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A mobility-based classification of closed kinematic chains
in biomechanics and implications for motor control
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ABSTRACT

Closed kinematic chains (CKCs), links connected to form one or more
closed loops, are used as simple models of musculoskeletal systems
(e.g. the four-bar linkage). Previous applications of CKCs have
primarily focused on biomechanical systems with rigid links and
permanently closed chains, which results in constant mobility (the
total degrees of freedom of a system). However, systems with non-
rigid elements (e.g. ligaments and muscles) and that alternate
between open and closed chains (e.g. standing on one foot versus
two) can also be treated as CKCs with changing mobility. Given that,
in general, systems that have fewer degrees of freedom are easier to
control, what implications might such dynamic changes in mobility
have for motor control? Here, | propose a CKC classification to
explain the different ways in which mobility of musculoskeletal
systems can change dynamically during behavior. This classification
is based on the mobility formula, taking into account the number of
loops in the CKC and the nature of the constituent joint mobilities.
| apply this mobility-based classification to five biomechanical
systems: the human lower limbs, the operculum-lower jaw
mechanism of fishes, the upper beak rotation mechanism of birds,
antagonistic muscles at the human ankle joint and the human jaw
processing a food item. | discuss the implications of this classification,
including that mobility itself may be dynamically manipulated to
simplify motor control. The principal aim of this Commentary is to
provide a framework for quantifying mobility across diverse
musculoskeletal systems to evaluate its potentially key role in motor
control.

KEY WORDS: Linkage, Kinematics, Closed kinematic chain,
Musculoskeletal systems, Degrees of freedom

Introduction

When first learning to stand, young humans quickly realize that two
feet are better than one. Add a one- or two-hand grip on a nearby
piece of furniture and you become especially tumble-proof. Why
does increasing the number of contacts with a fixed frame increase
an organism’s stability? Adding contacts does not change the
body’s mass, lower the center of gravity, shift the projection of the
center of gravity or increase friction — all factors typically associated
with increasing stability (Tanaka et al., 1996; Holbein and Chaffin,
1997; Hoffman et al., 1998; Whiting and Rugg, 2006; Hof, 2007).
And while additional contacts do expand the base of support, this
may not account entirely for the increased stability. Rather, these
contacts may increase stability in part by transforming the limbs
from open kinematic chains (OKCs; see Glossary) into a transient
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closed kinematic chain (CKC; see Glossary). Transforming an OKC
into a CKC (e.g. by standing on two feet instead of one) reduces the
system’s mobility (see Glossary) but also increases the stability (i.e.
decreases the likelihood of falling). Throughout musculoskeletal
systems, one can find many similar examples of CKCs; these may
be formed transiently as animals contact the substrate (Vaughan
et al., 1982; Schneider et al., 2005; Nyakatura and Andrada, 2013)
or they may be permanent structures composed of skeletal elements,
ligaments and muscles (Westneat, 1990; Van Gennip and
Berkhoudt, 1992; Hoese and Westneat, 1996; Patek et al., 2007;
Roos et al., 2009; McHenry et al., 2012; Camp et al., 2015;
Laitenberger et al., 2015; Niyetkaliyev et al., 2017; Levin et al.,
2017; Olsen et al., 2017).

Previous studies have primarily used CKCs as models to
understand how force and motion are transmitted in
musculoskeletal systems. For example, four-bar linkages (see
Glossary) in the skulls of fishes transform force from the body
muscles into motion of the cranial elements for suction feeding and
prey processing (Westneat, 1990; Van Wassenbergh et al., 2005;
Konow and Sanford, 2008; Camp et al., 2015; Kenaley and Lauder,
2016; Olsen et al., 2017). Closed chains of skeletal elements in the
skulls of birds explain how jaw muscles drive upper beak rotation
(Van Gennip and Berkhoudt, 1992; Hoese and Westneat, 1996;
Dawson et al.,, 2011; Gussekloo and Bout, 2005; Olsen and
Westneat, 2016). And a CKC in mantis shrimps shows how energy
stored in compression of an exoskeletal segment can drive
extremely rapid extension of an appendage (Patek et al., 2007,
McHenry et al., 2012). However, relative to an equivalent OKC,
CKCs also reduce mobility, defined as the total degrees of freedom
(DoF; see Glossary) or the total number of independently variable
ways in which a system can move. It is this role of CKCs in reducing
mobility that has been underappreciated and relatively unexplored
across a range of musculoskeletal systems. In addition, previous
work has focused mostly on structurally permanent CKCs; thus, the
commonalities between permanent and transient CKCs have not
been fully appreciated.

In this Commentary, I propose a classification of how the
mobility of biological CKCs can (or cannot) change during
behaviors (Fig. 1). This classification is based on two properties
from the linkage mobility formula (see below): the number of loops
and the nature of the constituent joint mobilities. I use ‘permanent’
and ‘transient’ to refer to a constant versus variable number of loops,
respectively, and ‘constant’ and ‘conditional’ to refer to constituent
joint mobilities that are constant versus variable, respectively. This
classification is important because it distinguishes the reasons for
dynamic changes (or lack thereof) in mobility during and across
behaviors. I illustrate each category using examples from various
musculoskeletal systems. Mobility has direct implications for motor
control: greater DoF give an organism a greater number of ways in
which to move but also a greater number of DoF that must be
controlled (Turvey et al., 1982; Newell and McDonald, 1994,
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Glossary

Closed kinematic chain (CKC)

Two or more links connected by joints to form a continuous loop; also
known as a ‘closed-chain linkage’.

Degrees of freedom (DoF)

The number of different ways in which a mechanical system can change
conformation, or the number of parameters needed to fully specify the
conformation of a system.

Four-bar linkage

Mechanical system composed of four rigid links connected in a loop by
four joints; one of the most commonly used linkages in engineering
applications.

Linkage

A mechanical system consisting of two or more links connected by joints,
as an open or closed kinematic chain.

Mechanism

Generally used interchangeably with ‘linkage’; however, ‘mechanism’
sensu stricto may refer to a linkage in which one link is stationary. Here,
‘mechanism’ is used to refer to a biological system with a particular
function (e.g. ‘jaw opening mechanism’), whereas ‘linkage’ is used to
refer to an OKC or CKC model of a particular mechanism.

Mobility

Here, the total DoF of a joint or linkage; ‘full mobility’ for a particular body
means three rotational and three translational DoF. Elsewhere, ‘mobility’
can also be used to refer to the full range of motion of a system.

Open kinematic chain (OKC)

Two or more links connected by joints that do not loop back on
themselves; also known as a ‘open-chain linkage’.

Parallel linkage

A linkage containing two or more closed loops; also known as a
‘multiloop linkage’.

Todorov and Jordan, 2002; Berthouze and Lungarella, 2004; Hong
and Newell, 2006). Thus, I also discuss implications of this
classification for motor control. It is my hope that considering CKCs
across diverse musculoskeletal systems will demonstrate the power
of a simple mathematical framework to (1) quantify mobility, (2)
generate hypotheses regarding the control of these systems and (3)
identify commonalities in structure and function.

Defining the organization and mobility of kinematic chains
OKCs and CKCs can be thought of as having three levels of
organization: (1) ‘configuration’, referring to the types of joints in
the linkage (see Glossary) and which of these joints are connected
by which links, (2) ‘geometry’, referring to the size or shape of the
links, and (3) ‘conformation’, referring to a particular state of the
linkage across its range of motion. These levels form a descriptive
hierarchy: for a single configuration there are multiple potential
geometries and for a single geometry there are multiple potential
conformations. Thus, one can think of mobility, or total DoF, as the
total number of ways in which to change the conformation of a
linkage.

Linkage mobility can be calculated from an equation known as
the Chebychev—Griibler—Kutzbach criterion (Miiller, 2009):

M= g dn (1
i=1

where M is the total mobility, ; is the number of joints, f; is the DoF
of each joint i, d is a dimensionality constant (d=3 for 2D linkages
and d=6 for 3D linkages) and 7 is the number of loops (closed
chains) in the linkage. More intuitively, one can think of ‘closing’ a
linkage as equivalent to fixing one link. From Eqn 1, the mobility of

Number of loops
Permanent

Ly
j=_
/
L

Fig. 1. A proposed mobility-based classification of closed kinematic
chains (CKCs) based on the number of loops and nature of the joint
mobilities. CKCs can have either a permanent or a transient number of loops
and have constituent joint mobilities that are either constant or conditional.
Each quadrant features the example musculoskeletal system(s) chosen for
detailed consideration in this Commentary, showing both the anatomy and
corresponding model. Clockwise from top left: the cranial kinetic mechanism of
mallards, the human lower limbs, the human upper jaw and mandible with a
food item, and the four-bar opercular mechanism of largemouth bass (top) and
antagonistic muscles that act at the human ankle (bottom).

Transient

Constant

Nature of joint mobilities

Conditional

an open-chain linkage (no loops, #=0) is simply the sum of the DoF
of each joint; thus, given the same set of joints, a closed chain will
always have fewer DoF than an open chain.

There are linkages for which the Chebychev—Griibler—Kutzbach
equation does not return the correct mobility, such as some multiloop
linkages with parallel, in-series hinge and linear sliding joints (Gogu,
2005). For such linkages, mobility must be calculated from the
kinematic constraint equations or using a virtual loop approach
(Zhang and Mu, 2010). And for some 3D four-bar linkages with
hinge joints at particular orientations (Chen and You, 2005), the
equation only works if the linkage is treated as a special type of planar
(2D) linkage (d=3). However, the equation works for all examples
here and, to my knowledge, there is no linkage representing a
musculoskeletal system reported to violate the mobility equation. Yet,
this is certainly worth further investigation given the interest in such
‘paradoxical linkages’ in engineering (Gogu, 2005; Zhang and Mu,
2010). Lastly, the mobility equation also assumes that each joint has
not reached the limit of its range of motion, which can substantially
reduce the potential range of conformations (Gatesy et al., 2009;
Manafzadeh and Padian, 2018). In the following sections, I discuss
the application of the mobility formula to each of the four classes of
CKC:s that I propose.

Transient CKCs with constant mobility

If the equation presented in the previous section is applied to the
human lower limbs, they can be categorized as a transient CKC with
constant mobility (Fig. 2A). The CKC formed when both feet
contact the ground is structurally transient because n changes
depending on whether one or both feet are in contact with the
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A Human lower limbs and corresponding linkage model

M Pelvis

M Tibia and fibula

M Ankle and foot

B Standing on single foot, open chain

C Standing on two feet, closed chain

Fig. 2. The human lower limbs can form a transient closed chain, dynamically decreasing system mobility. The human lower limbs (A) form a 12-degrees
of freedom (DoF) open kinematic chain (OKC) when standing on one foot (B) and a six-DoF CKC when standing on both feet (C). For this and all remaining
figures, circle and line drawings (here at the top of B and C) represent a simple schematic diagram of each linkage model: circles represent the joints (with
the number indicating the DoF of the joint), lines represent the links (in colors corresponding to the 3D schematics) and three short parallel lines indicate the
fixed link. Also, for all remaining figures, numbered orange arrows indicate one possible set of parameters (DoF) for specifying the system conformation, and

equations correspond to Eqn 1 (where M is the total mobility).

ground: standing on a single foot forms an OKC, in which case n=0,
whereas standing on both feet forms a single-loop CKC (r=1). How
much is mobility reduced by a biped standing on two feet versus
one? Standing on a single foot and assuming the hip, knee and ankle
joints have three, one and two rotational DoF, respectively (e.g.
Arnold et al., 2010), the lower limbs and pelvis have a total of 12
DoF (Eqn 1; Fig. 2B). By planting the second foot and closing the
open chain, the mobility is reduced by six (n=1 and d=6), giving the
lower limbs and pelvis six DoF when standing on two feet (Fig. 2C),
a 50% reduction. In addition, because this linkage is composed
entirely of rigid skeletal elements, the mobility of the transient CKC
remains constant regardless of the distribution of forces. This is
because a rigid element will faithfully transmit forces and torques in
any direction (compare this with the conditional mobility of CKCs
containing compliant elements, discussed below).

With an increasing number of limbs contacting a fixed frame,
organisms lose mobility but gain stability. For example, the six DoF
of the lower limbs during two-foot standing also limits the pelvis to
six DoF, such that any particular position and orientation of the
pelvis is achieved by a unique conformation of the lower limbs.
These six DoF can be specified by defining six axis rotations at
multiple sets of joints in the lower limb; one of many possible sets is
shown in Fig. 2C. Each DoF in a musculoskeletal system represents
a dimension or axis along which the organism can move but also a
dimension along which the neural system must control motion,
unless that dimension is redundant or irrelevant for a particular task
(Todorov and Jordan, 2002). A trade-off between mobility and
stability has been proposed for the functional evolution of the
shoulder joint in quadrupedal versus bipedal tetrapods (Sylvester,
2006; Veeger and Van Der Helm, 2007), although ‘mobility’ in
these studies includes range of motion and DoF. Whether there
exists a more general trade-off between mobility and stability in
musculoskeletal systems remains unclear. For the particular
example highlighted here, at least, by standing on two feet a

biped reduces its mobility (e.g. it can no longer kick with its free
foot) but increases its stability in response to perturbations if, for
example, the biped itself is the recipient of a kick.

Permanent CKCs with constant mobility

In contrast to transient CKCs, for a permanent CKC the value of # is
constant; that is, the number of loops remains the same. In this way,
the distinction between a structurally transient versus permanent
CKC (Fig. 1) follows from a distinction between a variable versus
constant # in the mobility equation (Eqn 1). Examples of permanent
CKCs in biological musculoskeletal systems include CKCs formed
entirely by rigid skeletal elements, such as the amniote rib cage
when the ribs are joined by a sternum (e.g. Claessens, 2009;
Brainerd et al., 2016; Brocklehurst et al., 2017; Capano et al., 2019).
A second example can be found in the skull of birds (Fig. 3A),
where the bones of the palate (jugal, palatine, pterygoid and
quadrate) form four- and five-bar parallel linkages (see Glossary)
that elevate and depress the upper beak (Bock, 1964; Van Gennip
and Berkhoudt, 1992; Hoese and Westneat, 1996; Dawson et al.,
2011; Olsen and Westneat, 2016). Because these skeletal elements
remain permanently articulated, the number of loops, #, does not
change across behaviors.

The bird cranial linkage demonstrates the mobility-reducing
effect not only of closed chains but also of a multiloop linkage
(n>1). Using the mallard duck as an example (Fig. 3A), one loop is a
four-bar linkage formed by the neurocranium, quadrate, jugal and
upper beak (Fig. 3B). In mallards, the quadrate articulates with the
neurocranium by a single process that appears to allow three DoF of
rotation (Dawson et al., 2011). However, the joints at either end
of the jugal appear to allow only two DoF of rotation. From Eqn 1,
the total mobility of the four-bar linkage is two DoF. Parallel to this
four-bar linkage, the neurocranium, quadrate, pterygoid, palatine
and upper beak form a five-bar linkage (Fig. 3C). This five-bar
linkage does not limit the rotational mobility of the quadrate, and it
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A Mallard skull with kinetic skeletal elements C  Five-bar loop (right side only) E Quadrate and upper beak elevation

M Palatine and vomer

M Neurocranium
M Upper beak

B Four-bar loop (right side only) D Four- and five-bar loops (right side only) F

Quadrate adduction

DoF;
blocked
by four-bar DoF solved

in four-bar

DoF shared between four- and five-bar

Fig. 3. The kinetic skeletal elements of the bird skull form a permanent closed chain with permanent mobility. The lower beak is shown only for
reference. The skeletal elements of the bird jaw apparatus (A) form a two-DoF four-bar linkage (B) and a four-DoF five-bar linkage (C) on each side of the
skull (orange arrows indicate DoF). The four- and five-bar linkages connect to form a multiloop linkage with two DoF (D) that couples rostral rotation of the

quadrates with upper beak elevation (E) and permits quadrate adduction—abduction independent of upper rotation (F).

would allow the upper beak to rotate independent of the quadrate,
for a total of four DoF. However, once combined (n=2), the four-bar
linkage effectively eliminates two of the DoF of the five-bar linkage,
resulting in a total mobility of two DoF for one side of the skull
(Fig. 3D). This permits the quadrate to rotate forward and
backward with upper beak rotation (Fig. 3E) and adduct—abduct
independently of upper beak rotation (Fig. 3F).

By definition, the mobility of a structurally permanent CKC with
constant mobility cannot be altered by the neural system. For this
reason, a more interesting comparison of mobility in permanent
CKCs as it relates to motor control can be found not within an
individual but among species with homologous CKCs of differing
mobility. For example, the nature of the neurocranium—quadrate
joint, formed by one or two processes of the quadrate that fit into a
socket or sockets on the neurocranium, varies among birds
(Hendrickx et al., 2015). Unlike mallards (Fig. 3), some species
(e.g. owls; Olsen and Westneat, 2016) have two widely spaced
processes that limit quadrate rotation to a single axis and reduce the
linkage mobility to one DoF. As the quadrates suspend the lower
beak (Fig. 3A), birds with greater linkage mobility likely have the
ability to rotate the lower beak about a dorsoventral axis (yaw) and
to control spreading between the left and right sides of the lower
beak (wishboning).

Permanent CKCs with conditional mobility

The examples presented so far have considered CKCs composed
entirely of rigid elements for which the mobility is constant; that is,
Eqn 1 holds under all conditions as long as the system remains a
CKC. In contrast, a CKC formed by one or more compliant
elements has mobility that varies under different conditions. For
example, ligaments cannot resist compression, resist tension only

when they are taut, and can be twisted about their long axis.
Although ligaments have complicated dynamic properties (e.g.
Barrett and Callaghan, 2017), including the ability to strain in
tension, for the purpose of calculating mobility I represent them here
as two links joined by a one-DoF sliding (prismatic) joint and two
spherical joints at either end (purple in Fig. 4A). If the sliding joint
has not reached its maximum excursion, it has one DoF and the link
represents a slack ligament. However, when the sliding joint reaches
its maximum excursion and is under tension, its mobility becomes 0
and the link represents a taut ligament. Thus, in the case of a CKC
containing a ligamentous link, the CKC is permanently closed but
the value of f; in Eqn 1 changes; the magnitude of this change is
conditional on the direction of forces transmitted through the
ligament, the conformation of the system and the material properties
of the ligament.

A well-documented example of a CKC containing a ligamentous
link is the four-bar opercular linkage (Fig. 4A), which functions to
depress the lower jaw in some fishes (Westneat, 1990; Camp and
Brainerd, 2015; Olsen et al., 2017, 2019). The linkage is formed by
three rigid links (the suspensorium, operculum and lower jaw) and a
compliant link (the interoperculomandibular ligament and
interoperculum) between the operculum and lower jaw. The
suspensorium—operculum joint allows full rotational DoF, while
the suspensorium—lower jaw joint allows at least one DoF of rotation
for lower jaw depression. When the ligament is slack, the four-bar
linkage has five DoF (Fig. 4B), allowing the lower jaw to be
depressed independent of the operculum (Fig. 4C). However, when
the ligament becomes taut, the mobility of the system is reduced to
four DoF (Fig. 4D) and lower jaw depression becomes coupled with
opercular elevation (Fig. 4E). For simple coupling (i.e. without
elastic energy storage), the ligament must be sufficiently stiff that
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A Bass opercular mechanism and corresponding linkage model

. Neurocranium
I Suspensorium

M Operculum

m Interoperculo-
mandibular
ligament

M Interoperculum

F Human ankle agonist-antagonist muscles and linkage model
M Soleus m. and tendon

M Tibia and fibula

M Tibialis anterior m.
and tendon (mostly
obscured by tibia)

Medial view

B Ligament slack condition

G Neither muscle isometric condition

H Plantarflexion and inversion

Soleus
shortens Tibialis
- anterior
I J lengthens

D Ligament taut condition

© 1

| Soleus isometric condition

@ @
16-6(2)=4 15-6(2)=3

J Only inversion

]
{

Tibialis
anterior
shortens

Fig. 4. Both the opercular mechanism in fishes and the human ankle joint have dynamic mobilities that depend on the mobilities of the constituent
joints. The four-bar opercular linkage of largemouth bass (A) includes a link composed of ligamentous and bony elements (purple). When the ligament is
slack (B), the linkage has five DoF (orange arrows) and the lower jaw can be depressed independent of opercular rotations (C). If the ligament is taut and in
tension, the mobility decreases to four DoF (D) and opercular elevation can drive lower jaw depression (E). An antagonistic muscle pair at the human ankle
(F) can be modeled as a multiloop linkage. When both muscles are non-isometric, the system has four DoF (G), including two rotational DoF at the ankle joint (H).
If one muscle contracts isometrically, the mobility decreases to three DoF (), allowing the other muscle to control the remaining one DoF at the ankle (J).

tension is transmitted through the ligament and not diverted into
lengthening of the ligament.

Similar to a ligamentous link, an isometrically contracting muscle
(amuscle that is actively generating tension but maintains a constant
length) conditionally reduces the mobility of a CKC by one DoF.
However, a difference is that the taut length of a muscle is neurally
controlled. Take, for example, the tibialis anterior and soleus, an
antagonistic muscle pair that is involved in rotating the foot about
the ankle (Fig. 4F). The ankle joint has two DoF — plantarflexion—
dorsiflexion and inversion—eversion — and the soleus acts to
plantarflex the foot whereas the tibialis anterior acts to dorsiflex
and invert the foot. When both muscles are non-isometric, this CKC
has four DoF (two DoF of motion at the ankle joint and two DoF for
‘twisting” of the soleus and tibialis anterior muscles, which can be
disregarded; Fig. 4G). In this state, one muscle alone cannot control

ankle rotation because the system is underactuated (i.e. a single
muscle controlling a two-DoF joint; Fig. 4H). However, if the soleus
activates isometrically, it reduces the DoF of the system by one,
turning the CKC into a one-DoF system (excluding two DoF of
muscle ‘twisting’; Fig. 4I) and allows the tibialis anterior to control
the remaining single DoF at the ankle joint (Fig. 4J). Additionally,
isometric contraction of both muscles locks both DoF, reducing the
mobility to zero, and allows the CKC to transfer energy from
muscles outside the CKC (Biewener and Daley, 2007; Roberts and
Azizi, 2011). In the case of a CKC containing a muscular link, the
mobility of the system is conditional on the activation of the muscle,
the material properties of the muscle and whether the muscle is in
tension.

The two preceding examples show that mobility can be a
dynamic property of musculoskeletal systems, even for
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structurally permanent CKCs, and thus may be a motor control
parameter. Other examples of conditional mobility CKCs include
energy-storing systems with locking mechanisms (see Glossary)
such as the mantis shrimp striking appendage (Patek et al., 2007)
or the neurocranium-rotation mechanism of snipefish (Longo
et al., 2018). With passive compliant structures, mobility can only
be controlled indirectly: the neural system can vary mobility by
changing the conformation of the system to place the compliant
element in or out of tension. In contrast, for CKCs with muscular
components, the neural system can directly control mobility by
muscle activation. The concept of ‘freezing’ DoF is used
throughout the motor coordination literature (e.g. Vereijken
et al., 1992; Newell and McDonald, 1994; Scholz et al., 2000;
Todorov and Jordan, 2002; Verrel et al., 2013), usually based on
the observation that motion is reduced or prohibited along a
particular joint axis. Freezing DoF is thought to be advantageous
when a system has more DoF than needed to perform a particular
task (Todorov and Jordan, 2002; Domkin et al., 2005) or during
the early stages of learning a motor task when precise control of all
DoF is not yet possible (Berthouze and Lungarella, 2004). But
such observations do not test whether muscles are activated with
the direct objective of reducing system mobility, raising the
question of whether mobility is itself a motor control parameter or
simply a consequence of other motor control strategies (Daley and
Biewener, 2006; Biewener and Daley, 2007; Daley et al., 2007,
Nishikawa et al., 2007).

Transient CKCs with conditional mobility

The CKC classification in Fig. 1 implies the existence of a fourth
class: a transient CKC with conditional mobility. Can such a class of
CKCs be found in nature? Feeding systems provide one example, as
they generally consist of an open kinematic chain that ‘closes’
around a compliant food item. Taking the human upper jaw and

A Human mandible open chain

M Neurocranium @We
G

1

M Mandible

C Food manipulation with closed chain

B Mandible closed chain without food puncture

mandible as an example, motion at the human temporomandibular
joint appears to occur predominantly along three DoF (Fig. 5A;
Gallo et al., 2006; Iriarte-Diaz et al., 2017; Menegaz et al., 2015):
two rotational DoF (depression—elevation and yaw) and one
translational DoF (protraction—retraction). And if the mandible is
assumed to behave as a single rigid body, a single ‘virtual joint’ can
be used to represent the left and right temporomandibular joints for
the purposes of mobility analysis. However, during food processing,
if a food item is grasped between the upper and lower teeth, it closes
a loop between the upper and lower mandible (Fig. 5B) and forms a
transient CKC (the reader can verify this with the aid of a soft food
item, such as a grape). As long as the food contacts the teeth, the
joint between the food and teeth can be represented as a 3D sliding
joint with five DoF, permitting the food item full rotational DoF and
two translational DoF along the tooth surface (Fig. 5B, inset).
Applying Eqn 1, the resulting CKC has a total of seven DoF, five for
food motion and two for jaw joint motion (Fig. 5B). As long as the
food is simply held and not punctured, the mandible can protrude or
retrude and yaw but not depress or elevate substantially. In forming
(and maintaining) this transient CKC, the mandible has lost a DoF.

For relatively tough foods, the mandible can continue to maintain
this three-DoF system, exerting a force sufficiently strong to hold the
food in place, but not so strong that the teeth begin to puncture the
food item. However, if the force exerted by the teeth on the food
exceeds the puncture force, the system gains additional mobility as
the mandible can now elevate to drive the teeth through the food.
Analogous to the previous examples of intrinsic compliant tissues
(e.g. ligaments, muscles), the compliance of an extrinsic link (i.e.
the food) creates a variable f; in the mobility equation (Eqn 1),
giving this transient CKC conditional mobility; in this case,
conditional on whether the bite force is sufficient to permit motion
of the teeth through the food. A CKC analysis brings an interesting
perspective to the mechanics of feeding. Firstly, the mobility of this

D Mandible closed chain with food puncture

E Food puncture with closed chain

Fig. 5. The human mandible with a food item has a mobility that changes with food contact and manipulation. Without a food item, the mandible is a
single-link three-DoF open chain (A). If a food item is simply held between the teeth without puncture (B), the tooth—food joint acts as a 3D sliding joint with
five DoF (inset), and the system becomes a seven-DoF closed chain (orange arrows). This closed chain decreases mobility at the jaw joint to two DoF, permitting
primarily yaw and protrusion (C). Food puncture adds at least one additional DoF, increasing the mobility to at least eight DoF (D) and restoring three

rotational DoF to the jaw joint, including mandibular elevation (E).
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transient CKC indicates the number of DoF the organism has for
manipulating the food item (while maintaining a biting grasp) to
best align the trajectory of the teeth with the fracture plane of the
food. Secondly, treating the food item as a link in a CKC provides
one approach to including tooth—food interactions in the study of
feeding systems (Brainerd and Camp, 2019). And thirdly, placing
the feeding system in a CKC classification scheme (Fig. 1)
highlights how feeding requires particularly complex motor control,
given the constantly changing mobility of the system, and identifies
a commonality between feeding and locomotor systems (but see
Granatosky et al., 2019).

Implications

Although the classification of CKCs laid out here may be well
grounded in the mobility equation and comprehensively
demonstrated, it serves little purpose if it is not biologically
relevant. This relevance depends on a still partially unresolved
question: is mobility manipulated, either evolutionarily or
dynamically through neural control, to improve motor control?
Considering each of the four categories of CKC discussed here
provides a means of answering this question. For permanent CKCs
with constant mobility (Fig. 1, top left), such as the kinetic cranial
mechanism of birds, does mobility evolve under selection for motor
control? If so, one would expect the mobility of a system to change
through evolution in association with the DoF required for that
system. For transient CKCs with constant mobility (Fig. 1, top
right), like the human lower limbs, it remains unresolved whether
two-leg standing is more stable because it expands the base of
support or because the legs form a CKC. An experimental setup in
which the base of support can be modified independently of the
number of ground contacts (e.g. using specially designed footwear)
would enable each factor to be evaluated independently.

For permanent CKCs with conditional mobility (Fig. 1, bottom
left), such as those with isometrically contracting muscles, are the
‘frozen DoF’ observed during particular behaviors the result of
muscles activating isometrically to directly reduce mobility or simply
the result of reduced motion along a particular dimension? After all,
maintaining isometry under a changing force regime is a sufficiently
complex control problem in itself that it may not simplify the larger
control problem. This could be tested by applying external forces to
such a musculoskeletal system to probe whether reduced mobility is
dynamically maintained during a particular behavior and whether this
mobility also varies as expected with different behavioral tasks.
Lastly, for transient CKCs with conditional mobility (Fig. 1, bottom
right), where a compliant structure closes the kinematic chain, does
the system increase in stability as a result of a decrease in mobility?
This could be tested by perturbing systems while also varying the
compliance and mobility of the chain-closing element; for example, a
feeding system processing foods with different material properties
(e.g. Reed and Ross, 2010).

These experiments presuppose a means of clearly quantifying the
mobility of a musculoskeletal system, a topic also in need of further
investigation. How can mobility be considered in combination with
range of motion? For example, a joint may allow motion along a
particular DoF, but if the allowed motion is too small to be
biologically relevant, that DoF is hardly significant. Additionally,
the mobility observed during in vivo motion is a subset of the total
mobility; thus, passive manipulation should play a role in
establishing mobility. And lastly, more work is needed to
determine how to represent the mobility of compliant structures.
For example, do muscular hydrostats have finite mobility? And how
should the mobility of a ligament under tension but still capable of

strain be represented? This Commentary extends mobility to
systems with non-rigid elements, but the general usefulness of
applying linkages with rigid links to systems with compliant
elements warrants further exploration.

Conclusion

The power of the linkage mobility analysis presented here lies in its
ability to combine diverse musculoskeletal systems into a single
framework. In this Commentary, I have shown how a simple
equation (Eqn 1) can be used to quantify mobility in various
biomechanical systems. This common framework allows dynamic
changes in mobility to be compared across systems. For example,
the existence of transient CKCs with conditional mobility suggests
that different motor control strategies may be employed to
dynamically change mobility. This can be achieved by, for
example, adding fixed substrate contacts to form transient CKCs,
shifting the force balance to engage a ligamentous coupling or using
isometric muscle contraction to freeze a DoF. Given the centrality of
mobility to motor control (Saltzman, 1979; Turvey et al., 1982;
Newell and McDonald, 1994; Zatsiorsky, 1998; Todorov and
Jordan, 2002; Hong and Newell, 2006), one would expect mobility
to be a relevant control parameter. But do motor control programs
manipulate mobility directly or does mobility change simply as a
consequence of other motor control strategies (Daley and Biewener,
2006; Biewener and Daley, 2007; Daley et al., 2007; Nishikawa
et al., 2007)? A consideration of such different examples of CKCs
from the perspective of mobility broadens our traditional conception
of what constitutes a CKC and expands the potential functions of
CKCs from transmitting force and motion to include their dynamic
and substantial effect on mobility. I hope that in demonstrating the
ways in which mobility can vary structurally and dynamically in
musculoskeletal systems, this Commentary encourages the study of
mobility both as a potential explanation for different motor control
strategies and as a useful concept for comparing otherwise
seemingly disparate musculoskeletal systems.

Appendix

Figure methods and source data

Figs 1-5 were created from computed tomography (CT) scans of a
mallard, human and largemouth bass. The mallard CT scan was
downloaded from digimorph.org, with thanks to the University of
Texas High-Resolution X-ray CT Facility, Dave Dufeau and National
Science Foundation grant 11S-9874781 to D. Dufeau. The human CT
scan was downloaded from the Visible Human Project at the
University of lowa (mri.radiology.uiowa.edu/visible_human_datasets.
html). The largemouth bass scan was downloaded from xmaportal.org
in the study ‘Largemouth Bass Feeding’ (ID BROWNG6; Camp and
Brainerd, 2015). Linkage models were created and manipulated using
the R package ‘linkR’ (v1.2; Olsen and Westneat, 2016), and mesh
renderings were created using the R package ‘svgViewR’ (v1.4;
https://CRAN.R-project.org/package=svg ViewR).
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