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ABSTRACT

For analysis of vocal syntax, accurate classification of call sequence
structures in different behavioural contexts is essential. However, an
effective, intelligent program for classifying call sequences from
numerous recorded sound files is still lacking. Here, we employed
three machine learning algorithms (logistic regression, support vector
machine and decision trees) to classify call sequences of
social vocalizations of greater horseshoe bats (Rhinolophus
ferrumequinum) in aggressive and distress contexts. The three
machine learning algorithms obtained highly accurate classification
rates (logistic regression 98%, support vector machine 97% and
decision trees 96%). The algorithms also extracted three of the most
important features for the classification: the transition between two
adjacent syllables, the probability of occurrences of syllables in each
position of a sequence, and the characteristics of a sequence. The
results of statistical analysis also supported the classification of the
algorithms. The study provides the first efficient method for data
mining of call sequences and the possibility of linguistic parameters in
animal communication. It suggests the presence of song-like syntax
in the social vocalizations emitted within a non-breeding context in a
bat species.

KEY WORDS: Aggressive call, Animal communication, Distress call,
Rhinolophus ferrumequinum, Syntax

INTRODUCTION

Understanding how human language evolved from earlier forms of
animal communication is the key to fully appreciating its unique
capacity in human communication (Scarantino and Clay, 2015). One
of the most powerful features of human language is grammatical rules
such as word ordering under various backgrounds (Fitch, 2010).
Multisyllabic vocalizations with syntax (the set of rules for
combining words into phrases as in human sentences) have been
found in several species of birds and mammals (Collier et al., 2014;
Schlenker et al., 2016). Furthermore, social context has been shown
to be essential for song structure and note use in songbirds (Catchpole
and Slater, 2003; Byers and Kroodsma, 2009). In mammals, although
the ability to construct calls/songs from vocal units has been reported
in various species (Clarke et al., 2006; Bohn et al., 2009; Fedurek and
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Slocombe, 2011; Green et al., 2011; Filatova et al.,, 2012;
Kershenbaum et al., 2012), evidence of altering vocal composition
and structure owing to social context has been reported in only a few
species (Bohn et al., 2008; Candiotti et al., 2012; César et al., 2013;
Chabout et al., 2015). Exploring the ways in which vocal elements are
ordered and combined under various social cues or behavioural
contexts in mammalian species is critical to advancing our
understanding of the function and evolutionary origin of syntax.

Previous research described and compared animal syntax based
on various sound features, including the spectral and temporal
parameters of syllables, numbers and types of syllables, probability
of different syllable types occurring, temporal emission patterns and
probability of syllable transitions (Briefer et al., 2013; Deslandes
et al., 2014; Chabout et al., 2015; Lin et al., 2016a). These features
are based on different subunits such as syllables, phrases and bouts
of animal vocalizations, and they can reveal the call structure and the
rules of syllable ordering in animal vocalizations. However, most
studies have used components of these features in one research
paradigm (Gadziola et al., 2012; Bohn et al., 2013; Suzuki et al.,
2018). For example, Chabout et al. (2015) mainly used the
probability of occurrence of a transition type between syllables to
compare male mice song syntax depending on social contexts, while
Cisar et al. (2013) compared the types of call sequences between
study groups to state that Titi monkey calls varied with predator
location and type. Moreover, analyses that are conducted at the level
of sequences, such as Markov chains and Zipf’s law, have usually
only adopted call sequences of sufficient length (Berwick et al.,
2011; Deslandes et al., 2014), which might cause information to be
neglected owing to the different lengths of sequences. In addition,
limited work has been conducted for exploring the contribution of
different features for syntactic classification. Therefore, before
further analysis of the context-dependent syntax in animal
vocalization can proceed, it would be efficient if a method could
be constructed to classify the call sequences in different contexts by
integrating the features of different subunit levels and evaluating the
contribution of each feature to the classification from a large
quantity of sound recording data.

Machine learning is a subset of artificial intelligence in the field
of computer science, often using statistical techniques to give
computers the ability to ‘learn’ from data (Michalski et al., 2013). In
recent years, machine learning has been shown to be a powerful tool
and has been widely applied to make predictions and discover
hidden structure within large datasets, as well as to deal with
classification problems in many circumstances (Skowronski and
Harris, 2006; Acevedo et al., 2009; Stathopoulos et al., 2018). In
bioacoustics, numerous studies have applied various machine
learning tools for species recognition in environmental
monitoring (Huang et al., 2009; Walters et al., 2012; Shamir
et al., 2014; Aodha et al., 2018) and automatic classification of

)
(@)}
9
je
(2]
©
-+
c
Q
£
—
()
o
x
NN
Y
(©)
‘©
c
—
>
(®)
-_


mailto:liuy252@nenu.edu.cn
http://orcid.org/0000-0003-3359-0716

RESEARCH ARTICLE

Journal of Experimental Biology (2019) 222, jeb214072. doi:10.1242/jeb.214072

animal vocalizations (Ranjard and Ross, 2008; Armitage and Ober,
2010; Pozzi et al., 2010; Turesson et al., 2016). The successful
application of machine learning tools indicates their importance for
constructing a transparent, fast and accurate algorithm for animal
acoustic signals analysis.

Bats have a suite of features that indicate a neural substrate
supporting vocal plasticity and complexity, such as neural
adaptations to support laryngeal echolocation (Siemers et al.,
2011; Fenton et al., 2012), vocal learning (Kndrnschild, 2014) and
geographical divergence of vocalizations (Lin et al., 2015; Prat
et al., 2017). Furthermore, some species have been documented to
possess the capacity to vary social calls in response to social cues
and behavioural context. For example, Brazilian free-tailed bats,
Tadarida brasiliensis, quickly varied song composition to meet the
specific demands of different social functions (Bohn et al., 2013).
Big brown bats, Eptersicus fuscus, emitted bouts of vocalizations
that could be assigned to specific aggressive behaviours (Gadziola
etal., 2012). Mexican free-tailed bats (also known as Brazilian free-
tailed bats) produced fixed vocal compositions, including irritation
calls, protest calls and warning calls during agonistic interactions
(Bohn et al., 2008). The complexity and plasticity of acoustic
communication systems observed in bats make them an important
template for studies of acoustic communication. However, to date,
syntactic structures of only songs and aggressive calls have been
reported in bats. It remains unclear whether syntax exists in other
social contexts of other bat species and whether the syntax is the
same or differs between different contexts.

Aggressive encounters and distress calls occur in a wide range
of animal groups. Aggressive encounters occur when the
individuals compete for limited resources such as mates, food,
shelter or territories (Bradbury and Vehrencamp, 2011). Distress
calls as a categorical alarm signal are usually produced by
vertebrates when cornered, attacked or captured by a predator
(Magrath et al., 2015). In echolocating bats that have weak vision
and that normally live in dark environments, acoustic signals play a
primary role in information exchange in the two behavioural
contexts (Gillam and Fenton, 2016). As mentioned above, syntax
of aggressive calls in Mexican free-tailed bats and big brown bats
has been reported (Bohn et al., 2008; Gadziola et al., 2012), but it
is still unclear in other species. For distress calls, previous studies
have revealed both interspecific and conspecific acoustic
similarity of the call structures, and the bats could recognize and
respond to the acoustic similarity (Russ et al., 2004; Eckenweber
and Knornschild, 2016; Huang et al., 2018). These findings
suggested the potential of existing rules in which the vocal units
were ordered and combined, that is, existing syntax in a distress
context.

Greater horseshoe bats (Rhinolophus ferrumequinum) have a
large vocal repertoire (Ma et al., 2006; Jiang et al., 2017). The bats
roost in the tens to hundreds and have all-female or mixed-sex
colonies that fluctuate in size across seasons. Previous studies
revealed a broad diversity of the vocalizations in this species that
may reflect the existing rules for syllable ordering and combining
responses to different social and behavioural contexts (Jones and
Siemers, 2011; Luo et al., 2013; Lin et al., 2016b). Therefore, we
recorded the social calls of greater horseshoe bats in aggressive and
distress contexts as study templates. Our aim was to employ
machine learning methods to classify the call sequences in different
behavioural contexts by integrating the sound features of all subunit
levels (syllables, transitions and sequences) and extracting the
features that play large roles in the classification. The analysis may
provide a fast and efficient path to mining useful information from

large amounts of vocalizational data, so that the experimenter can
select the important features for further analysis.

MATERIALS AND METHODS

Animals

In May 2016, we captured eight adult Rhinolophus ferrumequinum
(Schreber 1774) (4 males, 4 females) with mist nets from Dalazi
Cave in Zhi’an Village, Jilin, Peoples Republic of China. Bats were
housed in a laboratory with regulated temperature (20—25°C),
humidity (50%—70%) and light:dark cycles (natural photoperiod in
Changchun). Experimental bats had free access to sufficient
mealworms and fresh water in dishes every day. All experimental
procedures complied with the ABS/ASAB guidelines for the Use of
Animals in Research and were approved by the Committee on the
Use and Care of Animals at the Northeast Normal University
(approval number: NENU-W-2010-101). All bats were released
into their roosts after the experiment.

Acoustic and behavioural recording

Distress calls

Bats often emit echolocation calls and distress calls when they are
captured by predators or experimenters. Distress calls are usually
recorded from handheld bats, as predation events of bats are very
rare (Russ et al., 2004; Luo et al., 2013; Lin et al., 2015; Huang
etal., 2018). Therefore, we recorded distress calls from the handheld
bats. Distress calls were recorded using an UltrasoundGate 116
(Avisoft Bioacoustics, Berlin, Germany) connected to a laptop
computer (at a sampling rate of 250 kHz at 16 bits per sample). The
condenser microphone, with a flat frequency response between
10 Hz and 200 kHz (£3 dB), was set on a small tripod 1 m from the
hand-held bat. During recording, each bat was held gently and its
lower back was gently massaged by the researcher. In this case, a
4 min sound file of distress calls was produced for every
individual.

Aggressive calls

After distress call recording, each bat was marked with 4.2-mm
numbered aluminium alloy band (Porzana Ltd, East Sussex, UK).
Recent studies in our laboratory (Jiang et al., 2017; Sun et al., 2019)
have confirmed that the bands do not change the normal behaviour
of the bats. For each recording trial, four individuals (one male and
three females) were randomly selected and housed in a small cage
(33%33%25 c¢cm). To obtain natural calls, we adopted the natural
paradigm (Gadziola et al., 2012) in which bats were undisturbed and
recorded for several hours during their active period. Each recording
trial lasted from 17:00 to 06:00 h on the next day, and data were
recorded via the UltrasoundGate system at a sampling rate of
250 kHz at 16 bits per sample. Synchronized videos were filmed via
an infrared digital video camera (Sony HDR PJ760E). Bats typically
produce aggressive calls when one individual (intruder) disturbs
another (resident) as it might jostle for a roost position within the
group (Zhao et al., 2018, 2019; Sun et al., 2019), but the aggressive
call structure varies with the degree of agonistic encounter
(Gadziola et al., 2012). To obtain the aggressive calls under
relatively the same aggression degree, we only used the call
sequences produced during physical conflict for analysis. During
the physical conflict, only the resident that was disturbed vocalized,
while the intruder or other undisturbed residents did not produce any
sounds. Thus, vocalizations recorded during aggressive contexts
rarely contained overlapping signals from multiple animals. In
addition, the caller could be visually identified in the video, because
it would open its mouth when producing aggressive calls. The
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recording trials were repeated until no new syllable types were
found in the call sequences.

Terminology of call sequences

We analysed the recorded call sequences using Avisoft SASLab Pro
(Avisoft Bioacoustics, Berlin, Germany). The social vocalizations
were described and classified following the nomenclature given by
Kanwal et al. (1994) and followed by others, e.g. Ma et al. (2006)
and Gadziola et al. (2012). Simple syllable types were named
according to call structure, with a prefix denoting secondary spectral
features [e.g. SFM, sinusoidal FM; BNB, broadband noise burst
(NB); DFM, downward FM; UFM, upward FM] and a suffix
denoting secondary temporal features (e.g. BNBI, long BNB,;
BNBs, short BNB). The composite syllable types were named
according to the empirically established combination of simple
syllables and abbreviated accordingly (e.g. NB-DFM, noise burst-
DFM). The composited syllables with more than two components
were named according to the combination of the first letter of names
of each syllable (e.g. NSND for NB-SFM-NB-DFM).

Because the purpose of the present study was to compare the
sequence structures, we used each call sequence as an analysis unit.
During distress contexts, the held bats emitted distress call
sequences with multiple syllables separated by inter-syllable
intervals. A distress call sequence was determined if it was
separated from other calls by intervals exceeding four times the
average inter-syllable intervals within this sequence (Jiang et al.,
2017).

During the physical contact in aggressive contexts, the disturbed
residents usually fought back with wing flapping or boxing moves.
We determined a separate agonistic behaviour when it started from
the first wing flap or boxing move given by any disturbed individual
and ended when every individual had calmed down. A sequence of
multiple syllables emitted by the disturbed resident during each
separate agonistic behaviour was defined as an aggressive call
sequence for the following analyses.

Feature selection

All sequences recorded in aggressive and distress contexts were
used for machine learning classification models. We extracted
12 features used frequently in bat acoustic analysis from each
sequence using a self-written Python program. These features were as
follows: (a) total number of syllable types occurring in a sequence; (b)
total number of syllables of all types in a sequence; (¢) total number of
transitions (transitions between two adjacent syllables) types in a
sequence; (d) a/c, addressing the linearity of the way syllables are
ordered in a sequence (Scharff and Nottebohm, 1991); (e) c/total
number of transition types under the behaviour context, expressing
the consistency of the occurrence frequency of one transition type
(Scharff and Nottebohm, 1991); (f) entropy, calculated with

E =Y P;(—log,P;), where P; is the probability of occurrence of
=1

the ith syllable type, and n is the number of syllable types;
(g) product of the probabilities of each syllable occurring in a certain
position of the sequence; (h) the product of probabilities of each
transition occurring in the current context; (i) a/b, representing the
versatility of a sequence; (j) uncertainty of transitions, calculated as

n
H(x) = —>_ Pjlog,(P;), where H (x) measures a given syllable x to

the rest of the n syllables that follow, and P; represents the
probability of the transition from x to i (Hailman et al., 1985);
(k) gender of bats that emitted the sequence; and (1) marker label of
the bats, representing the bat individual. Features a and b were related

to syllables; features c, e, h and j describe transitions in one
sequence; features d, f and i describe characteristics of sequence
structure; feature g describes positions of syllables occurring in a
sequence; and features k and 1 concern individuals’ information. The
class names representing aggressive and distress contexts were
labelled with integers (0, 1) as training targets.

Nominal features such as gender and marker label were converted
to new dummy variables via the one-hot encoding technique to
avoid technical glitches. Because many linear models, such as the
logistic regression and SVM, initialize the weights to 0 or small
random values close to 0, standardization was used to center the
feature columns at a mean of 0 with a standard deviation of 1 so that
the feature columns take the form of a normal distribution, which
makes it easier to learn the weights.

Classification algorithms

All the classification algorithms were implemented with Scikit-
learn (version 0.19.1), a Python module integrating classical
machine learning algorithms (Pedregosa et al., 2011; Raschka and
Mirjalili, 2017).

Logistic regression

The logistic regression classifier is a powerful and widely used
algorithm for linear and binary classification problems. As the name
suggests, in the logistic regression model, the weighted input
features are fed to the logistic function. Then, the probability of each
sequence belonging to a given context was calculated with the odds
ratio. Finally, the predicted probability can then be converted into a
binary outcome. The logistic regression model has been used for
research on habitat selection of animal populations (Prugh et al.,
2008; Duchesne et al., 2010) and other scenarios of data mining.
Here, we trained the classifier with the regularization parameter
C=1000.0 and regularized using the L2 norm of the classifier
weights. We used the implementation in sklearn.linear_model.
LogisticRegression.

Support vector machine (SVM)

The SVM is a sophisticated kernel-based machine learning classifier
and has attracted much attention as a new classification technique
with good generalization ability (Cristianini and Shawe-Taylor,
2000). SVMs have been widely applied to species recognition and
acoustical classification in animals (Fagerlund, 2007; Chen et al.,
2012). In SVMs, the optimization objective is to maximize the
margin, the distance between the separating hyperplane (each
hyperplane representing the call sequences of each context) and the
training samples that are closest to this hyperplane, the so-called
support vectors. The SVM induction process aims to establish an
optimal discriminative function between two classes of call sequences
in two contexts while accomplishing the trade-off between
generalization and overfitting. Here, we used the sklearn.svm.SVC
method with kernel="linear’ and hyperparameter C=1.0.

Decision trees

Decision trees are a non-parametric supervised learning method
used for classification and regression. The goal is to create a model
that predicts the value of a target variable by learning simple
decision rules inferred from the data features. Using the decision
algorithm, we started at the tree root and split the data on the feature
that results in the largest information gain. Feature scaling
(standardization) is not a requirement for decision tree algorithms.
Decision trees are readily interpretable, directly used to generate
rules, and computationally inexpensive to train, evaluate and store
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Table 1. Overview of sequences under aggressive and distress contexts

Number of Number of Number of syllable Number of transition Number of Average length of
Context bats syllables types types sequences sequences
Aggressive 8 4692 30 156 2014 3(2.3)
Threatening 8 2552 19 122 665 4(3.8)

The average length of sequences in the aggressive context was 2.3 and in the distress context was 3.8. The value was rounded up to an integer.

(Valletta et al., 2017). Here, we used DecisionTreeClassifier in
sklearn.tree to train a decision tree with criterion=‘entropy’ and
max_depth=5.

After the model construction and feature selection, all 12 features
of each call sequence in two contexts were standardized by the
StandardScaler function in the scikit-learn package and collected as
a dataset. Then the dataset was randomly partitioned into a separate
test dataset (804 samples) and a training dataset (1875 samples)
with the ratio of 3:7. The three models for sequence classification
were trained with the training set and tested with the test set.
Hyperparameters specific to each machine learning algorithm were

DFM
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tuned by cross-validation to strike a balance between underfitting
and overfitting.

The performance of the machine learning models was
characterized with area under the curve in receiver operator
characteristic graphs, a useful tool for estimating model
performance with respect to the false positive and true positive
rates (Raschka and Mirjalili, 2017).

Feature importance estimation
The contribution of each feature to the classification of call
sequences between contexts was measured as the average impurity
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Fig. 1. Spectrograms of syllable types investigated. Only syllables that constitute more than 1% of all vocalizations were plotted.
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Fig. 2. Receiver operator characteristic (ROC) graphs of three models.
The resulting ROC curve indicates that there was a low degree of variance
between the different models, and the ROC area under the curve (average
0.97) fell closer to a perfect score (1.0) than random guessing (0.5).

decrease in the random forest model. It was computed from all
decision trees in the forest without making any assumptions, e.g.
whether our data were linearly separable. Random forests can
handle thousands of mixed categorical and continuous predictors
and are robust to outliers, and therefore they are often used to
compute an estimate of the importance of every predictor (Valletta
et al., 2017). We assessed the importance of the features via the
feature_importance attribute after fitting a random forest classifier
with 10,000 trees.

Statistical analyses

Statistical analyses were conducted to test the difference of
sequence structures between aggressive and distress calls.
Pearson’s chi-square statistic (chisquare and chi2_consistency)
were used to test the occurrence frequencies of different syllable
types, the probabilities of occurrences of transition types and the
probabilities of syllable types occurring in each position of a
sequence. Features related to sequence characteristics were tested
with Wilcoxon rank-sum statistics (ranksums in scipy). The
statistical analyses were performed using the scipy.stats package

in IPython for Windows version 5.1.0. The significance level of all
tests was set at 0.05.

RESULTS

A total of 2014 aggressive call sequences were collected from
12,337-min recordings, consisting of 4692 syllables belonging to
30 different types. In the distress context, 665 call sequences were
collected containing 2552 syllables belonging to 19 types (Table 1,
Fig. 1). First, we employed machine learning models to classify the
syntactic structures in different behavioural contexts and extracted
the most important features for the classification. Then, statistical
analysis was employed to test the results of the machine learning
models.

Call sequence classification of machine learning algorithms
The 12 sound features extracted from various levels of call subunits
including syllables, phrases and sequences were used to train the
logistic regression, SVM and decision trees algorithms and perform
the classification. The classification performance of the three
algorithms showed impressively high accuracies on categorizing all
sequences to two contexts: logistic regression 98%, SVM 97% and
decision trees 96% (Fig. 2).

The contribution of each feature to the discrepancy was measured
by the random forest model (Fig. 3). The most important features
were related to syllable transitions (features e, h, j and c, 35.7%).
The second most important features concerned the characteristics of
call sequences (features d, f and i, 21.4%), and the third most
important were about the positions where each syllable occurred in a
sequence (feature g, 16.1%). The features concerning the sequences
structure were more important than features about number or types
of syllables (features a and b, 4.7%), bat individuals (feature 1,
14.3%) and gender (feature k, 7.7%).

Statistical comparison of important features

Because syllables were fundamental units of call sequences,
numbers and types of syllables in two contexts were compared
first, although features related to syllables contributed the least
percentages. The percentages of shared syllable types in the two
contexts were both greater than 90% (aggressive: 95.0%, distress:
90.5%; each syllable type with a frequency of occurrence greater
than two was counted), which showed high similarity. However, in
both aggressive and distress contexts, greater horseshoe bats had
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Fig. 3. Feature importance analysis and related acoustic parameters. The ranking of different features in the dataset by their relative importance. The features’
importance was normalized, so thatthey sumto 1.0. ato | are the parameters clarified in feature selection. L, R, LR, LN and the numbers after them are the markers
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Fig. 4. Syllable types of communication vocalizations of greater horseshoe bats in aggressive and distress contexts. Syllables that constitute more than

1% of all vocalizations are plotted.

intra-context selective preferences in using different syllable types
(chi-square test: aggressive: ¥>=26,275, d.f.=29, P<0.001, distress:
x?*=8524.1, d.£=18, P<0.001). NB-SFM, NB-DFM and SFM were
used the most by bats (aggressive: 77.8%, distress: 69.9%). Some
syllable types such as SNU and SNSNS were only found several
times. The syllable types occurring most frequently between two
contexts were different. Bats tended to use NB-SFM in aggressive
contexts but tended to use NB-DFM in distress contexts (chi-square
test: ¥2=632.8, d.f.=29, P<0.001; Fig. 4).

Transition types of two adjacent syllables in each context were
also selectively used by greater horseshoe bats (Fig. 5). In
aggressive calls, the transitions used frequently were self-
transitions of NB-DFM (n=402), NB-SFM (n=368) and SFM
(n=220) (chi-square test: y>=24,858.4, d.f.=155, P<0.001; Fig. 5A).
In distress calls, the transitions used most frequently were self-
transitions of NB-DFM (#n=485), NB-SFM (n=126) and BNBI
(n=138) (chi-square test: x*=19,485, d.f.=121, P<0.001; Fig. 5B).
Although self-transition of NB-DFM was the most frequently used
transition type in both contexts, it occupied a higher percentage in
distress calls (25.7%) than in aggressive calls (15%) (chi-square test:
x*=856, d.f=184, P<0.001).

Features related to characteristics of call sequences were sequence
entropy (d), linearity (f) and versatility (i) (Fig. 6). Difference in
entropy indicated more variable syllables occurring in distress
contexts than in aggressive contexts (F=467,414, P<0.001).
Sequences in aggressive context had low linearity (F=506,663,
P<0.001), meaning that the ways in which syllables were ordered
were more variable (or had more transition types), but high
versatility (F=876,051, P<0.001), meaning there were more syllable
types or shorter sequence lengths in call sequences of the aggressive
context than of the distress context. These results were consistent
with the overview of sequences under the two contexts presented in
Table 1.

To obtain the occurrence frequency of syllable types in different
positions of a sequence, we counted the numbers of the first three
positions of call sequences in the aggressive context and the first
four positions of call sequences in the distress context based on the
average length of all sequences (Fig. 7). In aggressive calls,
NB-SFM had the highest occurrence frequency in the first three
positions (Fig. 7). In distress calls, NB-DFM had the highest
occurrence frequency in the first four positions (Fig. 7). The
probability of occurrence of syllable types in each position within a
context were significantly different (aggressive context: chi-square
test: position 1: %?=7695.4, d.f=21, P<0.001, position 2:
¥?=3735.2, d.f.=18, P<0.001, position 3: y>=1745.8, d.f=16,
P<0.001; distress context: position 1: ¥?=2496.5, d.f.=18, P<0.001,
position 2: ¥?>=1358.2, d.f=14, P<0.001, position 3: x?=674.75,
d.f=13, P<0.001, position 4: %*=603.4, d.f.=13, P<0.001).
Significant differences in the occurrence probability of syllable
types in the first three positions also existed between the two
contexts (chi-square test: position 1: ¥>=228.7, d.f=22, P<0.001,
position 2: y?>=144.8, d.f=19, P<0.001, position 3: %?>=93.8,
d.f=18, P<0.001).

DISCUSSION

This study employed machine learning methods to classify the call
sequences between aggressive and distress contexts in greater
horseshoe bats and to extract the features that play important roles in
the classification. Logistic regression, SVM and decision trees were
trained using 12 features, and each method obtained accurate
classification rates greater than 95% (logistic regression 98%, SVM
97% and decision trees 96%; Fig. 2). The top three most important
features for classification were all related to the structures of call
sequences, including syllable transitions, positions and
characteristics of call sequences (versatility, consistency and
entropy). Moreover, the statistical comparison of selective
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A

Fig. 5. Syllable transitions of communication vocalizations of greater
horseshoe bats in aggressive and distress contexts. Circles represent
syllables. Lines with arrows represent transition directions. Arcs at right
represent self-transitions. The sizes of circles and arrows represent quantities
of syllables and transitions. The numbers of the top five transitions are shown.
(A) Aggressive context; (B) distress context.

preferences of syllable types, transitions, syllables occurring in
different positions of a sequence and the differences in the
characteristic of sequences highlighted the point that discrepancy
in sequence structure existed between the two behavioural contexts.
The good performance of the algorithms and the extracted important
features indicated that machine learning algorithms could be a
powerful tool for classifying call sequences of social vocalizations
between different contexts. The method presented should enable
data mining from large sound datasets in the initial step of studies on
the syntax of social vocalizations in bats.

Machine learning methods could be an ideal choice for acoustic
research owing to their good generalization to numerous studies.
The methods have been used to solve complex problems that were
previously intractable, such as dealing with large datasets and
acoustic recognition in multi-species and complicated environments
(Walters et al., 2012; Shamir et al., 2014; Priyadarshani et al., 2018).
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Fig. 6. Statistical comparisons of features related to characteristics of call
sequences. Significant differences were found in feature linearity, entropy and
versatility of call sequences between the two contexts. Scores of sequence
characteristics were calculated according to the formula given in the Materials
and Methods (see Feature selection).

Recently, a few studies have applied machine learning tools to
acoustic detection and species classification in bats by analysing their
echolocation calls (Skowronski and Harris, 2006; Armitage and Ober,
2010; Aodha et al., 2018). Our results indicated that machine learning
could also be used to classify call sequences of social vocalizations in
different behavioural contexts by integrating sound features of vocal
subunits. Although discriminant analysis has also been frequently
used for classification (Lachenbruch and Goldstein, 1979), it is more
suitable for displaying the functions of fewer than three features
(Mika et al., 1999; Huberty and Olejnik, 2005). Compared with
discriminant analysis, the machine learning algorithms employed in
the present study could clearly rank the importance of 12 features
simultaneously. In addition, the logistic regression model has
advantages over discriminant analysis and Hotelling’s 7? test in not
needing normally distributed variables (Hoffman, 2019).

Because the aim of the present study was to compare context-
dependent call sequences employing machine learning methods,
our results showed successful classification of call sequences of two
distinct kinds of behaviour, distress and aggression. Actually,
machine learning methods also could deal with tasks of varying
complexity. For example, four supervised machine learning
methods were conducted on barks of domestic dogs, which
obtained high percentages of correct classifications on sex
(85.13%), age (80.25%), individual (67.63%) and context
(55.50%) (Larranaga et al., 2015). Prat et al. (2016) employed the
Gaussian mixture model-universal background model algorithm for
vocalization classifications of different aggressive contexts and
different emitters in Egyptian fruit bats and obtained high balanced
accuracy (different aggressive contexts for each emitter: 75%,
emitters: 71%). Although the above studies focused on the call
classification but not extraction of syntactic structures, they suggested
the potential ability of machine learning methods for call
classification of similar contexts. But further study is still invited to
test the appropriate algorithms and their performances in comparing
the structures of call sequences when the context is less distinct.

An important factor to consider is the ease of implementing a
given method. All the algorithms we adopted could be utilized
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Fig. 7. Percentage of syllable types varied in different positions in aggressive versus distress calls. In each position, the frequencies of syllable type were

tested with a chi-squared test, and all were significantly different.

easily and widely (Kotsiantis et al., 2007; Armitage and Ober,
2010). None need computing resources beyond an ordinary
personal computer. Moreover, the features in our study were not
species-specific and could be appropriate to other animal categories
(Priyadarshani et al., 2018). The sound features were extracted
based on syllables, which could be obtained from vocalizations of
most animal species. In addition, the types of features integrated and
estimated by the machine learning algorithms were variable,
including not only features of sequence structure but also features
of sound emitters such as individual label and gender. This
demonstrates another advantage, that is, that machine learning can
handle combinations of different parameters regardless of their units
(Alice and Amanda, 2018). The proposed methods in our study
were mainly suited for comparison and classification of call
sequences under different conditions. Robust extraction and
description of the structures of call sequences would require much
improved processing.

The selective preference in the sound features concerning
sequence structures suggested that greater horseshoe bats might
order and arrange syllables according to certain rules, that is,
syntactic structure in variable behavioural contexts. Using syntax
composed of different structures of calls under specific situations
may be a common phenomenon in many animal species. For
example, syntax depending on social context was found in the
‘chick-a-dee’ calls of chickadees and in the songs of male mice
(Clucas et al., 2004; Chabout et al., 2015). When confronted with
conspecifics or predators, it was reasonable that greater horseshoe
bats tended to have different reactions. Although a number of
syllable types were found in all recording files, the sum of
percentages for the five most frequently used types was greater than
80% in both the aggressive and distress contexts. This demonstrated
that greater horseshoe bats in non-breeding periods could make
good use of the order and arrangement of limited types instead of
emitting complex composite syllables such as songs for mating
(Davidson and Wilkinson, 2004; Bohn et al., 2009). Pioneering

research in non-human primates and birds has indicated that animal
signals can be functionally referential (Townsend et al., 2013;
Scarantino and Clay, 2015). The sequence compositions of Titi
monkeys (Callicebus nigrifrons) and the specificity note
combinations of discrete alarm calls of Japanese great tits (Parus
major minor) can both be used to communicate predator type (César
et al., 2013; Suzuki, 2014).

In summary, our research reveals a tangible instance for
employing machine learning methods to explore vocalization
data. The results provided three useful and efficient models
for analysing syntactic variation in bioacoustics. Using the power
of' machine learning, researchers can extract useful information from
many vocalizations before they design behavioural experiments for
further analysis. This study also demonstrated the presence of complex
vocalization and potential syntactic structures of call sequences in
non-breeding contexts of bats. Further experimentation, such as using
playback of calls, is necessary to investigate the information encoded
in different syntactic patterns.
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