasets associated with energy expenditure such
as heart rate or rate of oxygen consumption, the noise associated with
measurement inaccuracies, with the use of these variables as proxies
of energy expenditure and given that sampling is always imperfect,
cannot easily be quantified. Therefore, it is difficult to ascertain
whether lambda is sufficiently large that OLS is a better approach
than other methods (Smith, 2009). Based on the simulation results,

and in agreement with McArdle (1988), one rule of thumb worth
considering, however, is that if the major axis approach is taken then
SMA or RMA may provide more accurate slope estimates than MA.

Where the slope estimate is the focus of data interpretation and 72 is
anything less than very high, researchers are advised to consider
presenting their data using more than one regression approach.
However, modelling approaches more complicated than single linear
regression are usually based on OLS (Smith, 2009). In these
situations, we would suggest that some simple linear regressions are
also conducted, using a range of fitting approaches, to gain some
insight into the potential impact of regression dilution on the slope
estimates.
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