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ABSTRACT
Animals experience complex odorant stimuli that vary widely in
composition, intensity and temporal properties. However, stimuli used
to study olfaction in the laboratory are much simpler. This mismatch
arises from the challenges in measuring and controlling them precisely
and accurately. Even simple pulses can have diverse kinetics that
depend on their molecular identity. Here, we introduce a model that
describes how stimulus kinetics depend on the molecular identity of the
odorant and the geometry of the delivery system. We describe methods
to deliver dynamic odorant stimuli of several types, including broadly
distributed stimuli that reproduce some of the statistics of naturalistic
plumes, in a reproducible and precise manner. Finally, we introduce a
method to calibrate a photo-ionization detector to any odorant it can
detect, using no additional components. Our approaches are affordable
and flexible and can be used to advance our understanding of how
olfactory neurons encode real-world odor signals.
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INTRODUCTION
The study of sensory systems requires precise control and
measurement of stimuli. The ease of generation and measurement
of light and sound stimuli have led to a detailed understanding of
how primary visual and auditory neurons encode visual and
auditory stimuli (Hudspeth, 2014; de Ruyter van Steveninck and
Bialek, 1988; Smirnakis et al., 1997; Laughlin, 1989). Olfactory
stimuli are harder to generate and measure because they consist of
small molecules of bewildering variety that have to be transported
from the source to olfactory receptor neurons (ORNs) on sensory
organs. The kinetics of odor stimuli depend on physical and
chemical parameters (Andersson et al., 2012; Martelli et al., 2013).
Far from surfaces, odors are transported by advection and diffusion,
which depend linearly on odor concentration. Thus, changing the
concentration of odor at the source merely scales the resulting
stimulus. If interactions with surfaces could be avoided completely,
odor pulses of different amplitudes could in principle be delivered

with exactly the same kinetics. Thus, normalizing stimuli of the
same odor but different concentration by their maximum intensity
would collapse them on the same curve (Andersson et al., 2012).

In practice, odor molecules can diffuse through the airstream onto
surfaces. Binding to surfaces is a nonlinear process because it
depends on the concentration of odor in the gas phase and that of
odor molecules already bound to the surface. Thus, surface
interactions break the linearity of odor transport, which renders
the kinetics of odor transport concentration dependent (see
Materials and Methods). Natural odors can consist of multiple
odorants with different surface affinities. Surface interactions might
affect some components of an odor more than others, possibly
breaking the coherence of an odor signal. These interactions can
significantly alter the kinetics of identically delivered stimuli,
complicating the analysis of ORN responses (Martelli et al., 2013;
Su et al., 2011). Surface-odorant interactions are significant both in
laboratory conditions used for physiology and behavior (Gershow
et al., 2012; Hernandez-Nunez et al., 2015; Mathew et al., 2013;
Klein et al., 2017; Budick and Dickinson, 2006; Frye and
Dickinson, 2004; Fishilevich et al., 2005; Gaudry et al., 2013),
and in real-world scenarios (Riffell et al., 2009, 2008; Murlis et al.,
1992, 2000; Murlis and Jones, 1981).

Here, we describe simple approaches to make odorant stimuli
delivery more controllable and reproducible. We first analyze the
properties of a standard odor delivery system using a simple
mathematical model. We provide some intuition about why the
output of the delivery system may not match expectations. Previous
work has used either simple odor delivery systems that can generate
simple stimuli or custom-designed instruments capable of complex
stimuli but that are challenging to engineer (Martelli et al., 2013;
Hallem and Carlson, 2006; Nagel and Wilson, 2011; Kim et al.,
2011; Cafaro, 2016). There is a growing interest in connecting
neural activity to behavior (Gershow et al., 2012; Kato et al., 2014;
Hernandez-Nunez et al., 2015; Gepner et al., 2015; Davies et al.,
2015; Gomez-Marin et al., 2011; Thoma et al., 2014) and therefore
an increasing need for studying the neural response to naturalistic
stimuli. We describe methods to deliver complex and intermittent
odorant stimuli using off-the-shelf components and show how the
same delivery system can be used to reproducibly generate an
odorant stimulus that mimics the statistics of natural stimuli. Finally,
we describe a novel approach to calibrate a photo-ionization
detector (PID) to any odorant it can detect, to enable quantitative
comparisons of stimuli across time and across different laboratories.

MATERIALS AND METHODS
Mathematical model of a simple delivery system
We consider a delivery system schematized in Fig. 1A. Clean air is
injected at the constant flow rate Q2 inside a cylindrical odor delivery
tube of inner radius R2. From a lateral hole a secondary air stream
carrying odor at gas phase concentration c1 is injected with flow rate
Q1under control of a solenoid valve placedupstreamof the odor source.Received 24 May 2019; Accepted 24 October 2019
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In the absence of interactions between odorant molecules and
surfaces, the gas phase concentration of odor inside the delivery
tube, c2, obeys the equation:

t2
dc2
dt

¼ qfc1|ffl{zffl}
influx

�ð1� qfÞc2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
efflux

: ð1Þ

The first and second terms on the right represent the odor that
comes in and out of the delivery tube, respectively. t2¼V2=Q2 is the
time it takes to replace all the air in the delivery tube (V2 is
the volume of the tube downstream from the lateral inlet) and
f¼Q1=Q2 is the ratio of the flow rates injected in the two tubes,
which in experiments is typically less than 1. We assume that the
odorized air injected through the lateral hole at concentration c1
mixes rapidly with the clean air stream. q is the state of the air flow
through the first tube. Before the pulse, the valve upstream of the
first tube is off and q=0.When the valve turns on, q rapidly increases
to 1 as the air flow rapidly increases to its maximum speed. When
the valve is shut off the contrary happens and q rapidly decays back
to zero. Eqn 1 is linear in the concentration c2. Thus, doubling

the concentration at the input, c1, doubles the concentration at the
output c2. Nothing in this equation depends on the identity of the
odor, indicating that in the absence of interactions with surfaces, the
time-dependent shape of the odor pulse delivered is independent of
the identity of the odorant.

Odorant molecules may interact with the surface of the delivery
tube. These interactions are used for example in the field of
chromatography to separate substances within a mixture based on
their retention time on the walls of a column (Deming et al., 2019;
Wong et al., 1999). Similarly, we can model the loss of odorant
molecules from the gas phase to the inner surface of the tube by
adding an extra term to the equation:

t2
dc2
dt

¼ qfc1|ffl{zffl}
influx

�ð1� qfÞc2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
efflux

� t2w
du2
dt|fflfflfflffl{zfflfflfflffl}

surface interaction

; ð2Þ

where θ2 is the fraction of the tube surface that is covered by odorant
molecules and w=2W/R2, whereW represents the surface density of
binding sites for odorant molecules. This equation must be
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Fig. 1. A simple model reproduces the diversity of odorant pulse kinetics. (A) Schematic diagram of an odor delivery system. Air flows in the odor chamber
with flow rate Q1 controlled by a solenoid valve (q). The odorous stream enters the main delivery tube where clean air flows with rate Q2. x2 is the normalized
concentration of odor in gas phase within the volume V (Eqn 7). A photoionization detector (PID) is used to measure the amount of odor exiting the tube.
(B) Normalized photo-ionization detector (PID) recordings (gray) and model predictions (black) for six odors for which surface interactions are negligible.
(C,D) Parameters of model fitted to PID measurements of 21 odorants for which surface interaction cannot be neglected. Error bars show standard deviation
estimated from 30 fits. Colored traces in C show model predictions. ~w, density of odor binding sites on the inner surface of the tube; τa, time scale of odor to
surface binding; ~Kd, dissociation constant between the odor and surface.
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supplemented with an additional equation that describes how θ2
changes as a function of time:

du2
dt

¼ kac2ð1� u2Þ � kdu2: ð3Þ

The goal of this coarse-grain model is to provide a quantitative
framework for the experimentalist to build intuition and to help with
the design of simple delivery systems such as the one depicted in
Fig. 1A or Fig. 3A. In thismodel c2 and θ2 represent the concentration
of the odor in the gas phase and on the surface averaged over the
entire tube. Likewise, ka and kd are the effective rates of binding and
unbinding averaged over the entire tube and therefore depend on the
velocity profile of the flow inside the tube (which is typically the
same for all odors in a given experiment) as well as the diffusivity of
odor molecules through the air (which is not).
In standard delivery systems like the one depicted in Fig. 1A, the

flow is typically laminar. In Fig. 1, the air speed during an odor
pulse is u2=179 cm s−1 and the Reynolds number is 568. The radial
profile of odor concentration in the tube homogenizes with
characteristic time scale tdecay¼R2

2=ð3:82DÞffi56ms (using
D=0.073 cm2 s−1 the molecular diffusion of ethyl acetate) as it is
transported by a constant air flow down the delivery tube (Taylor,
1953). This decay time is on the same order as the time it takes for
the air to flow from the odor injection point to the exit of the delivery
tube (τ2=50 ms). Thus, even if the odor was injected exactly at the
center of the tube, it would have time to interact with the inner
surface of the tube. In standard delivery systems like Fig. 1A, the
injection of odor also causes a perturbation in the flow field which
further helps homogenize the odor profile across the tube. Finally,
on time scales longer than the decay time τdecay, odor molecules
experience enhanced diffusivity (Taylor’s dispersion; Taylor, 1953)
Deff =D(1+Pe2/192), along the direction of the tube due to the shear
flow in the pipe. The Peclet number Pe=2R2u2/D≅1187 for ethyl
acetate. For tubes longer than τdecayu2 (≅ 10 cm in our case), this
affects the temporal profile of the stimulus delivered. One way to
mitigate these problems is to use a larger tube radius so that τdecay
becomes longer. To fully account for these effects, a model that
considers the spatio-temporal dynamics of odor concentration along
and across the tubes is needed, but is beyond the scope of this paper.
To understand the basic effect of surface interactions on the

stimulus dynamics it is instructive to make the simplifying
assumption that the odorant–surface interactions are much faster
than the transport of odorant by the flow. Solving Eqn 3 at quasi-
steady state and inserting in Eqn 2 yields:

t2 1þ
w

Kd

1þ c2
Kd

� �2

0
BBB@

1
CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
teff

dc2
dt

¼ qfc1 � ð1þ qfÞc2 ð4Þ

where Kd=kd/ka. Comparing this with Eqn 1, we see that the
effective timescale τeff of the stimulus kinetics now depends on
several parameters of the odor-delivery system and on the odorant
concentration. Eqn 4 indicates that the effect of surface interactions
becomes significant when the effective concentration of surface
binding sites per volume w=2W/R2 becomes much larger than the
dissociation constantKd. Thus, oneway to mitigate such effects is to
use a tube material that is more inert therefore reducing W and
increasing Kd. One can also reduce w by increasing the inner radius
R2 of the delivery tube. However, this is costly and often not

practical because an increase in the radii leads to a quadratic increase
in the volume of air and odor that must be flown through the delivery
system. For odorants that do not interact extensively with surface,
i.e. when c2≪Kd, the denominator on the left-hand side of the
equation becomes 1 and Eqn 4 becomes linear in c2. In this case, the
kinetics of odor pulse are independent of the odor concentration.
Odorants that satisfy these conditions (w≪Kd or c2≪Kd), such as
ethyl acetate interacting with glass tubes, were called ‘fast’ odorants
in Martelli et al. (2013). In contrast, for odorants that interact
significantly with surfaces, i.e. when c2 is on the same order as Kd,
Eqn 4 predicts that the pulse kinetics depend on odor concentration.
A possible example of such an odorant is diethyl succinate,
previously called a ‘slow’ odorant in Martelli et al. (2013) based on
its interactions with glass delivery tubes. As the odor concentration
becomes smaller, the time scale τeff becomes larger.

To complete our simple model of the delivery system in Fig. 1A,
we must also model the odor concentration in the gas phase, c1, and
on the surface, θ1, of the volume used to inject the odor into the
delivery tube. Similarly to Eqns 2 and 3 we have:

dc1
dt

¼ c0 � c1
ts

� qc1
t1

� w

L=H

du1
dt

; ð5Þ

du1
dt

¼ kac1ð1� u1Þ � kdu1; ð6Þ

where t1¼V1

Q1
, L=V1/V2 and H=A1/A2 are geometric factors that

depend on the relative volume and surface of the two tubes. If the
radius of the tubes is the same then L/H=1. The first term on the
right-hand side of Eqn 5 represents the dynamics of equilibration
between the odor concentration right above the liquid source, c0, and
the gas phase concentration in the tube, c1. The time scale, τs,
depends on the diffusion coefficient of odorant molecules in the gas
phase and the air dynamics in the head space. When using pure
odorants in liquid phase and when the system was allowed to reach
equilibrium, c0 is the gas concentration at saturated vapor pressure.
When odors are diluted in paraffin oil, or when multiple odorants are
mixed in the liquid phase, c0 becomes a complex function of the
concentrations of odorants in the liquid phase because the presence
of one compound can affect the evaporation rate of another one.
These complex effects are manipulated by the perfume industry to
control the timing of release of various ‘notes’ of a perfume
(Teixeira et al., 2009).

After normalizing c2 and c1 with the concentration c0, we can
rewrite these equations as follows:

t2
dx2
dt

¼ qfx1 � ð1þ qfÞx2 � t2~w
du2
dt

; ð7Þ

ta
du2
dt

¼ x2ð1� u2Þ � ~Kdu2; ð8Þ

dx1
dt

¼ 1� x1
ts

� qx1
t1

� ~w

L=H

du1
dt

; ð9Þ

ta
du1
dt

¼ x1ð1� u1Þ � ~Kdu1; ð10Þ

where ~w¼w=c0¼A2W=V2c0 and ~Kd¼ kd
kac0

¼Kd=c0 are now non-

dimensional parameters, τa=1/kac0, and q(t)=g(t, t1, σ1)(1−g(t, t2,
σ2)) with g(t, s, σ)=1−exp(−(t−s)/σ) when t>s and zero otherwise.
Here, t1 and t2 are the time at which the valve is turned on and off
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and σ1 and σ2 the time scale for the air to start and stop flowing,
respectively.

Fitting the model to the measured data
Eqns 7–10 provide a set of 4 ordinary differential equations that
describe how odorants can bind and unbind to surfaces on the two
tubes and can lead to complex temporal profiles measured at the
outlet. This system of equations has only four unknown parameters
(ta; ts; ~Kd; ~w), and all other parameters are determined by the
geometry of the system. The outflux of odorant coming out of the
main tube is

f2¼ð1þ qfÞx2;
which is the quantity being measured. As the value of c0 is unknown
in the dataset considered here, we fitted f2 normalized by its peak to
PID measurements of the odor concentration also normalized by
their maximum value.
To understand how different parameters of the model affect the

shape of the odor puffs, we fitted the model to square pulses of 27
different odorants (Fig. 1 and Fig. S1).

Rapid liquid–gas phase equilibration timescale (τs)
For most odors, and for short odor pulses, the time it takes to replace
the air in the source tube, τ1=0.6 s, is much longer than the liquid–
gas phase equilibration time scale τs, in which case Eqns 9 and 10
can be assumed at steady state: x1≅1/(1+qτs/τ1)≅1 and the model
reduces to the following two equations with three parameters
ta; ~Kd; ~w:

t2
dx2
dt

¼ qfx1 � ð1þ qfÞx2 � t2~w
du2
dt

; ð11Þ

ta
du2
dt

¼ x2ð1� u2Þ � ~Kdu2: ð12Þ

For odors that evaporate more slowly (value of τs closer to τ1) and
for longer pulses, the evaporation at the source might not keep up
with the rate at which the air is replaced in the source tube, in which
case following an initial peak the concentration of odor entering the
delivery tube, x1, will decay. In such cases, the full set of four
Eqns 7–10 should be used instead. These effects can be explored
using the MATLAB toolbox we provide (see below).

The limiting case of no surface interaction
Some odorants have sharp temporal profiles with rapid rise and decay
times. In this case, interactions with the surface are considered to be
negligible, and therefore the dynamics of the odorant are given
entirely by Eqn 11, with ~w¼0. The kinetics of odorant pulses in this
limiting case are therefore determined entirely by physical parameters
of the delivery system like the flow rates and tube size, and do not
depend on the odorant at all. This limiting case is used to fit the
kinetics of so-called ‘fast’ odorants, such as ethyl acetate in Fig. 1B.

Odor-dependent surface interaction
The kinetics of most odors in our dataset could only be reproduced
considering slow interactions of the odorant with the surface and
could not be reproduced by simplifications of the model. To
estimate the three parameter values that determine these kinetics, we
fitted each odorant concentration 30 times and generated confidence
intervals of parameters that fitted these data (Fig. 1C). We provide a
MATLAB toolbox with interactive sliders that can be manipulated
for immediate feedback and evaluation and visualization of the

model (available at https://github.com/emonetlab/controlling-
dynamic-stimuli). This toolbox provides a platform for the
experimentalist to gain intuition about why a measured odor puff
has a particular shape, and to decide how to change experimental
parameters (flow rates, tube size, etc.) to change the shape of the
pulse if needed.

Visualizing model fits
Overall odorants distribute in the parameter space (Fig. 1D), although
they do not fill this space uniformly. For visualization, we have color
coded odorants according to: h¼ �~wþð1��taÞþð1� �~KdÞ, with the
parameters normalized by their range. η approaches zero for ‘fast’
odorants that have slow binding (large τa), low affinity (large ~Kd) and
few binding sites (low ~w), and is maximum for ‘slow’ odorants that
can bind many more binding sites with larger affinity.

Odor delivery system
The odor delivery system shown in Fig. 1A and Fig. 3A is built of a
few off-the-shelf components that can be reconfigured based on the
task. The key ingredients are as follows: a source of pressurized air
to power the system and generate flows, instruments to regulate
flows (mass flow controllers, MFCs), valves to divert flows, tubing
to connect different parts together, a glass tube to deliver the
odorized airstream to the preparation, and a device to measure the
output (a photo-ionization detector, PID). For a source of
pressurized air, we used ‘dry air’ from Airgas (AI D300) which is
purified compressed atmospheric air. Air from this pressurized
cylinder was delivered to a set of MFCs (Alicat Scientific MC-
series) that regulated flow to downstream components. We chose
these MFCs since they can be interfaced with in a number of ways,
including via USB, and provide programmable parameters of the
underlying control system, allowing us to tune them to desired
applications (for example, a MFC that is dedicated to maintaining a
steady flow that does not change can be configured with control
parameters that enhance stability at the cost of speed, while a MFC
that is used for rapidly varying flow through an odorant vial to
generate dynamical odorant signals can be optimized for speed of
response). We used solenoid valves (Lee Co., LHDA 1231515H) to
divert flows either to the preparation or to waste. Pure odorant was
contained in generic 30 ml glass scintillation vials. We drilled holes
in the cap and threaded them so we could fit them with push-to-
connect tube fittings (McMaster Co., 1/8: tubing, 10-32 UNF
52065K211). This allowed for a modular container to hold pure
odorants that could quickly be connected to the rest of the system.

To connect different components together, we used 1/8″ Teflon
tubing (McMaster Carr, 5239K24) since odorants stuck to this
material minimally (other common tubing materials such as soft
Tygon plastic bound far more to common laboratory odorants, and
should be avoided). A good test of the material being used for tubing
is to deliver an odorant pulse through it, disconnect the source, and
deliver another pulse. If odorants bind to the material extensively,
the second control pulse will not be entirely flat. To connect tubes to
each other, we used push-to-connect fittings (e.g. McMaster Carr,
5111K102, 5779K21, 5779K41).

No component is perfect, and it is important to understand the
limitations of the parts being used to build an odor delivery system.
Neglecting these shortcomings can lead to unanticipated and hard-
to-diagnose failure modes in the assembled system. For example, for
the Lee valves we used, their series resistance varied substantially
from valve to valve, meaning that it was impossible to use them in
parallel to build a symmetric switch. While use of Teflon tubes can
minimize contamination with odorants, odorants can still adhere to
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the interior of tubes. To minimize contamination, we used separate
tubes and connectors for each different odorant. The interior of the
solenoid valves we used are not coated with Teflon, and therefore
we also used a different valve for every odorant.

Software
Many of the results we present in the text were made possible by
converting the problem of configuring and tuning hardware elements
into a software optimization problem. This enabled parameter searches
that would be otherwise prohibitively tedious. We wrote controller
(available at https://github.com/emonetlab/controlling-dynamic-
stimuli), a MATLAB-based data acquisition and control system that
could automate many tasks. A small MATLAB toolbox that tunes the
control parameters of MFCs is available at https://github.com/
emonetlab/controlling-dynamic-stimuli.

Optimizing control signals iteratively to match odor
statistics
Software to interactively optimize control signals to deliver
naturalistic odorant signals (like in Fig. 2) is available at https://
github.com/emonetlab/controlling-dynamic-stimuli, which can be
used as a template to build other optimization routines. This software
implements a simple online optimizer that tweaks control signals (m)
to MFCs so that a desired pulse amplitude is achieved. The principle
of operation is as follows: after a few iterations, data corresponding
to several different MFC control signal amplitudes mi and resultant
PID measurements of the pulse yi are fitted using a linear function
y = f (m). This function is then inverted to find the best estimate of the
MFC control signal amplitude that yields the desired PID signal:
mi+1 = f−1(y0). The process stops when measured PID signal is
within some target tolerance of the desired PID signal.

How to estimate the dose-response curve of an olfactory
neuron using odorant pulses
Short pulses of odorants are usually used to estimate the dose-response
curve of single neurons (Martelli et al., 2013; Cafaro, 2016; de Bruyne
et al., 2001). A simple way to generate odorant pulses of varying
concentrations is to force air through cartridges containing odorants
diluted to varying degrees in a solvent such as paraffin oil. Fig. S2A
shows a typical dose-response measured by delivering odorants using
this method. The peak firing rate of the ORN ab3Avaries non-linearly
with the liquid phase concentration of the odorant in the cartridge and
can be fitted by a Hill function. PID measurements of the stimulus
intensity for every trial allow us to compare measured stimulus
intensity to the nominal liquid phase concentration (Fig. S2B).
Significant deviations from linearity and considerable trial-to-trial
variability are evident (Fig. S2B). Moreover, plotting the response of
ab3A against the measured gas phase concentration (Fig. S2C) yields
different parameters from a fit with a Hill function. This suggest that
the liquid phase concentration is not always an accurate proxy for the
gas phase concentration and can thus bias estimations of response
properties of neurons.
Most trial-to-trial variability in the stimulus is due to a slow decay

in the odor concentration, as shown for four odorants at different
liquid phase concentrations (Fig. S2D–H). This problem is mostly
due to the depletion of the liquid dilution which depends on the
volatility of the compound used (cf. ethyl acetate vs diethyl succinate)
(Andersson et al., 2012) and the time τs necessary for the gas
concentration to reach equilibrium. One way to ameliorate this
problem is to use a mass flow controller (MFC) to vary the airflow
through a scintillation vial containing pure odorants (Fig. S2I–M)
(Gershow et al., 2012; Kim et al., 2011; Johnson et al., 2003;

Bhattacharyya and Bhalla, 2016). The concentration of odorant in the
odorized airstream depends only on the flow rate set by the MFC and
τs (see steady state solution of Eqns 7 and 9), and it is stable over time
as long as there is some odorant left in the vial and the air is blown
continuously through it (and sent to exhaust). In this configuration,
the solenoid valve is then placed downstream of the odor source.
Pulses delivered using this method are more ‘square’ than the
previous method (Fig. S2D,I), and do not show any significant decay
in amplitude over 10 trials (Fig. S2J–M), even for volatile odorants
like ethyl acetate. This method allows the experimenter to easily
switch between different stimulus amplitudes by changing the flow
rate, allowing automation of data collection.

In Drosophila, olfactory receptor neuron responses are invariant
with air speed (Zhou and Wilson, 2012), and fluctuations in air
speed caused by the method described here do not affect
experiments that seek to characterize the response properties of
these neurons. In applications where variations in air speed must be
minimized, one can use twoMFCs (one for the clean air and one for
the odorized air) and adjust them simultaneously (van Breugel et al.,
2018; Gupta et al., 2016 preprint).

How to deliver intermittent odorant signals
Odor cues seldom occur as isolated pulses in natural settings.
Instead, they arrive in intermittent series of pulses whose statistics
carry information about the odor source location (Murlis et al.,
1992). Thus, various types of fluctuating odorant stimuli have been
used to characterize the dynamic response properties of ORN
(Martelli et al., 2013; Nagel and Wilson, 2011; Kim et al., 2011,
2015; Raiser et al., 2017). As in other sensory modalities
(Chichilnisky, 2001; Baccus and Meister, 2002), paired
recordings of a fluctuating sensory signal and the corresponding
neural response have been used to estimate the linear kernel that best
describes the transformation from the stimulus to the response
(Martelli et al., 2013; Nagel and Wilson, 2011; Kim et al., 2011;
Geffen et al., 2009; Schuckel and French, 2008).

The linear kernel can then be used to predict the time series of the
response of that neuron to a novel stimulus that the neuron has not
previously been exposed to. For example, this approach revealed
that for many odor–receptor combinations in the Drosophila
melanogaster antenna, the linear response kernels of ORNs were
more invariant than previously anticipated (Martelli et al., 2013; Si
et al., 2019). A favorable stimulus to use for this purpose is Gaussian
white noise. Its tight autocorrelation structure allows sampling as
many frequencies of the neuron response as possible. Using such a
stimulus, linear filters can be estimated in an unbiased fashion, even
in the presence of an output nonlinearity (Chichilnisky, 2001).

However, Gaussian white noise odorant signals are hard to
realize. Interaction of the odorant with the walls of the delivery
system (Martelli et al., 2013), limits on the airspeed used in the
delivery system and non-infinitesimal timescales of the components
of the delivery system introduce temporal correlations into every
odorant stimulus. Hence, in practice, the stimulus is never ‘white’.
Furthermore, since the easiest way to control an odorant signal is to
use a valve to divert an odorized airstream towards or away from the
preparation (animal subject), early work using fluctuating odorant
signals to identify linear kernels from ORN responses used binary
odorant stimuli where the stimulus was either on or off (Martelli
et al., 2013; Nagel and Wilson, 2011; French et al., 2014; French
and Meisner, 2007; Schuckel et al., 2008, 2009) (Fig. S3A,B). This
tends to generate a bimodal stimulus distribution (Fig. S3E–H), with
the lower peak close to zero, and the larger peak at some value that
can be controlled by the concentration of the odorized airstream
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(Fig. S3A,B). The correlation time of the signal can be controlled by
varying the switching time of the valve, and for volatile odorants
that do not interact strongly with the surfaces of the delivery system,
correlation times as fast as 30 ms can be realized (Martelli et al.,

2013) (Fig. S3I–L). In these binary stimuli, the mean stimulus is
typically rarely realized, and the responses of the neuron are
dominated by responses to the large, rapid increases of odorant on
valve opening (Martelli et al., 2013; Nagel and Wilson, 2011).
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An alternative approach can deliver intermittent odorant signals
that have a unimodal, more Gaussian distribution. Using an MFC
to vary the flow rate of an airstream through a vial of pure odorant
generates an odorized airstream with a gas phase concentration that
depends on the flow rate through the odorant vial (Fig. S3C,D)
(Kim et al., 2011, 2015). Odorant stimuli delivered this
way typically do not need to ‘bottom out’ at zero stimulus
(Fig. S3E–H), and have mean values close to their mode. The
autocorrelation time of a stimulus delivered this way is limited by
the update rate of the MFC (Fig. S3I–L). If odorant stimuli with

tighter autocorrelation functions are desired, multiple MFCs can
be chained in parallel, driven by uncorrelated control signals
(not shown).

Applicability and limitations
The methods we have described here will be useful in experiments
that seek to characterize the dynamic properties of olfactory
sensory periphery in immobilized animals. Potential applications
include measuring the dose-response properties of olfactory
neurons, characterizing their impulse response functions and
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measuring their adaptive properties, either as a function of
controlled stimulus statistics or during naturalistic presentations
of odorant.
These methods have the following limitations, which may

preclude their use in other applications. In these methods,
airspeed is not controlled, with airspeed either changing during
periods of odor stimulation, or small transients in air flow caused by
the sudden switching of valves. This means that these methods are
applicable in experimental preparations where fine control of trial-
to-trial odorant variability is more important than minimizing
changes in airspeed. One example is the characterization of
olfactory neuron responses in Drosophila, which have been
shown to be invariant to air speed (Zhou and Wilson, 2012). In
other applications, for example, in behavioral experiments, the
exquisite sensitivity many animals show to changes in airflow limit
the use of these techniques, and can confound results (van Breugel
et al., 2018). Previous work that is complementary to this paper has
focused on delivering odorants and mixtures of odorants with
minimal changes in airspeed (Gupta et al., 2016 preprint; Burton
et al., 2019). Furthermore, our methods are focused on delivering
and measuring one odorant at a time, and delivering and measuring
mixtures of odorants is beyond the scope of this work.

RESULTS AND DISCUSSION
Basic parameters that affect the kinetics of an odor pulse
A common method of delivering odorants is to create odorized air
by evaporation of liquid odorant (Fig. 1A) and to push it into a main
delivery tube where a constant stream of clean air is flowing. Signal
intensity can be controlled by diluting the odor in liquid phase (e.g.
mixing pure odor with paraffin oil) (Hallem and Carlson, 2006; Su
et al., 2012; Helfand and Carlson, 1989). A valve upstream of the
odorant controls odor timing. This system has been used to screen
through large numbers of odorants (Mathew et al., 2013; Hallem
et al., 2004) and to estimate ORN sensitivity (Mathew et al., 2013;
Hallem and Carlson, 2006). Using this approach to measure the
response kinetics of ORNs, in particular the linear response function
of neurons, has been more challenging. PID measurements have
revealed that stimuli delivered in this way typically exhibit intrinsic
odorant-dependent dynamics before any interaction with the animal
takes place (Martelli et al., 2013), which therefore can obscure the
neural response function of ORNs.
To gain intuition about the parameters that affect odor stimulus

dynamics we created a mathematical model of the delivery system
(Fig. 1A, see Materials and Methods). The model includes odor
transport, liquid-gas phase equilibration and surface interactions
and consists of two equations with three parameters (Eqns 11,12).
The first two parameters are the density of odor-binding sites on the
inner surface of the tube, ~w, and the dissociation constant between
the odor and surface, ~Kd. They are non-dimensional and normalized
using the concentration of odor at the source. The third parameter,
τa, is the time scale of odor to surface binding (inverse rate of
binding) (see Materials and Methods). We used the model to fit PID
measurements of 27 commonly used odorants delivered in 500 ms
squared pulses (Martelli et al., 2013).
For six odors, surface interactions were negligible and the model

could be further simplified (Fig. 1B and Materials and Methods). In
this limit, the kinetics of the odorant pulse depend only on the
physics of the delivery system and are independent of odorant type.
However, surface interactions need to be taken into account to
explain the temporal profile of most odorants in our dataset
(Fig. 1C). Some of the odorants (red) can be fit with models with
low affinity to the surface (high ~Kd) and few surface binding sites

(low ~w). As ~w increases, the pulse shape becomes rounder (red–
orange). Odorants as geraniol (yellow–green), which fit with a
similar τa, but lower ~Kd, show a lingering plateau after the valve
turns off, indicating slow unbinding kinetics. Odors as 4-
methylphenol (cyan) are fit with a lower affinity but higher ~w, so
that their kinetics looks quite slow, but linger for a shorter time in
the tube. Odorants with even slower rising phase (blue) are usually
fit with fast binding kinetics (lowτa), which in general correlates
with an increase of the plateau (low ~Kd). Overall, odorants distribute
as a continuum in the parameter space (Fig. 1D), although they do
not fill this space uniformly.

In summary, this simple model that takes into account surface
interactions can reproduce complex odor-dependent kinetics of
simple odor puffs routinely used in the lab. Having a quantitative
framework to understand how these basic mechanisms affect odor
stimuli is important for the design of odor delivery systems and the
prediction of stimulus kinetics that affect response to odorants
(Martelli et al., 2013) and odorant mixtures (Su et al., 2011).

Delivering odor stimuli with naturalistic and defined
statistics
Sensory systems have evolved to encode naturalistic stimuli in
neural signals. Using naturalistic stimuli has therefore been a
powerful approach to characterize the function of sensory neurons
(Cao et al., 2011; Clark et al., 2014; Simoncelli and Olshausen,
2001; Schwartz and Simoncelli, 2001; Rieke and Rudd, 2009). This
approach is more challenging in olfaction, because natural odor
signals are comprised of whiffs and ‘blanks’ whose intensities and
durations can be distributed over many orders of magnitude (Murlis
et al., 1992, 2000; Celani et al., 2014). Using naturalistic odorant
stimuli could reveal features of neuron coding not readily apparent
from studying responses to artificial odorant signals. Previous
efforts have used a fan to drive air over an odor source, mimicking
natural plumes, but the resulting stimulus pattern is not reproducible
(Martelli et al., 2013; Budick and Dickinson, 2006; Nagel and
Wilson, 2011; Vickers et al., 2001), ruling out estimating neural
responses by trial averaging.

Our approach is to deliver an odorant signal whosewhiff and blank
statistics are drawn from a known distribution. We exploited the fact
that some naturalistic signals can be approximately segmented into
short pulses. Therefore, a target signal can be approximated by
adjusting the amplitude, duration and intermittency of a set of single
whiffs. The experimental apparatus we used is shown in Fig. 2A. A
pair of MFCs regulate airflow through an odor vial, controlling odor
concentration. A valve enables pulse timing control. Thus, MFC and
valve control signals can be iteratively tuned until the measured signal
is sufficiently close to the target signal.

First, we defined target distributions of whiff intensity and the
durations between whiffs (Fig. 2B). We characterized the flash
response of the odor delivery system, which determines the control
signals to the MFC and valve needed to generate a pulse of a desired
amplitude. Setting MFC flow rates to some fixed value, we briefly
activated the valve, and measured the resultant PID waveform. By
repeating this procedure over multiple MFC flow rates, we can fit
functions that approximately describe how the pulse statistics
depend on the dilution (Fig. 2C). We then generated a target
stimulus time series by repeatedly sampling from the distributions in
Fig. 2B. We first sampled a whiff intensity, then drew another
sample from the blank duration distribution, and so on, until a
skeleton of the odor stimulus was created. Since we sampled from
the target distribution in Fig. 2B, these statistics match the target
distributions.
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Next, we built an initial approximate control signal, or ‘ansatz’
for the MFC and for activation of the valves, by inverting the
functions fitted in Fig. 2C. This ansatz is shown in Fig. 2D (blue
trace). Measuring the stimulus using the ansatz revealed a sequence
of whiffs with varying amplitudes, but their amplitudes were not
perfectly correlated (r2=0.79) with desired whiff amplitudes
(Fig. 2E). These deviations stem from the fact that mapping in
Fig. 2C assumed isolated flashes, which is not true in this stimulus.
We therefore built a simple optimizer that varies the set point of the
MFCs before each valve opening till the correlation between
measured whiff intensities and desired whiff intensities is within
acceptable limits. Ten rounds of this optimization increased the
correlation (r2=0.96) (Fig. 2E).
Once a desired accuracy has been reached, the stimulus can be

replayed without further fine-tuning. Fig. 2F shows 10 repetitions of
the same stimulus, showing high reproducibility despite the nearly
1000-fold variation in signal intensity across whiffs. The coefficient
of variability (CV) for each whiff was well controlled and was
independent of whiff intensity (Fig. 2G).

Calibrating PIDs
PIDs have become common tools to measure odorant stimuli, since
they are fast and easy to use. However, they do not report an absolute
value of the gas phase concentration of odorants. Calibration is
necessary to compare the sensitivity of a receptor to different
odorants (Andersson et al., 2012), or to compare stimuli, and
responses across laboratories.
The PID can be calibrated using another device that can measure

absolute concentrations, such as GCMS devices or flame ionization
detectors (Andersson et al., 2012; Cometto-Muñiz et al., 2003).
However, this shifts the problem of calibration to another system,
which in turn needs to be calibrated. Another approach is to assume
the odorant headspace in the device is saturated, and use Raoult’s
Law and Henry’s Law to estimate the gas phase concentration of the
odorant, and then extrapolate to fast changes reported by the PID.
Such an approach has been used in Olsson et al. (2011) and van
Breugel and Dickinson (2014) or in conjunction with a tracer gas of
known concentration (Kim et al., 2011, 2015; French et al., 2014;
French and Meisner, 2007).
Here, we propose a method to calibrate the PID to any odorant that

it can detect. This method does not require additional equipment nor
does it make assumptions about headspace saturation. It works by
depleting a known volume of odorant and integrating the total PID
signal. Since the number of molecules in the pure odorant sample can
be estimated precisely using micropipettes and published datasheets,
the PID signal can be mapped onto the molecular efflux rate.
For example, to calibrate the PID to ethyl acetate, we placed 100 µl

of odorant in a 30 ml scintillation vial downstream of an MFC, as
shown in Fig. 3A. We forced air through the scintillation vial until all
odorant was depleted and repeated this for a few flow rates. The
volume of air and time required to evaporate all odorant decreased
with the flow rate (Fig. 3B,C). If the PID captured and ionized all
odorant molecules, the integrated PID signal would be constant,
corresponding to the total number of molecules of odorant in the vial.
However, we observed that the total integrated PID signal decreased
with the flow rate (Fig. 3D); an effect we attributed to flow-rate-
dependent partial capture of odorant molecules. To compensate for
this, we fitted an interpolant to this data (Fig. 3D, red line), and used
this to correct for variations in the total signal. Integrating the
corrected PID curves yielded curves of cumulative odorant vs time
that reached approximately the same height, corresponding to the
calculated number of moles of odorant (dashed line, Fig. 3E).

We then computed the odorant flux as a function of the flow
rate, by estimating the slope of the cumulative odorant curves
(Fig. 3F). Finally, we can combine these measurements to plot
odorant flux vs the PID signal, to generate a function that maps
PID values onto odorant flux. We repeated this calibration
process for three other odorants (ethanol, 2-butanone and pentyl
acetate), and found that all curves are approximately linear
(Fig. 3G,I).

Two odor environments
Odor fluctuations are caused by moving air and therefore can carry
information about the location and distance of an odor source
(Murlis et al., 1992; Mafra-Neto and Cardé, 1994). How animals
extract and exploit this information in different environments
remains unclear. Away from surfaces, odor transport is linear,
suggesting that air flow can maintain correlations between odor
components, and therefore the identity of the odor. However,
surface interactions can introduce delays in stimulus dynamics that
are odorant specific. Thus, in the presence of surfaces individual
monomolecular components of an odor might experience different
delays, affecting odor identity recognition (Stierle et al., 2013;
Szyszka et al., 2012). Effectively, there are two different odor
environments: (1) close to surfaces, where odors might become
decomposed, and (2) far from them, where odor coherence is
maintained. To what extent animals are aware of this difference
when interpreting odor signals remains unclear.

A better understanding and control of odor stimulation in the lab
is therefore necessary. Here, we have introduced a model of odor–
surface interaction (Fig. 1), which is often neglected in the
interpretation of both physiological and behavioral experiments.
These unavoidable interactions may be a stimulus feature that can be
exploited by animals. Our model will allow for the design of
experiments aimed at understanding how chemically complex odor
signals are encoded in neural activity and what information is
available to animals in different olfactory environments. Finally, our
approach to generate and quantify temporally complex stimuli
(Figs 2, 3) provides a flexible tool for the design of more
quantitative experiments aimed at understanding odor coding and
behavior in natural conditions.
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