
RESEARCH ARTICLE

A lethal fungal pathogen directly alters tight junction proteins in the
skin of a susceptible amphibian
Julia Gauberg1,2,*, Nicholas Wu1, Rebecca L. Cramp1, Scott P. Kelly2 and Craig E. Franklin1,‡

ABSTRACT
Bacterial and viral pathogens can weaken epithelial barriers by
targeting and disrupting tight junction (TJ) proteins. However,
comparatively little is known about the direct effects of fungal
pathogens on TJ proteins and their expression. The disease
chytridiomycosis, caused by the fungal pathogen Batrachochytrium
dendrobatidis (Bd), is threatening amphibian populations worldwide.
Bd is known to infect amphibian skin and disrupt cutaneous
osmoregulation. However, exactly how this occurs is poorly
understood. This study considered the impact of Bd infection on the
barrier properties of the Australian green tree frog (Litoria caerulea)
epidermis by examining how inoculation of animals withBd influenced
the paracellular movement of FITC-dextran (4 kDa, FD-4) across the
skin in association with alterations in the mRNA and protein
abundance of select TJ proteins of the epidermal TJ complex. It
was observed that Bd infection increased paracellular movement of
FD-4 across the skin linearly with fungal infection load. In addition, Bd
infection increased transcript abundance of the tricellular TJ (tTJ)
protein tricellulin (Tric) as well as the bicellular TJ (bTJ) proteins
occludin (Ocln), claudin (Cldn)-1, Cldn-4 and the scaffolding TJ
protein zonula occludens 1 (ZO-1). However, while Tric protein
abundance increased in accord with changes in transcript
abundance, protein abundance of Cldn-1 was significantly reduced
and Ocln protein abundance was unchanged. Data indicate that
disruption of cutaneous osmoregulation in L. caerulea following Bd
infection occurs, at least in part, by an increase in epidermal
paracellular permeability in association with compromised integrity
of the epidermal TJ complex.
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INTRODUCTION
Solute movement across epithelial barriers is dictated by (1) the
transcellular transport pathway, which moves ions against their
concentration gradient across epithelial cells, and (2) the
paracellular transport pathway, which regulates the passive
movement of solutes down a concentration gradient across tight
junctions (TJs) that occlude the juxtaluminal paracellular space
between epithelial cells (Martinez-Palomo et al., 1971; Ehrenfeld
and Klein, 1997). The TJ complex is composed of cytosolic

scaffolding [e.g. zonula occludens 1 (ZO-1)] and transmembrane
[e.g. claudins (Cldns), occludin (Ocln), tricellulin (Tric)] TJ
proteins (Günzel and Fromm, 2012; Fig. 1). Cytosolic scaffolding
TJ proteins like ZO-1 link transmembrane TJ proteins to the cellular
cytoskeleton and participate in the dynamic assembly of the TJ
complex (Gonzalez-Mariscal et al., 2003). In contrast to scaffolding
TJ proteins, transmembrane TJ proteins possess extracellular
domains. Transmembrane TJ proteins that link two adjacent
cellular membranes are termed bicellular TJ (bTJ) proteins, while
those found at tricellular points of contact are referred to as
tricellular TJ (tTJ) proteins (Raleigh et al., 2010). Cldns are a large
superfamily of bTJ proteins that can influence the paracellular
permeability of an epithelium by forming ion-selective barriers or
pores (Günzel and Fromm, 2012). The expression of Cldns in cells
is sufficient to form TJ strands, and loss of just one Cldn protein may
greatly affect the paracellular permeability of an epithelium (Furuse
et al., 1998, 2002). Other important transmembrane TJ proteins
include TJ-associated MARVEL proteins such as the bTJ protein
Ocln (Furuse et al., 1993) and the tTJ protein Tric (Ikenouchi et al.,
2005). Ocln arose in deuterostomes as an important structural
protein for normal barrier function (Chapman et al., 2010) and it has
been found in the epithelia and/or endothelia of many terrestrial and
aquatic vertebrate groups (Feldman et al., 2005; Chasiotis and
Kelly, 2008, 2009; Kolosov et al., 2017a). Tric seals the hollow
‘tube’ that is formed perpendicular to the epithelium surface in
regions where three epithelial cells meet (Ikenouchi et al., 2005).
Tric has been reported to restrict the passage of solutes and
contribute to epithelium integrity in mammals and fishes (Ikenouchi
et al., 2005; Krug et al., 2009; Kolosov and Kelly, 2013, 2018).

Epithelial barriers are generally effective at inhibiting pathogen
entry into tissues; however, various bacterial and viral pathogens are
well known to disrupt and target TJ proteins in order to weaken the
epithelial barrier (for a review, see Guttman and Finlay, 2009). Some
bacterial and viral pathogens destroy TJ proteins (Muza-Moons
et al., 2004; Köhler et al., 2007), whereas others, such asClostridium
perfringens and hepatitis C virus, target specific TJ proteins as
receptors for tissue entry (Katahira et al., 1997; Evans et al., 2007;
Robertson et al., 2010; Sourisseau et al., 2013). The effects of fungal
pathogens (in contrast to bacterial and viral pathogens) on TJ
proteins have only been examined in a handful of studies
(McLaughlin et al., 2004, 2009; Yuki et al., 2007). As a result, we
have limited knowledge on the interaction of fungi and fungal toxins
with the TJ complex. Understanding the fungus–TJ interaction is
especially important in light of an emerging infectious disease,
chytridiomycosis, that disrupts the skin function of amphibians.

Chytridiomycosis is a cutaneous infection in amphibians caused
by the pathogenic fungus Batrachochytrium dendrobatidis (Bd)
(Stuart et al., 2004). This fungus has been shown to infect over 500
amphibian species worldwide and has resulted in one of the greatest
disease-driven losses of biodiversity ever recorded (Fisher et al.,
2009; Kilpatrick et al., 2010). Although only the superficial layersReceived 13 September 2018; Accepted 5 December 2018
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of the skin are infected by Bd, that alone is enough to disrupt normal
skin function and can lead to death of the infected animal (Voyles
et al., 2009). This is because in amphibians, the skin, specifically
the ventral skin surface, is a selectively permeable living barrier to
the surrounding environment that plays an important (sometimes
exclusive) role in gas exchange and is a predominant site for salt and
water transport (Parsons and Mobin, 1991; Boutilier et al., 1992;
Hillyard et al., 2008; Campbell et al., 2012).
The mechanism used by Bd to infect amphibian skin is still not

completely understood (Rosenblum et al., 2008; Fisher et al., 2009).
What is known is that the fungus begins its life cycle as a free-living
zoospore which encysts onto the surface of the skin (Van Rooij et al.,
2015; Fig. 1). The zoospore then develops a germ tube that forces its
cell contents into the deeper layers of the skin (Van Rooij et al.,
2015). Finally, Bd matures into zoosporangia containing many
zoospores that can be shed from the skin via a discharge tube to re-
infect the same animal, or infect a new one (Greenspan et al., 2012;
Van Rooij et al., 2015). Following infection, Bd has been reported to
affect active solute transport and transepithelial resistance (TER)
across the ventral skin, disrupting cutaneous osmoregulation and
causing an imbalance in serum ion levels (Voyles et al., 2007, 2009;
Wu et al., 2018). TER is a measure of transcellular and paracellular
transport and, while both pathways contribute to the barrier
properties of the amphibian epidermis, the paracellular route
heavily influences its permeability properties (e.g. Cox and
Alvarado, 1979). Although the effects of Bd have been examined
on active ion transport and TER, the effects of Bd on paracellular
transport and TJs specifically have not been investigated.
TJs are acknowledged to play a vital role in determining

paracellular resistance of terrestrial and aquatic vertebrate epithelia
(Chasiotis et al., 2012a; Günzel and Fromm, 2012; Kolosov et al.,
2017b; Kolosov and Kelly, 2017, 2018), including amphibian skin
(Mandel and Curran, 1972; Bruus et al., 1976). Additionally,
amphibian TJs, and at least three proteins of the amphibian TJ
complex (i.e. Cldn-1, Ocln, ZO-1), have been shown to respond to
changes in environmental conditions (Castillo et al., 1991; Chasiotis
and Kelly, 2009; Tokuda et al., 2010). Over 30 genes encoding
amphibian TJ proteins have now been reported, yet little is known
about their contribution to TJ permeability (Cardellini et al., 1996;
Cordenonsi et al., 1997; Fesenko et al., 2000; Klein et al., 2002;

Chasiotis andKelly, 2009; Chang et al., 2010; Saharinen et al., 2010;
Yamagishi et al., 2010; Baltzegar et al., 2013; Sun et al., 2015). In
addition, the majority of these genes have been identified in the
strictly aquatic anurans Xenopus laevis and Xenopus tropicalis; thus,
almost nothing is known about the characteristics of TJ proteins in
terrestrial and semi-aquatic amphibians (Günzel and Yu, 2013).
There is considerable evidence that a dysregulation of TJ function
can deleteriously impact normal solute movement across epithelia
that interface directly with the surrounding environment of aquatic
vertebrates (Chasiotis et al., 2012b; Kolosov and Kelly, 2013, 2017,
2018; Kolosov et al., 2017b), so it would seem prudent to carefully
consider the effect of Bd on epidermal TJs of amphibians. Indeed, it
has been demonstrated that Bd disrupts junctional components
responsible for adhesion between cells of amphibian skin, resulting
in skin lesions (Brutyn et al., 2012). But, unlike TJs, adhesion
junctions do not regulate the permeability properties of the skin.
Furthermore, several fungi and fungal toxins have been shown to
directly target and disrupt various junctional components, including
TJs, in the skin of other vertebrates (Bouhet and Oswald, 2005; Yuki
et al., 2007). Additionally, Bd was found to secrete proteolytic
enzymes, which are hypothesized to be linked to its pathogenicity
(Rosenblum et al., 2008; Symonds et al., 2008) and may contribute
to skin barrier disruption as reported by Brutyn et al. (2012) for the
skin of X. laevis.

Given that fungal toxins have been shown to target vertebrate TJs
and that Bd has been found to affect cutaneous osmoregulation aswell
as disrupt junctional adhesion components in the skin of amphibians,
it was hypothesized that the disruption of amphibian cutaneous
osmoregulation following Bd infection will occur in association with
altered epidermal paracellular permeability and TJ protein abundance.
To consider this idea further, ventral skin permeability and TJ protein
abundance of the Australian green tree frog, Litoria caerulea, were
examined following experimental infection with Bd.

MATERIALS AND METHODS
Experimental animals
This study was conducted using the Australian green tree frog
Litoria caerulea (White 1790), which is susceptible to Bd infection
and is a model for the study of chytridiomycosis (Pessier et al., 1999;
Berger et al., 2005; Voyles et al., 2009; Wu et al., 2018). All animals
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Fig. 1. Schematic representation of the Batrachochytrium dendrobatidis (Bd) life cycle in the amphibian epidermis and location of the tight junction
(TJ) complex in the epidermis. The stages of Bd infection have been summarized by Van Rooij et al. (2015) and are as follows: (1) the fungus encysts on
to the outer layer of the skin (the stratum corneum), (2) the zoospore sends a germ tube into the deeper layers of the skin, (3) Bd injects itself into a living
epidermal cell, (4) the zoospore develops into a zoosporangia as the skin cells are pushed upwards and mature, and (5) zoosporangia develop a discharge
tube from which new zoospores are released. A schematic diagram of the location of the cytosolic (ZO-1), bicellular (Occludin, Claudin) and tricellular (Tricellulin)
TJ proteins in the vertebrate epidermis is also shown. Photo credit: C. Baker.
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were collected with approval of the Queensland Department of
Environment and Heritage Protection (WISP15102214), and
all experiments were carried out with the approval of The
University of Queensland Animal Welfare Committee (SBS/316/
14/URG). Specifically, L. caerulea (15–70 g, mixed sex) were
collected from wet roads in non-protected areas near Fernvale,
southeast Queensland, in January 2015. Isolated individual frogs
were placed into separate moistened plastic bags and transported to
The University of Queensland. Frogs were housed separately in
ventilated clear plastic containers (26.2×23.7×12 cm). Containers
were supplied with paper towels saturated with water that was
chemically aged (dilution 1:4000; VitaPet, Sydney, NSW, Australia)
and each housing unit contained a half PVC pipe for shelter. Frogs
were fed large crickets (5 each week) and the enclosures were cleaned
on a weekly basis. Photoperiod was maintained on a 12 h light:12 h
dark cycle and room temperature was kept constant at 20.5±0.5°C.
Given that natural L. caerulea populations can acquire Bd infections,
swabs taken from captured frogs were tested for Bd using Taqman
real-time PCR (qPCR) prior to beginning the experiments and all
frogs were confirmed to be uninfected.

Preparation of fungal inoculum and experimental exposure
Bd strain EPS4, isolated by E. P. Symonds (School of Veterinary
Sciences, The University of Queensland) from a Mixophyes fleayi
tadpole collected from Gap Creek, Main Range National Park, QLD,
Australia (March 2012), was used for experimental infection. Bd
cultures were maintained at 4°C until 4 days before exposure date.
The strain was then passaged onto 25 new 1% agar, 0.5% tryptone,
0.5% tryptone-soy plates, and maintained at 20°C for 4–5 days.
Immediately prior to infection, zoospores maintained at 20°C were
harvested by flooding plates with sterile distilled water for 30 min.
The zoospore suspension was collected, and zoospore concentration
was calculated using a haemocytometer following Boyle et al.
(2004). Frogswere randomly assigned to be part of either the infected
(n=10) or the control (n=10) group. All frogs were transferred into
300 ml plastic containers (12.5×8.3×5 cm) containing 100 ml of
aged tap water. Frogs in the infected group were then inoculated with
a dose of∼500,000 Bd zoospores, which was added to their skin and
surrounding water, for 5 h. Control frogs were exposed to identical
conditions in the absence of zoospores. After exposure, frogs were
returned to their original enclosures. All experiments were conducted
when frogs were in the non-sloughing cycle.

Measuring infection load
The swabbing protocol used to determine the presence or absence of
Bd on collected animals as well as Bd infection load on inoculated
animals (every 2 weeks after exposure) involved firmly running a
sterile fine-tipped cotton swab (MW100-100; Medical Wire and
Equipment, Corsham, Wiltshire, UK) three times over the frog’s
ventral surface, sides, thighs, feet, webbing and toes. Fungal DNAwas
isolated using PrepMan Ultra (Applied Biosystems, Foster City, CA,
USA) according to manufacturer’s instructions (Qiagen Pty Ltd,
Chadstone, VIC, Australia) and assayed in triplicate via Taqman qPCR
(Boyle et al., 2004) using a Mini Opticon qPCR detection system (MJ
Mini Cycler, Bio-Rad Laboratories, Inc., Hercules, CA, USA).
Reactions containing DNA from known (100, 10, 1 and 0.1) Bd
zoospore equivalent (ZE) standards were prepared, as well as controls
with no DNA template. The mean concentration of the test samples
was interpolated from the Bd standard curve and results were log+1
transformed to normalize data. All results are expressed as log(ZE+1).
Frogs were monitored daily for pathological or behavioural

symptoms of chytridiomycosis, including lethargy, loss of appetite,

abnormal posture, areas of sloughed skin not fully removed or visible
within the enclosure, loss of righting reflex, discoloured or reddened
skin, and weight loss. Only frogs that exhibited these signs of
infection were consequently used for tissue sampling. Frogs were
swabbed immediately prior to euthanizing to determine the zoospore
load (in zoospore equivalents) at the time of tissue sampling.

Tissue sampling
Frogs were anaesthetized with an intraperitoneal injection of
60 mg kg−1 thiopentone (Thiobarb Powder, Jurox Ltd,
Rutherford, NSW, Australia) and killed by double-pithing.
Ventral skin samples (<1 cm2) from the lower abdominal region
were collected. Skin samples for immunohistochemistry were fixed
in 10% neutral buffered formalin at 4°C overnight, after which
formalin was replaced with 70% ethanol and samples were stored
at 4°C until use. Skin samples for western blotting were frozen at
−80°C until use and skin samples for RNA extraction were stored in
RNA-later (Ambion Inc., Austin, TX, USA).

Permeability assays
A Franz cell was used to measure the flux of 4 kDa FITC-dextran
(FD-4; a fluorescent marker that travels solely through the
paracellular pathway) across the skin (Fig. 2A). Ventral skin was
collected from control (n=7) and infected (n=10) L. caerulea and
immediately mounted epidermal side up onto the basolateral
chamber of a Franz cell. The apical chamber contained 1 ml of
26 mmol l−1 NaCl and the basolateral chamber contained 5 ml of
Ringer’s solution (in mmol l−1: 112 NaCl, 2.5 KCl, 10 D-glucose, 2
Na2HPO4, 1 CaCl2, 1 MgCl2, 5 Hepes sodium salt, pH 7.3–7.4 with
an osmolality of 230±20 mOsm l−1). To examine the integrity of
the paracellular pathway, 0.5 mg ml−1 FD-4 was added to the
basolateral chamber of the Franz cell and its appearance in the apical
chamber was monitored. The basolateral solution was mixed
continuously with a magnetic stirrer at 600 rpm. Aliquots
(0.25 ml) of both the apical and basolateral solutions were
collected immediately and again after 24 h. Sample fluorescence
was analysed using a fluorescent plate reader (DTX880 Multimode
Detector, Beckman Coulter Pty Ltd, Lane Cove West, NSW,
Australia). The permeability (P; cm s−1) of the skin samples was
calculated using a modified equation from Kelly and Wood (2001):

P ¼ DFAp � VAp

FBl � t � A
; ð1Þ

where ΔFAp is the change in fluorescence on the apical side, VAp is
the volume of the apical chamber (1 ml), FBl is the fluorescence on
the basolateral side, t is the total flux period (in s) and A defines the
area of the Franz cell chamber opening (0.2 cm2).

RNA extraction and cDNA synthesis
Skin samples were homogenized using a TissueLyser II (Qiagen).
Total RNA was isolated using an RNeasy Mini kit (Qiagen) as per
the manufacturer’s instructions. RNA purity (absorbance at 260 nm/
280 nm) was assayed by spectrometry, and RNA concentration was
quantified using a Qubit fluorometer (ThermoFisher Scientific,
Waltham,MA, USA). RNAwas then reverse transcribed into cDNA
using the QuantiTech Reverse Transcription Kit (Qiagen) according
to the manufacturer’s instructions.

Analysis of TJ protein mRNA by PCR and qPCR
For PCR, the Taq PCR Master Mix Kit (Qiagen) was used.
The following reaction conditions were utilized: 1 cycle of
initial denaturation (95°C, 10 min), then 40 cycles of denaturation
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(95°C, 30 s), annealing (56–60°C, 30 s) and extension (72°C, 30 s),
followed by a final single extension cycle (72°C, 5 min). PCR-
generated amplicons were visualized by agarose gel electrophoresis
(1.5%, 120 V separation for 1 h).
Gene-specific primers were designed for L. caerulea (Table 1)

using the transcriptome of a closely related species (Pseudacris
regilla). Primers were confirmed to produce single bands on an
agarose gel, the amplicon was sequenced, and primers that did
not have 100% sequence homology were re-synthesized to be
specific to L. caerulea genes. TJ protein mRNA abundance was
examined by qPCR using a Mini Opticon real-time PCR
detection system (MJ Mini Cycler, Bio-Rad Laboratories, Inc.)
and PowerSYBR Supermix (Applied Biosystems) under the
following conditions: one initial cycle of denaturation (95°C,
10 min), followed by 40 cycles of denaturation (95°C, 30 s),
annealing (58–61°C, 15 s) and extension (60°C, 45 s). A melting
curve was constructed after each qPCR run, ensuring that a single
product was synthesized during each reaction. For all qPCR
analyses, transcript abundance was normalized to ef-1α transcript
abundance after determining by statistical analysis that it did not
significantly alter (P=0.413) in response to Bd infection. Litoria

caerulea ef-1α mRNA was amplified using primers reported in
Table 1.

Antibodies
The affinity purified polyclonal antibodies used for western blot and
immunohistochemistry analysis were raised against human Cldn-1
(ThermoFisher Scientific 519000), Ocln (ThermoFisher Scientific
711500) and Tric (EMD Millipore AB2980).

Immunohistochemical analysis
Fixed skin samples were dehydrated and embedded in paraffin wax.
Transverse sections (6 μm) of control and infected ventral skin were
cut on a rotary microtome (RM2245, Leica Microsystems,
Nussloch, Germany) and mounted on glass slides. Additionally,
sections along the frontal plane of the skin were obtained to
visualize the punctate Tric staining that would be difficult to observe
in transverse sections. Sections on slides were first dewaxed in
xylene, followed by rehydration using a graded ethanol series.
Subsequently, slides were washed for 10 min in different PBS
solutions: 1% Tween-20 (PBS-T), then in 0.05% Triton X-100 in
PBS (PBS-TX), and finally in 10% antibody dilution buffer (ADB;
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Fig. 2. Permeability of 4 kDa FITC-dextran (FD-4) through the skin of control and Bd-infected Litoria caerulea. (A) Schematic diagram of a Franz cell
setup, with the skin held between two chambers. (B) The mean (±s.e.m.) paracellular permeability of FD-4 through control (n=7) and infected (n=10) frog skin.
Asterisks indicate a significant difference between control and infected frogs as determined by a Mann–Whitney U-test (P≤0.001). (C) Individual permeability
values of control (blue) and infected (red) animals plotted against log[zoospore equivalents (ZE)+1]. Frogs were swabbed immediately prior to the
permeability assays to determine the zoospore equivalents.
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2% goat serum, 1% BSA, 0.1% cold fish skin gelatin, 0.1% Triton
X-100, 0.05% Tween-20, 0.01 mol l−1 PBS) in PBS. Sections were
incubated with rabbit polyclonal anti-TJ protein antibodies (1:100
dilution: 2.5 µg ml−1 of Cldn-1 and Ocln, 1 µg ml−1 of Tric)
overnight at room temperature (RT). Slides were then rinsed in
PBS-T and incubated with Texas Red (TR)-labelled goat anti-rabbit
antibody (1:500 in ADB; SC2780, Santa-Cruz Biotechnology,
Santa Cruz, CA, USA) for 1 h at RT. Slides were rinsed and
mounted with coverslips using Fluoroshield™ DAPI Mounting
Medium (Sigma-Aldrich, Sydney, NSW, Australia). Fluorescence
images were captured using a Leica DMi8 Inverted Confocal
microscope and merged using ImageJ software.

Western blot analysis
Frozen skin samples were homogenized using a TissueLyser II
(Qiagen) in chilled radioimmunoprecipitation assay lysis buffer
(RIPA; 0.6% Tris-HCl, 0.8% NaCl, 1% deoxycholic acid, 1%
Triton X-100, 1% SDS, 1 mmol l−1 EDTA, 1 mmol l−1 PMSF and
1 mmol l−1 DTT) containing 1:20 protease inhibitor cocktail
(Sigma-Aldrich). Protein content was quantified using Bradford
reagent (Sigma-Aldrich) according to the manufacturer’s
guidelines. Skin protein (25 µg) was electrophoretically separated
with NuPAGE™ 10% Bis-Tris protein gels and transferred to
polyvinylidene difluoride (PVDF) membranes (Immobilon-P
PVDF Membrane, Merck, Sydney, NSW, Australia). Following
transfer, the membrane was washed in Tris-buffered saline with
Tween-20 [TBS-T; TBS (10 mmol l−1 Tris, 150 mmol l−1 NaCl,
pH 7.4) with 0.05% Tween-20], and blocked for 1 h at RT in 5%
non-fat dried skimmed milk powder in TBS-T (5% milk TBS-T).
The membrane was then incubated overnight at 4°C with rabbit
polyclonal anti-TJ protein antibodies (1:1000 dilution in 5% milk
TBS-T). Membranes were incubated with a horseradish peroxidase
(HRP)-conjugated goat anti-rabbit secondary antibody (1:5000 in
5%milk TBS-T) for 1 h at RT. Then, blots were incubated in 1-Step
Ultra TMB Blotting Substrate Solution (ThermoFisher Scientific)
for 1– 15 min at RT and scanned. Following imaging, membranes
were incubated with Coomassie Brilliant Blue R-250 staining
solution as a modified protocol of that outlined in Welinder and
Ekblad (2010) to quantify total protein. Coomassie staining solution
was combined with 5% MeOH and membranes were stained for
∼5 min. Membranes were then destained in acetic acid/ethanol/
water (1:5:4 ratio), rinsed in water and scanned. TJ protein and total
protein abundance were quantified using ImageJ software. Total
protein abundance was used for normalizing TJ protein abundance
after statistically validating that it did not significantly differ
between control and experimental groups.

Statistical analyses
All data are expressed as means±s.e.m. (n), where n represents the
number of frogs sampled, or as individual data points depending on
the nature of the data. Differences between mean skin permeability
data were analysed using the Mann–Whitney U-test and a linear
regression was fitted to individual data points. All other significant
differences (P≤0.05) between groups were determined using
Student’s t-test. All statistical analyses were performed using
SigmaPlot 12.5 (Systat Software Inc., San Jose, CA, USA) or in
RStudio 1.0.136 (R Studio Team 2016).

RESULTS
Permeability of FITC-dextran (FD-4) through the skin of
Bd-infected L. caerulea
There was little FD-4 permeability through the skin of control frogs
after 24 h (Fig. 2B). Bd infection had a significant effect on skin
paracellular permeability to FD-4 (P<0.001), and the skin of
infected animals was on average 62 times more permeable that the
skin of control animals. Additionally, the paracellular permeability
increased significantly with infection intensity (P=0.0149,
R2=0.3354; Fig. 2C).

Effect of Bd infection on TJ protein mRNA abundance in the
ventral skin of L. caerulea
The abundance of cldn-1, cldn-4, ocln, tric and zo-1 transcripts was
examined in the skin of green tree frogs. The most highly expressed
gene in the skin was cldn-1 (Fig. 3). With Bd infection, the
abundance of cldn-1, cldn-4, ocln, tric and zo-1 increased 2- to
3-fold (Fig. 4).

Effect of Bd infection on Cldn-1 in the skin of L. caerulea
Cldn-1 immunofluorescence was localized to the epidermis of
control frogs and exhibited peri-junctional staining from the basal to
the upper regions of the epidermis (Fig. 5A). With Bd infection,
Cldn-1 fluorescence decreased in the epidermis (Fig. 5B). On a
western blot, the Cldn-1 antibody detected one band of
approximately 22 kDa (Fig. 5C), and Cldn-1 protein abundance
significantly decreased in infected frogs compared with control
frogs (Fig. 5D). In addition to decreased Cldn-1 fluorescence, the
epidermis of infected frogs also appeared thinner than in control
animals (Figs 5B and 6B).

Effect of Bd infection on Ocln in the skin of L. caerulea
Ocln localized to the basal epidermal layer of control animals
(Fig. 6A). Ocln immunofluorescence could also be seen lining
glands in the dermis. Following Bd infection, there was no

Table 1. Primer sets, PCR annealing temperatures (Ta), amplicon sizes and gene accession numbers for Litoria caerulea tight junction (TJ) proteins
and elongation factor-1α

TJ protein Gene Primers Ta Amplicon size (bp) Accession no.

Elongation factor-1α ef-1α F: GGCAAGTCCACAACAACC
R: GTCCAGGGGCATCAATAA

56 229 MH660750

Claudin-1 cldn-1 F: GGCTTGTATAGGGTGGATTG
R: ACCTTGGCCTTCATCACCTC

60 316 MH660751

Claudin-4 cldn-4 F: TGCCTTCATCGGTAACAACA
R: AACTCCCAGGATAGCCACAA

60 187 MH660752

Occludin ocln F: TGCTATTGTTCTGGGGTTCC
R: CCTTCTCGTTGTATTCGGACA

60 218 MH660753

Tricellulin tric F: TAAGCGGATACATTCCAGCA
R: CAGCGTTCCTTTTTCTCCAA

60 316 MH660754

Zonula occludens-1 zo-1 F: GGGATGAGCGAGCAACTCTA
R: GCACCAGGCTTTGACACTC

60 265 MH660755
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qualitative decrease in Ocln fluorescence in the epidermis (Fig. 6B)
and around dermal glands (not shown). Western blotting revealed
one band of approximately 62 kDa (Fig. 6C), and there was no
significant decrease in Ocln abundance with Bd infection (Fig. 6D).

Effect of Bd infection on Tric in the skin of L. caerulea
Frontal sections of the skin were taken to visualize Tric staining in
the epidermis, and localization was found to be punctate at regions
where more than two cells interfaced (Fig. 7A). In Bd-infected
animals, Tric fluorescence increased and localized to areas where
the epidermal cells appeared to be dissociating from one another
(Fig. 7B white lines, Fig. 7D). Western blotting revealed one band
of∼55 kDa (Fig. 7E) and Tric abundancewas found to significantly
increase with Bd infection (Fig. 7F).

DISCUSSION
Overview
This study examined the effects of Bd infection on the paracellular
permeability of amphibian skin and the associated changes in TJ
protein abundance. It was found that Bd infection resulted in an
increase in paracellular permeability of the skin. In addition,
changes in TJ protein and transcript abundance as well as
immunohistochemical observations of bicellular and tricellular TJ
proteins suggests that alterations in paracellular permeability arose
in association with a perturbation of the epidermal TJ complex. This
indicates that dysregulation of the TJ complex may contribute to the
compromised skin barrier function of L. caerulea infected with Bd.
Together, these data support the contention that Bd infection
directly compromises the amphibian epidermal TJ complex and
paracellular permeability, which contribute, at least in part, to
previously reported Bd-induced disturbances in amphibian salt and
water balance (Voyles et al., 2007, 2009; Wu et al., 2018).
Additionally, our detailed study of TJ proteins in amphibian skin
provides new insights into how cutaneous paracellular permeability
is regulated.

Bd infection increases the paracellular permeability of
L. caerulea skin
The paracellular permeability of the skin increased significantly
with Bd infection (Fig. 2B,C). This is consistent with earlier studies
showing that Bd decreased TER across L. caerulea skin, leading to a
disruption of ionic and osmotic homeostasis (Voyles et al., 2009).
Therefore, the previously reported decrease in TER and disrupted

osmoregulatory capacity may have been due, at least in part, to a loss
of the paracellular barrier of infected skin.

The effects of Bd on skin permeability were dependent on
infection load, with increasing Bd loads increasing the permeability
of the skin. Previous studies using cultured intestinal Caco-2
epithelia and cultured human epidermal keratinocytes demonstrated
that purified fungal toxins increased paracellular permeability in a
dose-dependent manner (Watanabe et al., 1999; McLaughlin et al.,
2004, 2009; Yuki et al., 2007). This may suggest that the increased
paracellular permeability observed in Bd-infected frogs in the
current study could be due, at least in part, to toxins released by Bd.
However, there is additional evidence implicating other pathogenic
factors in this process. For example, exposure of Xenopus laevis
skin to supernatant containing proteases produced by Bd resulted in
the disruption of adherens junction components in the skin (Brutyn
et al., 2012). Therefore, it is plausible that the same proteases
produced by Bd can also influence TJs and may have contributed
to the infection load-dependent increase in paracellular permeability
of the skin observed in the current study.

Effect of Bd infection on Cldn-1, Ocln and Tric abundance
The localization and abundance of Cldn-1, Ocln and Tric were
examined to determine whether the Bd infection-induced increase in
skin paracellular permeability was linked to the molecular machinery
of the TJ. Various infectious agents have been known to target
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specific TJ proteins in order to disrupt the epithelial barrier and
spread within the infected tissue. Notable examples are Clostridium
perfringens targeting Cldn-3 and Cldn-4 proteins in the human
intestine (Katahira et al., 1997; Fujita et al., 2000; Robertson et al.,
2010), and Shigella flexneri targeting Tric in cultured Madin–Darby
canine kidney cells (Fukumatsu et al., 2012). Additionally, fungal
toxins have been found to selectively alter the abundance of specific
TJ proteins such as Cldn-1, Cldn-4, Ocln and ZO-1 in cultured Caco-
2 cells and human epidermal keratinocytes in conjunction with
increased FD-4 permeability (McLaughlin et al., 2004, 2009; Yuki
et al., 2007). Therefore, because the paracellular pathway is regulated
by the TJ complex, the observed loss of skin barrier properties in this
study followingBd infection (Fig. 2) may be linked, at least in part, to
an altered abundance of TJ proteins.
Cldn-1, Ocln and Tric proteins immunolocalized to the epidermis

of L. caerulea, which directly interfaces with the external
environment. Therefore, alterations in the abundance of these TJ
proteins are likely to have impacted the paracellular permeability of
the skin. In addition to alterations in protein abundance, the epidermis
of infected animals appeared thinner, which is in accordance with
previous observations (Berger et al., 2005; Greenspan et al., 2012).
This may have also contributed to the increased paracellular
permeability of the skin because there were fewer cell layers that
could express TJ proteins and act as barriers to solute movement.
The most abundant TJ protein transcript examined was cldn-1

(Fig. 3). Cldn-1 has previously been shown to be indispensable for
the barrier function of mammalian skin, where mutations in this
protein resulted in multiple skin defects and increased epidermal
paracellular permeability (Hadj-Rabia et al., 2004; Brandner, 2009;
Kirschner et al., 2009; De Benedetto et al., 2011; Günzel and Yu,
2013; Kirchmeier et al., 2014; Tokumasu et al., 2017). Cldn-1-

deficient mice died shortly after birth as a result of evaporative water
loss through the skin, implying that Cldn-1may act as awater barrier
in mammalian skin (Furuse et al., 2002). Additionally, Cldn-1 has
been shown to be important in cutaneous wound healing in humans
(Volksdorf et al., 2017). To date, no work has been conducted on
Cldn-1 in the skin of amphibians; however, Cldn-1 has been shown
to respond to changes in ion concentration and osmolarity in renal
epithelial cells of Xenopus (Tokuda et al., 2010). Therefore, Cldn-1
in the skin of L. caerulea is likely to be important for maintaining
skin barrier properties.

Cldn-1 protein abundance decreased with Bd infection (Fig. 5D).
Given that Cldn-1 is highly abundant in the skin of L. caerulea, the
decrease in Cldn-1 protein abundance alone may have contributed
heavily to the observed disruption of the skin barrier properties.
Despite the decrease in Cldn-1 protein abundance following Bd
infection, there was an increase in cldn-1 mRNA levels (Fig. 4).
This may indicate that cldn-1 mRNA was not being translated.
Previous reports have found that the abundance of various proteins,
including TJ proteins, did not match mRNA abundance because
the transcripts were post-transcriptionally or post-translationally
modified (Takahashi et al., 2009; Fujii et al., 2016; Liu et al., 2016).
Therefore, it is possible that, in the current study, the infection
resulted in post-transcriptional or post-translational modifications
of Cldn-1, lowering Cldn-1 protein levels. Alternatively, the
decrease in Cldn-1 protein abundance may have been caused
by degradation of Cldn-1 by proteases that were previously reported
to be produced by Bd (Brutyn et al., 2012) or the direct effect of
fungal toxins.

The abundance of the other bTJ protein, Ocln, did not change
following Bd infection (Fig. 6D). Ocln is regarded to be an important
TJ protein in epithelial barriers (Yu et al., 2005). In Xenopus, Ocln
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Student’s t-test (P≤0.05). A representative western
blot is shown above the graph.

7

RESEARCH ARTICLE Journal of Experimental Biology (2019) 222, jeb192245. doi:10.1242/jeb.192245

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y



has been shown to exhibit spatial differences in tissue localization
that relate to the resistance of epithelia, as well as organ-specific
alterations in abundance following changes in the salt content of their
surroundings (Chasiotis and Kelly, 2009). Additionally, Ocln is
known to undergo post-transcriptional/translational modifications
in vertebrates, which remove it from the TJ complex (reviewed in
Cummins, 2012). Therefore, in the current study, because ocln
mRNA abundance increased with infection (Fig. 4) but Ocln protein
abundance did not, it may have been post-translationally modified or
degraded as a result of Bd infection.
Finally, Tric protein levels increased following Bd infection

(Fig. 7F). Tric is known to be a barrier-forming protein in multiple
vertebrates (Günzel and Fromm, 2012; Kolosov and Kelly, 2013,
2018) and is concentrated at the tTJ between adjacent epithelial
cells, which runs in a basal-to-apical direction, in a plane
perpendicular to the bTJ (Ikenouchi et al., 2005). Given its
localization, Tric belongs to a different junctional structure and may
in part be regulated by different regulatory networks from those of
its bTJ counterparts (e.g. Masuda et al., 2010; Krug et al., 2018;
reviewed in Mariano et al., 2011). This could explain why there was
an increase in Tric protein abundance, whereas Cldn-1 and Ocln
protein levels did not increase. The upregulated Tric protein
abundance may have been a by-product of the increase in tric
mRNA abundance (Fig. 4). Tric protein abundance may have
increased to compensate for the loss of paracellular barrier
properties that occurred with Bd infection. In line with this idea,
Tric fluorescence increased around areas where the infected
epidermis was disrupted. Previous studies demonstrated that
during epithelial maturation and establishment of resistive
properties, Tric is first shuttled to the bTJ (Krug et al., 2009).
Following this, after the tricellular contact points are defined, Tric is

incorporated into the tTJ (Krug et al., 2009). Therefore, in the
current study Tric may be participating in the healing of Bd
infection-induced epidermal wounds, aimed at re-establishing
paracellular barrier properties.

All examined TJ protein transcripts increase in abundance
with Bd infection
In addition to Cldn-1, Ocln and Tric mRNA and protein abundance,
the effect of Bd infection on cldn-4 and zo-1 transcript abundance
was also examined. ZO-1 is a cytosolic scaffolding protein
(Gonzalez-Mariscal et al., 2003) and Cldn-4 is a bTJ protein, the
properties of which depend on the tissue and type of associated Cldn
proteins (Günzel and Fromm, 2012). Fungal toxins have been
known to alter Cldn-4 and ZO-1 protein abundance in Caco-2 cells
(McLaughlin et al., 2009); therefore it is possible that Bd infection
may alter the abundance of these proteins as well. In the current
study, the abundance of cldn-4 and zo-1 increased with Bd infection
(Fig. 4). One potential explanation is that increased cldn-4 and zo-1
abundance reflects an attempt to increase protein levels and enhance
barrier function in the compromised skin of Bd-infected frogs.
Alternatively, because all of the examined TJ protein transcripts
increased in abundance, this could reflect a tissue response to a
systemic stress-induced factor released during Bd infection. For
example, corticosterone levels are reported to rise during stress and
inflammatory responses in amphibians (Rollins-Smith, 2017), and
specifically in L. caerulea infected with Bd (Peterson et al., 2013).
Corticosteroids have been shown to alter mRNA and protein
abundance of Ocln (Chasiotis and Kelly, 2011; Förster et al., 2005),
Tric (Kolosov and Kelly, 2013), Cldns (Kielgast et al., 2016;
Kobayashi et al., 2016; Gauberg et al., 2017; Kolosov and Kelly,
2017; Kolosov et al., 2017b) and ZO-1 (Singer et al., 1994;
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Chasiotis and Kelly, 2011) in various vertebrate models. Therefore,
increased systemic levels of corticosterone in L. caerulea that would
occur with infection may have triggered an en masse increase in TJ
protein transcript abundance.

Conclusions and significance
This study directly demonstrates that the paracellular barrier is
compromised in the epidermis of amphibians infected with Bd. This
supports the notion that the paracellular pathway is an important
barrier to solute movement across the skin of healthy frogs.
Therefore, disruption of the skin barrier properties, such as
paracellular permeability, can lead to the loss of osmoregulatory
homeostasis in amphibians.
Increased paracellular permeability is correlated with Bd

infection load and Bd infection results in a uniform increase in the
abundance of all TJ-related transcripts examined in this study.
However, at the protein level, Bd infection may target specific bTJ
proteins, while the tTJ may not be directly targeted. Importantly, a
decrease in abundance of a prominent epidermal Cldn in
vertebrates, Cldn-1, may contribute significantly to the observed
loss of barrier properties. Overall, TJ proteins in the skin of

amphibians are probably differentially regulated, and their
dysregulation results in the loss of skin barrier properties.

Presently, the deleterious effects of Bd infection are broadly
accepted but not completely understood, and the current data
provide new insight into mechanisms of chytrid fungus action on
the skin of amphibians. Future comparative studies examining the
effect of Bd on TJ proteins in susceptible and resistant animals
would be useful for understanding which TJ proteins are impacted
by Bd infection. It is plausible that frogs with greater resistance to Bd
may have a larger repertoire of TJ proteins that are not affected byBd
infection. Additionally, in vitro studies that express select TJ
proteins in heterologous systems should be conducted to determine
whether Bd is able to directly affect the expression or degradation of
these proteins. Given the devastating effects of Bd on amphibian
populations worldwide (Berger et al., 2005; Fisher et al., 2009;
Kilpatrick et al., 2010), understanding its interaction with TJ
proteins in the skin will be important for elucidating the mechanism
of skin barrier disruption and species susceptibility to Bd infection.
More generally, examining the fungal–TJ interaction in vertebrate
epithelia will allow us to gain insight into mechanisms of fungal
pathogenicity that were previously unexplored.
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