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Thermal stress causes DNA damage and mortality
in a tropical insect
Jan Lubawy1,*, Virginie Daburon2, Szymon Chowański1, Małgorzata Słocińska1 and Hervé Colinet2

ABSTRACT
Cold tolerance is considered an important factor determining the
geographic distribution of insects. We have previously shown that
despite its tropical origin, the cockroach Gromphadorinha
coquereliana is capable of surviving exposures to cold. However,
the freezing tolerance of this species had not yet been examined. Low
temperature is known to alter membrane integrity in insects, but
whether chilling or freezing compromises DNA integrity remains a
matter of speculation. In the present study, we subjected the
G. coquereliana adults to freezing to determine their supercooling
point (SCP) and evaluated whether the cockroaches were capable of
surviving partial and complete freezing. Next, we conducted single
cell gel electrophoresis (SCGE) assays to determine whether heat,
cold and freezing altered hemocyte DNA integrity. The SCP of this
species was high and around −4.76°C, which is within the typical
range of freezing-tolerant species. Most cockroaches survived to
1 day after partial ice formation (20%mortality), but died progressively
in the next few days after cold stress (70%mortality after 4 days). One
day after complete freezing, most insects died (70% mortality), and
after 4 days, 90% of them had succumbed. The SCGE assays
showed substantial levels of DNA damage in hemocytes. When
cockroaches were heat-stressed, the level of DNA damage was
similar to that observed in the freezing treatment, though all
heat-stressed insects survived. The present study shows that
G. coquereliana can be considered as moderately freeze-tolerant,
and that extreme low temperature stress can affect DNA integrity,
suggesting that this cockroach may possess an efficient DNA repair
system.

KEY WORDS: Gromphadorhina coquereliana, Cockroach, Freezing,
Heat stress, Comet assay, Supercooling point

INTRODUCTION
The majority of insect species survive, thrive and remain active
within a limited range of temperatures (Chown and Nicolson, 2004).
This thermal range depends on species’ geographical origins, with
tropical species generally showing a narrower thermal range than
temperate ones (Kellermann et al., 2009). Cold tolerance is
considered to be an important factor determining the geographic
distribution of insect species (Addo-Bediako et al., 2000). In the
course of evolution, insects exposed to low temperature developed a

number of adaptations to survive suboptimal thermal conditions
(Lee, 2010; Wharton, 2007). To resist when temperature falls below
the freezing point, insects usually show two main strategies:
freezing tolerance and freezing intolerance (Lee, 1991; Sinclair
et al., 2003b; Sømme, 1999). When freezing is tolerated, it is strictly
limited to extracellular compartments, as intracellular freezing is
lethal to most animals, with some exceptions (e.g. some nematodes)
(Block, 2003; Storey and Storey, 1989). Freezing intolerance is the
strategy found in a large majority of arthropods (Block, 1990; Lee
and Costanzo, 1998). To survive cold, freezing-intolerant species
rely on mechanisms by which they increase their cold tolerance and
their capacity to remain unfrozen by supercooling (Sformo et al.,
2010). The temperature at which ice forms is termed the
supercooling point (SCP), as it denotes the ultimate limit of
supercooling (Lee, 2010). The SCP is determined by detecting the
latent heat of crystallization (the exotherm) released as body fluids
start to freeze. The SCP obviously represents the lower lethal
temperature for freezing-intolerant insects; however, many species
die at temperatures well above SCP owing to chilling injuries (Bale,
2002; Overgaard and MacMillan, 2017). Hence, the true ecological
value of the SCP has been largely debated (Ditrich, 2018; Renault
et al., 2002). In spite of this, often studies exploring cold tolerance
of poorly described species start with SCP measurements as it
provides an anchor point about which the cold tolerance strategy can
be determined (Sinclair et al., 2015).

Responses to cold have been well documented in many species
from temperate (Chen et al., 1987; Czajka and Lee, 1990; Teets
et al., 2012) and subarctic regions (Clark et al., 2009; Clark and
Worland, 2008; Montiel et al., 1998). Cold adaptation and thermal
limits of populations and species are supposed to be selected to
match temperatures that characterize their geographic ranges and
origins (Angilletta and Angilletta, 2009; Ditrich et al., 2018;
Sunday et al., 2012). It results that temperate populations are usually
better able to cope with low temperature stress than their tropical
counterparts, as reported in flesh flies for instance (Chen et al.,
1990). Likewise, Drosophila species from tropical origins are often
much less cold tolerant than species found in temperate areas
(Gibert et al., 2001; Goto and Kimura, 1998; Kellermann et al.,
2012; Mensch et al., 2017; Olsson et al., 2016). However, whether
species adapted to tropical climates are capable of tolerating cold
stress, and by which physiological mechanisms they can do so,
remains a poorly explored question. Bale (1993, 1996) described
tropical insects as ‘opportunistic survivors’ regarding cold stress,
and with climate change, knowledge about the thermal tolerance of
tropical insects is valuable owing to the resulting potential
expansions of invasive species (Rodriguez-Castaneda et al., 2017).

Although most cockroach species are tropical, some species are
adapted to extreme environments, such as dry desert or cold
climates (Bell et al., 2007; Mullins, 2015). The diversity of habitats
in which cockroaches are found reflects their great adaptability to
copewith environmental stressors. Various cold hardiness strategiesReceived 4 September 2019; Accepted 28 October 2019
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have been reported in cockroaches. For instance, freeze avoidance is
realized by microhabitat selection in Periplaneta japonica (Tanaka,
2002). Some cockroach species acquire cold hardiness by gradual
acclimation, as reported in Blatta orientalis (Lepatourel, 1993).
Freeze tolerance has also been reported in some species, such as
Cryptocercus punctulatus and Celatoblatta quinquemaculata,
which utilize ice-nucleating proteins and cryoprotectants (glycerol
and trehalose) to allow freezing to be tolerated (Hamilton et al.,
1985; Wharton, 2011; Wharton et al., 2009; Worland et al., 2004).
In insects, cold exposure at temperatures above SCP can induce

chilling (non-freezing) injuries that develop as a result of complex
physiological alterations such as loss of ion and water homeostasis,
which participate in the disruption of neuromuscular functions,
leading to chill coma and, ultimately, death (Overgaard and
MacMillan, 2017). Koštál et al. (2006) previously showed that
chilling injury resulted in the disturbance of ion homeostasis in the
coxal muscle of the tropical cockroachNauphoeta cinerea. We have
previously shown that another tropical cockroach fromMadagascar,
Gromphadorinha coquereliana, was surprisingly capable of
surviving short-term as well as repeated exposures to low
temperatures (Chowan ́ski et al., 2017, 2015). In the wild, this
species is not supposed to be exposed to cold often, as temperatures
only occasionally drop to 4°C for a few hours in Madagascar
(Chowan ́ski et al., 2015). In spite of this, we found that chilling
triggered physiological responses, such as induction of heat shock
proteins and aquaporins, or metabolic responses, such as an increase
in quantity of total protein in the fat body, higher level of polyols
and glucose in hemolymph and changes in mitochondrial
respiration activity (Chowański et al., 2017, 2015). The rather
high chilling tolerance of G. coquereliana is surprising considering
the tropical origin of this species (Chowański et al., 2017).
Cockroaches are known to be resilient to many kinds of stresses

such as hypoxia (Harrison et al., 2016), hypercapnia (Snyder et al.,
1980), heat (McCue and De Los Santos, 2013), starvation (Duarte
et al., 2015) and xenobiotics (Pietri et al., 2018). Many species
exhibit discontinuous respiration, which is supposed to reduce water
loss, improving survival of food and water restriction (Schimpf
et al., 2012, 2009). Urates play a central role in cockroach
physiology. Typically, the fat body contains urocyte cells that
contain stored urates (Cochran, 1985; Park et al., 2013). Many
studies have confirmed that stored urates serve as an ion sink,
allowing for sequestration/release of hemolymph ions as a
mechanism for maintenance of ion homeostasis (e.g. Hyatt and
Marshall, 1985a,b). This adaptation may be of particular relevance
for cold tolerance, as maintenance of ion homeostasis across
membranes is a key element of chilling tolerance (reviewed by
Overgaard and MacMillan (2017).
In addition to the alteration of nuclear and cell membranes (Lee,

2010; Quinn, 1989; Ramløv, 2000), DNA integrity may also be
compromised by chilling and freezing. Only one study in Musca

domestica has reported that chilling could cause nuclear anomalies
(e.g. micronucleus) and chromosomal aberrations (e.g. stickiness,
fragmentation or constrictions) (Mishra and Tewari, 2014).
Upregulation of several transcripts in cold-stressed bees (e.g.
myofilin isoform b, sestrin-like and DNA damage-binding proteins)
suggests that insects may experience DNA damage, potentially
caused by increased levels of reactive oxygen species (ROS)
(Torson et al., 2017). Whether cold and freezing stress can damage
DNA has not yet been examined, other than at chromosomal level.

In humans and other vertebrates, in vivo studies commonly use
lymphocytes as the main target cells for measuring DNA damage
because it is a non-invasive method (Azqueta and Collins, 2013; de
Lapuente et al., 2015; Odongo et al., 2019). Invertebrates have
hemocytes in the hemolymph that have the same role as
lymphocytes and can be used to assess DNA damage in cells
(Adamski et al., 2019; Augustyniak et al., 2016; de Lapuente et al.,
2015; Gaivao and Sierra, 2014).Gromphadorinha coquereliana is a
rather large insect that possesses a high number of circulating
hemocytes. This allows cells to be extracted and measured from
single individuals, which is an advantage compared with small
insects such as Drosophila melanogaster, which requires pooling
hemolymph from many specimens and mixing of the material
(Carmona et al., 2015). This model of tropical origin is then
particularly appropriate to address whether thermal stresses (heat,
cold and freezing) can affect DNA integrity of circulating cells.

As mentioned above, urate metabolism plays a central role in
cockroach physiology (Park et al., 2013). Stored urates (in urocytes)
are a particular adaption of cockroaches that contributes to ionic
balance and osmoregulation by ion exchanges in tissue fluids
(Mullins, 2015; Mullins and Cochran, 1974). Because maintenance
of metal ion homeostasis is directly linked to chilling tolerance of
insects (Grumiaux et al., 2019;MacMillan et al., 2016; Overgaard and
MacMillan, 2017), it is conceivable that this specialization
may contribute to the unexpectedly high chilling tolerance of
G. coquereliana (Chowanśki et al., 2017, 2015). However, the
freezing resistance of this species had not yet been examined. In the
present study, we first subjected adult male G. coquereliana to
freezing temperatures to determine their SCP, and evaluated whether
the cockroaches were capable of surviving partial and complete
freezing. Next, we conducted single cell gel electrophoresis (SCGE)
assays to determine whether heat, cold and freezing stress altered the
DNA integrity of hemocytes.

MATERIALS AND METHODS
Insect rearing
Cockroaches [Gromphadorhina coquereliana (Saussure 1863)]
were reared under laboratory conditions in a continuous colony at
28°C and approximately 65% relative humidity under a 12 h:12 h
light:dark cycle in the Department of Animal Physiology and
Development, AMU, in Poznan ́. Food (lettuce, carrots and
powdered milk) and water were provided ad libitum as described
previously (Slocinska et al., 2013). Only adult male individuals
of approximately 5.9±0.39 cm in size and a mass of 5.5±0.48 g
(means±s.d.) were used for experiments.

Determination of supercooling point
To determine SCP, 24 insects were placed individually in 50 ml
Falcon tubes, which were submerged in a cryostat bath (Polystat CC3,
Huber Kältemaschinenbau AG, Germany) filled with heat transfer
fluid (Thermofluid SilOil, Huber, Germany). The temperature of the
bath was slowly reduced at a rate of 0.5°C min−1 to reach a target
temperature of −30°C. To monitor the temperature of the insects, a

List of abbreviations
ACB anticoagulant buffer
OTM olive tail moment
ROS reactive oxygen species
SCGE single cell gel electrophoresis
SCP supercooling point
TBW total body water
TL tail length
%DNAT percentage of total DNA in the tail
%COM percentage of cells with visible comets
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K-type thermocouple was placed in the middle of the dorsal side of
the cockroach, touching the cuticle, secured with Parafilm® and
connected to a Testo 175T3 temperature data logger (Testo SE&Co.,
Germany). The temperature of the insects was recorded every 10 s.
The SCP was defined as the temperature at the onset of the freezing
exotherm produced by the latent heat.

Thermal treatments
Insects were subjected to low temperature stress (both cold and
freezing), as well as heat stress (Fig. 1). In the first low temperature
treatment (denoted as ‘cold’), each insect was brought to its SCP and
left in thewater bath with an ongoing decrease in temperature for only
5 min after reaching the SCP, which resulted in incomplete freezing,
with a small proportion of the total body water (TBW) frozen. In the
second low temperature treatment (denoted as ‘freeze’), insects were
brought to their SCP and left in thewater bath until the temperature of
the insect dropped again and reached −6°C (on average, it took
20 min) after the exotherm, which resulted in freezing of most of the
TBWof the specimen. For heat stress (denoted as ‘heat’), insects were
placed in a 1 liter glass bottle submerged in a water bath set to 44°C
(VariostatCC, Huber Kältemaschinenbau AG, Germany) for 1 h. We
selected these experimental conditions based on preliminary tests that
showed that insects were deeply stressed (hyperventilating and unable
to stand on legs), but still alive after 1 h. For each treatment, three
insects were placed in the bottle at the same time. The bottle was
secured with a sponge plug in order to prevent the insects from
escaping and allowing for the circulation of air. The temperature
inside the bottles was precisely adjusted with K-type thermocouples
placed inside an immersed empty bottle. Ten different individuals
were used for each of the three thermal treatments (n=10).
Hemolymph was collected 1 h after each treatment.

Survival
After each thermal treatment, 10 individuals were placed in a
breeding room in plastic boxes (15×30×20 cm) with carrots for food
to test for survival after stress exposure. Mortality was recorded at
1 h after stress and each day after, for a period of 10 days. The
insects were considered dead when they did not react to the pinch of
the legs and antenna using forceps. An untreated control group of 10
insects was also monitored during the same period.

Assessment of DNA integrity of hemocytes
Circulating hemocytes were isolated by collecting hemolymph from
single treated individuals. To do so, insects were anesthetized by

submersion, as previously described (Chowański et al., 2017).
Because hemolymph coagulates rapidly, after anesthesia, insects were
injected with 300 μl of anticoagulant buffer (ACB; 69 mmol l−1 KCl,
27 mmol l−1 NaCl, 2 mmol l−1 NaHCO3, 30 mmol l−1 sodium
citrate, 26 mmol l−1 citric acid and 10 mmol l−1 EDTA, pH 7.0,
Sigma-Aldrich, St Louis, MO, USA) (Chowanśki et al., 2017, 2015).
The ACB was injected under the last pair of legs using a Hamilton
syringe (HamiltonCo., Reno,NV,USA) and then insects were left for
5 min to allow the ACB to spread throughout the insect body. To
avoid any UV-related DNA damage of isolated cells, the following
steps were performed in a light-protected room. After injection of the
ACB, the last right leg was cut off at the coxa and 100 µl of
hemolymph was collected in a 1.5 ml tube filled with 100 µl of ACB.
The samples were centrifuged at 1000 g for 10 min at 4°C. The
supernatant was discarded and the hemocytes were resuspended in
100 µl of ACB. Cells were diluted 100× with ACB to obtain
∼2.5×105 cells ml−1 in all samples. To assess DNA integrity of
isolated hemocytes, a Comet SCGE assay kit (ENZO Life Sciences,
Inc., New York, NY, USA) was used according to the manufacturer’s
instructions. Briefly, the cells were combined with molten
LMAgarose in a 1:10 (v:v) ratio and immediately pipetted onto
microscope slides. After gelling of the agarose, the slides were placed
in pre-chilled lysis solution for 60 min. Next, the slides were
immersed for 30 min in alkaline solution (300 mmol l−1 NaOH,
1 mmol l−1 EDTA, pH >13) and then washed twice in 1× TBE buffer
(80 mmol l−1 Tris Base, 89 mmol l−1 boric acid, 3.2 mmol l−1

EDTA) for 2 min. Slides were then placed flat onto a gel tray and
aligned equidistant from the electrodes. The voltage was set to
1 V cm−1 (measured electrode to electrode) and applied for 10 min.
After electrophoresis, samples were dipped in 70% ethanol for 5 min
and dried in an incubator set to 37°C. Comets were stained with 10×
CYGREEN® Dye for 30 min and visualized using an Olympus
BX41 epifluorescence microscope (Olympus, Tokyo, Japan, FITC
filter, excitation/emission 489/515 nm) equipped with a Leica
DFC450 C camera (Leica, Wetzlar, Germany). In order to provide
a positive control for each step in the comet assay, one slide with cells
that had been treated with H2O2 was prepared for every
electrophoretic run. The cells, which were isolated from randomly
selected control animals, were treated with H2O2 (100 μmol l−1,
Sigma-Aldrich) for 10 min at 4°C, after which they were tested for
DNA damage under the same conditions as described above. For each
thermal treatment, five or six different treated animals were used; each
produced one slide of hemocytes to analyze. In addition, five
untreated (unstressed) insects were also used to assess DNA integrity

Individual SCP

Comet assayIndividual SCP

44°C

Hemolymph
collection

Hemolymph
collection

Hemolymph
collection

5 min

Reaching −6°C

1 h

Individual SCP

Individual SCP

Rearing Rearing

44°C

Rearing
5 min

Reaching −6°C

1 h

Rearing

Rearing

10-day
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observations
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Fig. 1. Scheme of the experimental designs. (A) Survival experiments; (B) comet assay. SCP, supercooling point.
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of their hemocytes, and these controls were processed exactly as the
treated specimens. At least 50 nuclei from 10 randomly captured
images were analyzed per slide (i.e. 10 images/slide and 5–6 slides/
treatment).

Image analyses
All images were analyzed with CASP Lab software (Kon ́ca et al.,
2003). Tail DNA is the most commonly used parameter to assess
DNA integrity, but other metrics are also frequently used (Collins
et al., 1997; Kumaravel and Jha, 2006). In the present study, DNA
damage was evaluated by: (i) comet tail length (TL), which shows
the length of DNAmigration; (ii) percentage of total DNA in the tail
(%DNAT), defined as the amount of DNA that has migrated out of
the nucleus expressed as the percentage of total cellular DNA
content; (iii) olive tail moment (OTM), which gives an estimation of
the relative proportion of DNA at different regions of the tail; and
(iv) percentage of cells with visible comets (%COM). OTM is the
distance between the center of mass of the tail and the center of mass
of the head, in micrometers, multiplied by the percentage of DNA in
the tail. OTM is considered the most sensitive comet parameter as
both the quality and quantity of DNA damage are taken into account
(Dhawan et al., 2009).

Statistical analysis
For survival analyses, the Mantel–Cox test with mortality at 10 days
was used. For all tests, P-values lower than 0.05 were considered
statistically significant. The data are presented as means±s.e.m. For
DNA damage comparisons, because multiple pictures (10) were
taken from the same treated individuals, the identity of each insect
(or each slide) was incorporated in the model as a random variable to
account for multiple measures. In addition, because characteristics
of all cells analyzed within a picture might be dependent on the
capture settings of each picture, the picture identity (nested within
each insect identity) was also included as a random variable in the
model. Therefore, a mixed-effects generalized model (GLMM) was
applied for each tested parameter using the function lmer in the lme4
package for R. When the explanatory variable (i.e. treatments) was
significant, we conducted Holm-adjusted Tukey’s pairwise
comparison tests using function glht in the package multcomp in R
(Venables et al., 2018).

RESULTS
Determination of the SCP and survival of stress treatments
SCPs of adult males varied from−7.6 to−1.9°C, with an average of
−4.76±1.60°C (n=24), and the mean time to complete freezing was
18.0±11.38 min. The SCPs of individuals after cold and freeze
treatments were −4.78±1.00°C (min. −6.00°C, max. −2.80°C) and
−4.26±1.56°C (min. −6.30°C, max. −2.30°C), respectively. Fig. 2
shows typical cooling curves of G. coquereliana with exotherms.
Eighty percent of insects survived 24 h after the cold treatment.
Over half of the insects died during the first 3–4 days after cold
treatment (Fig. 3) and only 30% of them survived the 10 days, not
showing any visual signs of being affected by the cold treatment
(i.e. partial freezing). The survival curve for cold treatment was
statistically different from that of the control group (χ2=10.59,
P=0.001). Thirty percent of insects from the freeze group survived
24 h after complete freezing. However, they showed clear signs of
injuries, such as inability to walk, feeble movements of appendages,
and weak responses to stimulations. Only 10% of insects from this
group survived 10 days after freeze treatment. The survival curve of
the freeze treatment was statistically different from that of the
control group (χ2=17.20; P<0.001). During the heat treatment, all

insects showed significant signs of stress: uncoordinated movement,
as well as increased abdominal ventilation frequency and
defecation. In spite of this, all cockroaches survived the heat
treatment for 10 days, showing no statistical differences compared
with the control treatment (P>0.05).

DNA damage
Fig. 4 shows the effects of treatments on the isolated hemoctyes and
Fig. 5 the results of all of the DNA damage metrics according to the
three thermal treatments, the untreated control and the positive
H2O2-treated control. The mean values differed significantly
according to treatments in all tested parameters (TL: χ2=6496.2,
d.f.=4, P<0.001; %DNAT: χ2=6968.5, d.f.=4, P<0.001; OTM:
χ2=5859.6, d.f.=4, P<0.001; %COM: χ2=6441.4, d.f.=4, P<0.001).
These differences were mainly driven by H2O2-treated samples that,
as expected, showed substantial DNA damage. Pairwise multiple
comparisons were used to discriminate significance of the different
treatments, as indicated by different letters in Fig. 5. For all tested
parameters, comparisons showed that DNA damage was much
greater in H2O2 samples than in the other treatments (Tukey tests,
P<0.001). Values of freeze or heat treatments were lower than in the
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Fig. 2. Example supercooling curves for two individual adult male
Gromphadorinha coquereliana. The temperature ramp was set at a rate of
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H2O2 treatment, but clearly greater than that of the control (Tukey
tests, P<0.001). Finally, we found no clear indication, in any
parameter, that cold treatment induced DNA damage, as indicated
by lack of significant difference with the control treatment (Tukey
tests, P<0.001).

DISCUSSION
In this report, we show that although the cockroachG. coquereliana
is a tropical species endemic to Madagascar (Beccaloni, 2014), it
can be considered as moderately freezing-tolerant. We also show for
the first time that cold stress does not substantially damage the DNA
whereas extreme low temperature stress can affect DNA integrity in
hemocytes of insects.
We found that the cockroaches were able to survive after

they experienced the onset of freezing. However, when the body
temperature reached −6°C after reaching SCP (i.e. complete
freezing), the mortality increased to 90%. The SCP data
obtained here indicate that spontaneous freezing (SCP) occurred in
G. coquereliana at temperatures a few degrees below zero (−4.7±
1.6°C). This is within the typical range of freezing-tolerant cockroach
species, such as the alpine cockroach,Celatoblatta quinquemaculata,
or the Japanese cockroach, Periplaneta japonica, which avoid
supercooling and promote freezing at relatively high subzero
temperatures with ice nucleators and cryoprotectants (Sinclair,
1997; Tanaka and Tanaka, 1997; Wharton et al., 2009; Worland
et al., 1997). On the contrary, freeze-avoiding insects generally
exhibit deep supercooling ability, with SCP values often in the range
of−15 to−25°C or lower (Danks, 2004; Vernon and Vannier, 2002).
Although the SCP profile of G. coquereliana looks exactly as those
reported in the freezing-tolerant C. quinquemaculata (Worland et al.,
1997, 2004), it would be surprising ifG. coquereliana had developed
(or inherited) physiological adaptations to survive freezing. The
Blattodea is a phylogenetically old order of insects, and cockroaches
are likely one of the most primitive of living neopteran insects. Most

of the species from this order inhabit temperate or tropical zones;
however, according to Sinclair et al. (2003a), they are mostly freeze-
tolerant insects (Sinclair et al., 2003a). Hence, cold adaption may be
an ancestral heritage within this order. Alternatively, the freeze
tolerance of G. coquereliana could be explained by the modification
of pre-adapted pathways (exaptation, sensu Gould and Vrba, 1982).
Predictions of this hypothesis include substantial overlap between
freezing and desiccation tolerance in insects, so that physiological
adaptations to desiccation stress promote cross-tolerance to
freezing (Hayward et al., 2007). As reported in another species,
C. quinquemaculata (Sinclair, 1997), G. coquereliana survived
initiation of ice formation but died when body temperature was
further reduced after onset of freezing. So it can be classified as
moderately freeze tolerant (referring to partial freezing tolerance)
(Sinclair, 1999). Several other insects have been classified as
moderately freeze tolerant, including the subantarctic beetle
Hydromedion sparsutum from South Georgia, which freezes at ca.
−2.5°C and survives frozen to ca. −8°C (Worland and Block, 2003).
Partial freeze tolerance may be an evolutionary route to freeze
tolerance, for instance in species that are exposed to brief periods of
cold (e.g. the variable habitats of the southern hemisphere or tropical
high mountains; Sinclair et al., 2003a). The significance of SCP has
been questioned for tropical species that actually rarely experience
subzero temperatures (Renault et al., 2002). As mentioned before,
mechanisms of cold tolerance in tropical species may be unrelated to
cold adaption per se and may be rather linked to some other native
characteristics of the species, such as desiccation mechanisms.
Indeed, freeze and desiccation tolerance share many characteristics,
and the biochemical and cellular mechanisms for freeze tolerance
have been suggested to evolve via cross-tolerance for desiccation
(Toxopeus and Sinclair, 2018).

Freezing is associated with osmotic dehydration of cells and loss
of extracellular ion balance linked to a complex of deleterious
alterations such as depolarization of membranes and altered fluidity

A B C

D E

Fig. 4. Representative images of effects of temperature stress on DNA damage in hemocytes isolated from adult maleG. coquereliana.Data are shown
after (A) cold, (B) freeze and (C) heat treatments. (D) Positive control, where cells were treated with H2O2 at 100 µmol l−1 concentration. (E) Insects from negative
control (see Materials and Methods for details). Scale bars: 20 µm. To visualize the DNA, the preparations were stained with CYGREEN® Dye.
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(Muldrew et al., 2004; Overgaard and MacMillan, 2017; Overgaard
et al., 2005). InM. domestica, cold stress was reported to lead to an
increase in chromosome aberrations and micronucleus frequency
occurrence (Mishra and Tewari, 2014). Until now, whether cold and
freezing stress can damage DNA had not yet been examined in any
insect models.
In the present study, when cockroaches were heat-stressed, the

observed DNA damagewas similar to that from the freeze treatment.
However, the survival of the insects from this group was 100%,
even though there were evident signs of sublethal effects
(i.e. increased hyperventilation). Both TL and OTM were greater
in both treatments compared with the control. OTM incorporates
quantitative and qualitative measurements of DNA damage and is
therefore considered to be highly reliable (Dhawan et al., 2009;
Olive et al., 2012). It is well known that high temperature stress is
associated with ROS production and oxidative stress (Hetz and
Bradley, 2005; Korsloot et al., 2004; Pörtner and Knust, 2007;
Speakman, 2005). DNA damage caused by ROS is mainly due to
oxidation of nucleotides. It occurs most readily at guanine residues
owing to the high oxidation potential of this base relative to
cytosine, thymine and adenine (Cadet and Wagner, 2013).
However, the DNA breaks will be transiently present when cells
repair lesions via base excision or nucleotide excision, and so a high

level of breaks in the comet assay may indicate either high damage
or an efficient DNA repair system (Collins et al., 1997). The fact that
all insects from this treatment survived, even thoughmeasured DNA
damage parameters (TL, OTM, %TDNA) in the cells were high,
shows that this species is equipped with a very efficient DNA repair
system. Slocinska et al. (2013) showed that this species possesses
effective mechanisms preventing ROS formation in the muscle and
fat body by regulation of the synthesis of free radicals. This energy-
dissipating system might be implicated in cellular protection against
metabolic stress in insect tissues. The correct action of these
mechanisms has a significant influence on the basic functions of
cells and organisms (Mladenov and Iliakis, 2011). For animals that
are under the constant pressure of toxic factors (not only
genotoxicological ones), damage repair as well as the synthesis of
new molecules to replace damaged ones are extremely important
(Augustyniak et al., 2008; Calow and Sibly, 1990; Jha, 2008). We
therefore suggest that the death at low freezing temperatures does not
occur as a result of the DNA damage caused by temperature stress but
rather because of other factors, i.e. physical ice formation inside the
body. The results of the present study broaden the knowledge about
the effect of thermal stress on DNA damage in insects. We have
shown that SCGE can be an efficient method to analyze the genotoxic
effect of different stressors, in our case, temperature.
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Fig. 5. Effects of temperature stress on DNA damage in hemocytes of adult male G. coquereliana. (A) Length of the comet tail (TL), (B) percentage of
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