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How humans initiate energy optimization and converge on their
optimal gaits
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ABSTRACT
A central principle in motor control is that the coordination strategies
learned by our nervous system are often optimal. Here, we combined
human experiments with computational reinforcement learningmodels
to study how the nervous system navigates possible movements to
arrive at an optimal coordination. Our experiments used robotic
exoskeletons to reshape the relationship between how participants
walk and how much energy they consume. We found that while some
participants used their relatively high natural gait variability to explore
the new energetic landscape and spontaneously initiate energy
optimization, most participants preferred to exploit their originally
preferred, but now suboptimal, gait. We could nevertheless reliably
initiate optimization in these exploiters by providing them with the
experience of lower cost gaits, suggesting that the nervous system
benefits from cues about the relevant dimensions along which to re-
optimize its coordination. Once optimization was initiated, we found
that the nervous system employed a local search process to converge
on the new optimum gait over tens of seconds. Once optimization was
completed, the nervous system learned to predict this new optimal gait
and rapidly returned to it within a few steps if perturbed away. We then
used our data to develop reinforcement learning models that can
predict experimental behaviours, and applied these models to
inductively reason about how the nervous system optimizes
coordination. We conclude that the nervous system optimizes for
energy using a prediction of the optimal gait, and then refines this
prediction with the cost of each new walking step.

KEY WORDS: Sensorimotor control, Exoskeletons, Metabolic cost,
Energy expenditure, Reinforcement learning

INTRODUCTION
People often learn optimal coordination strategies. That is, the
nervous system has an objective for movement and it adapts its
coordination to minimize this objective function. This optimization
principle underlies theories on the control of reaching, grasping,
gaze and gait, although the nervous system may seek to minimize
different objectives for each of these tasks (Alexander, 1996; Flash
and Hogan, 1985; Kording et al., 2007; Kuo and Donelan, 2010;
Scott and Norman, 2003; Shadmehr et al., 2016; Srinivasan and
Ruina, 2005; Todorov, 2004; Todorov and Jordan, 2002). This
principle has provided insight into healthy and pathological

behaviour, as well as the functions of different brain areas
(Bastian, 2008; Krakauer, 2006; Shadmehr and Krakauer, 2008;
Wolpert et al., 2011). While there is a growing body of evidence that
preferred behaviour in these various tasks indeed optimizes
reasonable objective functions, how the nervous system performs
this optimization is largely unknown (Franklin and Wolpert, 2011;
Todorov, 2004). This is because the primary focus of past work has
been on identifying the objectives that explain our existing
behaviours, rather than on how these objective functions are
minimized over time (Franklin and Wolpert, 2011; Todorov, 2004).
Here, we used both experiments and models to understand how the
nervous system learns to optimize our movements.

The optimization of movement is a challenge for the nervous
system. To perform a movement, the nervous system has thousands
of motor units at its disposal, and it can finely vary each motor unit’s
activity many times per second. This flexibility results in a
combinatorially huge number of candidate control strategies for
performing most movements – far too many for the nervous system
to simply try each one to evaluate its objectives (Bellman, 1952;
Bernstein, 1967). The nervous system must instead efficiently
search through its options to seek optimal solutions within usefully
short periods of time. A second consequence of the large number of
control strategies available to the nervous system is that it can never
know whether it has truly converged to the best of all possible
options. But if it is indeed at an optimum, continuously searching
for better options will itself be suboptimal (Sutton and Barto, 1998).
Thus, the nervous system must determine when to initiate
optimization and explore new coordination patterns, and when to
exploit previously learned strategies (Tumer and Brainard, 2007;
Wilson et al., 2014; Wu et al., 2014).

Here, we used human walking to understand how the nervous
system initiates and performs the optimization of its motor control
strategies. Human walking is a system well suited for studying these
questions because the primary contributor to the nervous system’s
objective function – metabolic energy expenditure – is both well
established and directly measurable. Decades of experiments using
respiratory gas analysis have established that our preferred gait
parameters – from walking speed to step frequency and step width –
minimize energetic cost (Atzler and Herbst, 1928; Donelan et al.,
2001; Elftman, 1966; Minetti et al., 1993; Molen et al., 1972;
Ralston, 1958; Umberger and Martin, 2007; Zarrugh et al., 1974).
While some optimal motor control strategies may be established
over relatively long periods of time, we recently discovered that the
nervous system can re-optimize aspects of gait within minutes
(Selinger et al., 2015). This allows us to observe energy
optimization within a lab setting and within a reasonably short
period of time. Studying optimization in tasks such as reaching or
saccades is less straightforward as the nervous system’s objective
function appears to include a term not only for task effort but also
for task error, with some unknown weighting between these two
contributors (Scott, 2004; Shadmehr et al., 2016; Todorov, 2004;Received 27 December 2018; Accepted 2 September 2019
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Wolpert and Ghahramani, 2000). Furthermore, motor learning in
these tasks appears, at least initially, to prioritize reducing error over
optimizing energy cost, requiring creative experiments to decouple
error-based learning from reward-based learning (Krakauer and
Mazzoni, 2011; Wolpert et al., 2011).
To study how the nervous system performs energy optimization in

humanwalking, we leveraged our previously developed experimental
design within which people reliably optimize their gait to minimize
energetic cost (Selinger et al., 2015). This design used robotic
exoskeletons to reshape the relationship between step frequency and
energetic cost – which we term the cost landscape – shifting the
energetically optimal step frequency away from the normally
preferred and optimal step frequency. When given sufficient
experience with the new cost landscape, participants in our past
experiments learned to adapt their step frequency to converge on the
new energetic minimum (Selinger et al., 2015). More recently, we
have found the same to be true for adapting step width, and when
using other methods for changing cost landscapes (Abram et al.,
2019; Simha et al., 2019).We use the term optimization to refer to the
process of adapting coordination towards new patterns that minimize
the objective function (in our case energy cost). This might
alternatively be called reward-based adaptation (Krakauer and
Mazzoni, 2011; Wolpert et al., 2011). We also distinguish between
optimization and prediction, where the former is the process of trying
new coordination patterns as the nervous system converges towards
the minimum, and the latter is the nervous system storing and
recalling previously experienced coordination patterns (O’Connor
and Donelan, 2012; Pagliara et al., 2014). For our purposes, we
consider prediction, because it involves the storage and recall of a
coordination pattern, as commensurate with learning.
While our prior work demonstrated that the nervous system can

continuously optimize energetic cost, it did not allow us to decipher
the nervous system’s mechanisms for this optimization. To understand
thesemechanisms, herewe used a series of experiments that controlled
the type of initial experience participants received with a new
energetic cost landscape to determine what gait experience was
sufficient for the nervous system to stop exploiting a previously
optimal solution and initiate a new optimization.We designed the new
experiments to isolate the different types of experience participants
received during the exploration period of our previous experiment,
which was broad, varied and sufficient to elicit optimization (Selinger
et al., 2015). We considered three possibilities: (1) the nervous system
can spontaneously initiate optimization, (2) the nervous system can
initiate optimization after experience with discrete points on the new
landscape, and (3) the nervous system only initiates optimization in
response to broad experience with the new landscape. Once the
nervous system initiated optimization, we studied how it explored new
gaits, in order to understand the nervous system’s algorithms for
converging on new energetic optima. Based on common algorithms in
numerical optimization, we again considered three possibilities:
(1) the nervous system uses a ‘choose best’ strategywhere it remains at
the gait with the lowest experienced cost, (2) the nervous system uses a
‘sampling’ strategy where it intermittently explores a range of gaits, or
(3) the nervous system uses a ‘local search’ strategywhere it continues
to adjust a given gait parameter as long it continues to result in cost
reductions.
In addition to experiments, we use computational models of the

nervous system’s optimization to understand how the nervous system
initiates and converges on optimal movements. These models use
reinforcement learning algorithms to iteratively learn and then rapidly
predict the energy optimal gait (Sutton and Barto, 1998; Sutton et al.,
1992). We chose a reinforcement learning approach for two reasons.

First, it has been used to successfully find the optimal coordination
for walking and reaching in robots and physics-based simulations
(Collins et al., 2005; Lillicrap et al., 2016 preprint; Peters and Schaal,
2008). We view this as a proof of principle for human motor control.
Second, the necessary physiological components for humans to
perform reinforcement learning, including reward prediction and
sensory feedback, are present in our nervous systems and well studied
for learning non-motor tasks (Schultz et al., 1997). We used the
findings from our specific experiments to guide the development of
these reinforcement learning models, and the models to inductively
reason about how the nervous system optimizes coordination.

MATERIALS AND METHODS
Experiments
Participants
We performed testing on a total of 36 healthy adults (body mass:
63.9±9.8 kg; height: 1.69±0.10 cm; means±s.d.) with no known
gait or cardiopulmonary impairments. Simon Fraser University’s
Office of Research Ethics approved the protocol, and participants
gave their written, informed consent before experimentation.

Exoskeleton hardware and controller
We manipulated energetic cost using robotic exoskeletons mounted
about the knee joints (Fig. 1A,B) (Selinger et al., 2015). Each
exoskeleton weighed 1.1 kg and was composed of a custom carbon
fibre shell and custom steel gear train coupled to an off-the-shelf rotary
magnetic motor (BLDC40S-10A, NMB Technologies Inc.). During
walking, the relatively low angular velocity characteristic of knee
motion was transformed by the gear train to produce relatively high
angular velocity at the motor. This rotational motion in the motor’s
rotor induced voltage in the motor’s windings and, when allowed,
electrical current. The induced current generated its own magnetic
field that resisted the motion of the knee with a torque proportional to
the current magnitude. We used a custom control unit to measure and
control the flow of electrical current through the motor, and therefore
the magnitude of the resistive torque applied to the knees.

All participants experienced a ‘penalize-high’ control function
(Fig. 1C–G), where the applied resistance, and therefore added
energetic penalty, was minimal at low step frequencies and increased
as step frequency increased (Selinger et al., 2015). Our past
experiments demonstrated that this control function reshapes the
relationship between step frequency and energetic cost, creating a
positively sloped energetic gradient at the participant’s initial preferred
step frequency, and an energetic minimum at a lower step frequency.
To implement this controller, we made the commanded resistive
torque sent to the control unit proportional to the participant’s step
frequency measured from the previous step. We calculated the step
frequency for an individual step as the inverse of the time between foot
contact events, identified from the characteristic rapid fore–aft
translation in ground reaction force centre of pressure from the
instrumented treadmill (FIT, Bertec Inc.).We sampled ground reaction
forces, and measured motor current and voltage, at 200 Hz (NI DAQ
PC1-6071E, National Instruments Corporation). We commanded step
frequency, and the newly desired knee torque, in real time at 200 Hz
using custom software (Simulink Real-TimeWorkshop,MathWorks).
In the controller off setting, the commanded current, and thus
commanded resistive torque, was zero.

Experimental protocol
The protocol consisted of four distinct periods: Baseline Period,
Habituation Period, First Experience Period, and one of the three
possible Second Experience Periods (Fig. 2A–F, respectively,
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described in detail below). We used the Baseline Period to identify
participants’ normally preferred gait and the Habituation Period to
familiarize participants with walking at a range of gaits. Participants
experienced the new cost landscape for the first time during the First

Experience Period, allowing us to determine whether they
spontaneously optimized their gait. These three periods of the
experimental protocol were common to all participants. During the
Second Experience Period, we systematically varied the type of
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Fig. 1. Experimental design. (A,B) By controlling a motor attached to the gear train of our exoskeletons, we can apply a resistance to the limb that is proportional
to the participant’s step frequency. (C) Design of the penalize-high (green) control function. (D) Schematic energetic cost landscapes. Adding the energetic
cost of the penalize-high control function to the original cost landscape (grey) produces a new cost landscape with the optimum shifted to lower step frequencies
(green curve). (E) Measured energetic cost landscapes (reproduced from Selinger et al., 2015) for the penalize-high (green) control function and controller off
condition (grey). The lines are 4th order polynomial fits with 95% confidence intervals (shading), shown only for illustrative purposes. The dashed grey arrow
illustrates the direction of adaptation from initial preferred (green square) to final preferred step frequencies (green triangle). On average, participants decreased
their step frequency by approximately 6% to converge on the energetic minima and reduce cost by 8%. (F) The penalize-high control function creates a positively
sloped energetic gradient about the participants’ initial preferred step frequency. (G) Participants adapted their step frequency to converge on the energetic
minima. Error bars represent 1 s.d. Asterisks indicate statistically significant differences in energetic cost when compared with the cost at the initial or final
preferred step frequency (0%).
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experience that participants received with the new cost landscape to
study which types were sufficient to initiate optimization. To
accomplish this, we randomly assigned participants to one of the
three groups that received different kinds of experience during this
period. All four periods were completed in one testing session,
which lasted 3 h and had no more than 2.5 h of walking to reduce
fatigue effects. Participants were given between 5 and 10 min of rest
in between each of the four walking periods. Table S1 provides a
detailed outline of initial, added and final participant numbers for
each experimental condition.
At the beginning of testing, we instrumented participants with the

exoskeletons and indirect calorimetry equipment (VMax Encore
Metabolic Cart, VIASYS®). We then determined their resting
energetic cost during a 6 min quiet standing period. Following this, all
participants completed the Baseline Period of 12 min of walking while
wearing the exoskeletons, but with the controller turned off (Fig. 2A).
The exoskeleton added small inertial and frictional torques when the
controllerwas off, but themotor addedno additional resistance (Selinger
et al., 2015). We used the average of the final 3 min of walking data to
determine participants’ ‘initial preferred step frequency’.

Next, participants completed a Habituation Period where they
were familiarized with walking at a range of step frequencies
(Fig. 2B). During this Habituation Period, the controller remained
off so that participants did not gain experience with the new
energetic landscape. We first encouraged participants to explore
walking with very long slow steps or very short fast steps.
Participants next practiced walking at three different steady-state
tempos, played for 3 min each. These tempos were +10%, −10%
and−15% of the initial preferred step frequency. In the final stage of
habituation, participants practiced walking to a sinusoidally varying
metronome tempo, which had a range of ±15% of the initial
preferred step frequency and a period of 3 min.

Following the Habituation Period, we explained to participants
that they would next walk for 6 min with the exoskeleton turned off,
at which point the exoskeleton would turn on and they would walk
for a further 12 min. They were given no other directives about how
to walk and at no point during testing were participants provided
with any information about how the controller functioned, or how
their step frequency influenced the resistance applied to the limb.
The participants then completed the First Experience Period,
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beginning with 6 min of walking with the controller off, followed by
12 min of walking with the controller on (Fig. 2C).
Next, each participant completed one of the three Second

Experience Periods (described below). Prior to beginning this
testing period, we informed all participants that they would be
walking for 30 min and that the exoskeleton controller would be on
for the first 24 min and off for the final 6 min. To gain insight into
the progress of optimization during each Second Experience Period,
1 min probes of participants’ self-selected step frequency occurred
at the 6th, 10th and 14th minute, along with a final 6 min probe at the
18th minute (Fig. 2D–F).

Metronome guided discrete experience
We informed participants assigned to this experience that at times the
metronomewould be turned on, during which they should match their
steps to the steady-state tempo, and that when the metronome turned
off, they no longer had to remain at that tempo (Fig. 2D). We gave
participants no further directives about how to walk. The metronome
tempos were −15%, −10%, +5% and +10% of initial preferred step
frequency and we played each for 3 min. We chose these tempos such
that they spanned the energetic landscape but did not include step
frequencies explicitly at the expected optima or the preferred step
frequency (approximately−5%and 0%, respectively).We randomized
the order of the tempos. We turned off the metronome following each
tempo for the 1 min probes of participants’ self-selected step
frequency.

Metronome guided broad experience
We provided those assigned to this experience with the same
instructions as those in the metronome guided discrete experience,
except that in this case the metronome tempo would change slowly
over time (Fig. 2E). A sinusoidally varying metronome tempo was
played for 3 min, four separate times, which were once again
separated by 1 min probes of self-selected step frequency. The
sinusoidal tempo had a range of ±15% of the initial preferred step
frequency, a period of 3 min, and began and ended at 0% of the initial
preferred step frequency. In this manner, the metronome guided
participants through the complete landscape but always returned them
to their preferred step frequency prior to a probe.

Self guided broad experience
We informed those assigned to this experience that at times wewould
verbally give them the command ‘explore’, at which point they
should explore walking at a range of different step frequencies, and
that they should continue to do so until we give them the command
‘settle’, at which point they should settle into a steady step frequency
(Fig. 2E). We gave them no directives about what their steady-state
step frequency should be. We instructed participants to ‘explore’ four
separate times, each lasting 3 min and once again separated by 1 min
probes of self-selected step frequency. When we gave the command
‘settle’, participants could be at any self-selected step frequency.

Experimental outcome measures
As defined earlier, we calculated each participant’s initial preferred
step frequency as the average step frequency during the final 3 min of
the Baseline Period. Individual participant’s variability in step
frequency, calculated as a coefficient of variation, was also assessed
during this time period. To asses participants’ optimization progress
when first exposed to the new cost landscape, average step frequency
was calculated during the final 3 min of the First Experience Period.
To assess the progress of optimization throughout the Second
Experience Period, we calculated average step frequency during

the final 30 s of each probe. To assess participants’ level of
optimization, following all provided experiences, we calculated the
‘final preferred step frequency’ as the average step frequency during
the 21st to 24th minute of the Second Experience Period, just prior
to the controller being turned off. To assess whether participants re-
optimized when returned to the natural landscape, the ‘re-adaptation
step frequency’ was calculated as the average step frequency
during the final 3 min of the Second Experience Period, when
the controller was turned off. To determine whether average step
frequency values were different from initial preferred step frequency
values (0%), we used t-tests with a significance level of 0.05. To
determine whether average step frequency values were different from
the optimal step frequency determined from our prior experiment
(5.7 ±3.9%; Selinger et al., 2015), we used two-sample t-tests with a
significance level of 0.05.

To understand how participants were converging to optimal gaits,
we also assessed the rate at which participants adapted their step
frequency throughout the protocol. To assess adaptation rates when
first exposed to the new landscape, we used step frequency time series
data from minutes 6 to 18 of the First Experience Period, when the
controller was first turned on. To assess the progress of optimization
during the Second Experience Period, we used data from the 1 min
probes. To asses re-adaptation, we also used data from minutes 24 to
30 of the Second Experience Period, when the controller was turned
off. In all cases, step frequency time series data were grouped across
participants of the same protocol and fitted with a single-term time-
delayed exponential. For plotting purposes, we also averaged across
participants in the same protocol and calculated the across-participant
standard deviation at each time point.

Identifying spontaneous initiators
A subset of participants displayed gradual adaptations in gait during
the First Experience Period and converged to lower, less costly, step
frequencies consistent with the energetic optima. We labelled these
participants as ‘spontaneous initiators’ if they met two criteria. First,
during the final 3min of the First Experience Period, we required their
average step frequency be below 3 s.d. in steady-state variability,
determined from the final 3 min of the Baseline Period. For most
participants, this equated to a decrease in step frequency of
approximately 5%. Second, the change in step frequency could not
be an immediate and sustained response to the exoskeleton turning
on. Such a response implies a mechanical or reflex response to a
change in knee resistance, rather than optimization (Lam et al., 2006).
Participants’ final step frequency at the end of the First Experience
Period had to be significantly lower than the step frequency measured
in the 10th to 40th second after the exoskeleton turned on (one-tailed
t-test, P<0.05). Fig. S1 illustrates how we discriminated spontaneous
initiators from those who did not meet these criteria, whom we term
‘non-spontaneous initiators’. We used a two-sample t-test with a
significance level of 0.05 to compare average step frequency during
the final 3 min of the First Experience Period for the spontaneous
initiators and non-spontaneous initiators.

We analysed spontaneous initiators as a new group, separate from
the three second experience groups. We reasoned that including
them would have obscured insight into the effects of the additional
experience because they had already converged to their new optima.
We added additional participants to the second experience groups to
rebalance our conditions (see Table S1). We tested whether high
natural gait variability, which results in a more expansive and
therefore more clear sampling of the new cost landscape, may be a
predicator of spontaneous initiation. To do so, we used a one-tailed
two-sample t-test with a significance level of 0.05 to compare step-
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to-step variability prior to the controller even being turned on
(during the final 3 min of the Baseline Period) for the spontaneous
initiators and non-spontaneous initiators.

Identifying effects of high and low cost experience
Our initial analysis of data from the Second Experience Periods
indicated that the first experience with low step frequencies, and
therefore low costs, had a lasting effect on the participants’ self-
selected step frequency. We used two-sample t-tests with a
significance level of 0.05 to compare self-selected step frequencies
during the first probe, following experiencewith high or low costs, for
the metronome guided discrete experience group and the self guided
broad experience group.
To investigate the different effects of high and low cost

experience, along with the order of the experience, we added
additional participants to the metronome guided discrete experience
group (see Table S1). For the added participants, the experience
prior to the first or last probe was set to be either the highest (+10%)
or lowest (−15%) step frequency, with all other step frequencies
assigned in random order. In total for the analysis, five participants
experienced +10% and four experienced −15% prior to the first
probe. Prior to the last probe, four participants experienced +10%
and five experienced −15%. While these participant numbers are
low, to detect an across-participant average difference in step
frequency of at least 5%, given an across-participant average
standard deviation in step frequency of 2.5%, we calculated that we
required only four participants per group to achieve a power of 0.8.
To determine the effects of high and low cost experience, as well as
their order, we used a two-way ANOVA to compare the preferred
step frequencies during the first and last probes following
experience with the highest and lowest step frequencies. We then
used post hoc two-sample t-tests with a significance level of 0.05 to
compare effects of high and low cost experience during the first and
last probes.

Modelling
Simple reinforcement learning model
We first tested whether a ‘simple reinforcement learning model’ can
reproduce the experimental behaviours observed during energy
optimization. Reinforcement learning, applied to our context, allows
the nervous system to iteratively learn a ‘value function’ (Q) that is the
predicted relationship between step frequency and energetic cost (i.e. a
predicted cost landscape). For each new step, the nervous system
selects a step frequency, or ‘action’ (a), in accordance with its ‘policy’
(π), which is to choose the energy minimal step frequency. We use ai
to represent one executed step frequency. Each time the nervous
system executes a new step frequency, it measures the resulting
energetic cost, or ‘reward’ (r), and updates its predicted cost for that
step frequency. Here, we make the assumption that the reward cannot
be measured perfectly because of ‘measurement noise’ (nm); nor can
the action be executed perfectly because of ‘execution noise’ (ne).
Consequently, the nervous system does not simply replace the old
predicted value with the new reward. Instead, it updates the old value
by some fraction of the measured reward, referred to as the ‘learning
rate’ (α), according to the equation:

QðaiÞ ¼ QðaiÞ þ aðr � QðaiÞÞ: ð1Þ

Fig. 6A summarizes this reinforcement learning algorithm. As a
compromise between clarity and generality, we elected to use
conventional reinforcement learning terminology (e.g. value-
function) and naming conventions (e.g. Q), and where sensible

indicate what these terms and names represent in our particular
experiment (e.g. predicted cost landscape).

The learner learns a value-function (predicted cost landscape)
that is a prediction of the actual value returned by the environment
(actual cost landscape). We refer to the predicted cost landscape as
Q, and the actual cost landscape as Q*. In our experiments, the
actual cost landscape is initially the original cost landscape – the
dependence of energetic cost on step frequency during natural
walking when the controller is turned off. We modelled it as the
following quadratic function:

Q�
off ðAÞ ¼ 10 � A

100

� �2

þ1; ð2Þ

where A is a set of 35 possible step frequencies, or actions, that
range between −17% and +17%. Our choice to discretize the action
space enforces local learning, where actions at distinct step
frequencies have no effect on the expected value of others. It is
possible, if not likely, that the nervous system does not discretize its
action space in this way but may rather store a representative
function. While the choice to discretize the action space may affect
the time course of individual simulations, the general behavioural
features of energy optimization we find are unaffected. The
predicted cost has a normalized cost of one at the optimum and a
curvature that approximates our experimentally measured landscape
(Fig. 6C). To simulate the controller turning on, we changed Q* to
the new cost landscape – the dependence of energetic cost on step
frequency during walking under our control function. We modelled
it as:

Q�
onðAÞ ¼ Q�

off ðAÞ þ
A

60
þ 1

4

� �
; ð3Þ

where the cost added toQ�
off approximates the energetic effect of our

controller, creating a landscape similar in shape to that which we
measure experimentally (Fig. 6C).

Parameter sensitivity analysis
We performed a sensitivity analysis to determine feasible ranges for
model parameters that are consistent with both experimentally
measured rates of convergence to the optimum and experimentally
measured variability in step frequency. To do so, we repeatedly
simulated a protocol that was similar in design to our experimental
First Experience Period. The simulated protocol lasted 1440
walking steps (approximately 12 min) in which the landscape
changed fromQ�

off toQ
�
on after 720 steps (approximately 6 min). For

each step, the simple reinforcement learning model chose its step
frequency by applying its policy to its current value function, and
then updated its value function with each new reward. Also, at each
step, the contribution of measurement noise to the sensed reward
(nm) was sampled from a Gaussian distribution with zero mean and
a non-zero standard deviation. We explored standard deviations that
ranged between 0.1% and 6.0% of the energetic cost at the initial
preferred step frequency during natural walking. We modelled the
contribution of execution noise to the executed action (ne) in the
same manner, exploring values that ranged between 1.0% and 3.0%
of the initial preferred step frequency. The contribution of a
measured reward to the update of the value function is determined
by the learning rate (α) – we explored learning rates that ranged
between 0.01 and 1.00.

Because of the stochastic nature of the measurement and
execution noise, we repeated simulations 1000 times for each
combination of parameter settings. We then determined the rate of
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convergence to the optimum by averaging simulated step frequency
data across the repeated simulations and then fitting the final 720
steps with a single-process exponential model. Higher learning
rates, which put greater weight on new measurements as opposed
to past measurements, led to faster convergence to the optimum
(Fig. S2A). This rate of convergence was largely unaffected by
measurement noise, and only minimally affected by execution
noise, where higher execution noise slowed convergence to the
optimum. In our experiments, the convergence to the new optimum
frequency typically occurred with a time constant of about 100
steps. Constraining our simulations to perform with similar rates of
convergence yielded a wide range of possible learning rate
parameter settings, from 0.5 to 1.0 for any of our combinations of
measurement and execution noise. For the remaining simulations,
we used a learning rate of 0.5.
Given this learning rate, we next selected measurement and

execution noise levels that generated steady-state variability in step
frequency that well approximated our experimental observations
(1.0% to 1.5% standard deviations as a percentage of the mean step
frequency). For each simulation repeat, we calculated the standard
deviation in step frequency during the first 720 steps. During this
time, the learner is at the Q�

off optimum and the landscape is
unchanging, resulting in steady-state behaviour. We then averaged
this value across repeats to get an average measure of variability in
steady-state step frequency for each of our combinations of
measurement noise and execution noise. Once again, our
experimental constraints left us with a wide range of possible
parameter settings (Fig. S2B). For the purposes of our simulations,
we set the measurement noise to be 2.0% and the execution noise to
be 1.5%. Within the ranges deemed reasonable by our experimental
constraints, the qualitative behaviours generated by our model are
not particularly sensitive to the specific learning rate, measurement
noise and execution noise parameter settings.

Reference cost reinforcement learning model
We also tested a reinforcement learner that prioritizes the learning of
a ‘reference cost’, defined as the cost at the predicted optimum step
frequency (Adams, 1971, 1976; Wolpert and Miall, 1996). With
each step, this model continuously relearns the value of the
reference cost and then shifts the costs associated with all
frequencies by this value (Fig. 6B). It is initially free to self-select
its step frequency and thus executes an action at or near the expected
optima. If the action (ai) is at the predicted optimum step frequency,
it receives a new reward (r) and uses this to update the offset of the
entire value function according to the equation:

QðAÞ ¼ QðAÞ þ aðr � QðaiÞÞ: ð4Þ

For example, if the current predicted cost landscape is bowl shaped,
and the cost of a new step is higher than the minimum value of
this bowl, the updated predicted cost landscape would remain
bowl shaped, but would be shifted upwards to reflect the newly
experienced cost. If the action is away from the predicted optimum
step frequency, the model does not update the value function. The
algorithm proceeds like this until it detects a cost saving with respect
to this continuously updated reference cost, after which it initiates
optimization. The learner then proceeds identically to the simple
reinforcement learning model above, updating the cost associated
with the individual frequencies that it executes, thereby learning the
shape of the entire cost landscape and not just the value of the
reference cost. It is unclear from our experiments exactly what
constitutes sufficient experience with a low cost gait to initiate

optimization. In keeping with our experimental findings, here we
assume that the criteria have been met during the metronome guided
experience with low cost step frequencies prior to the first probe.

Energetically optimal learning rates
Principles of energetic optimality may also determine the choice of
learning rate. It is possible to solve for a learning rate that minimizes
energy expenditure; however, the optimal learning rate is dependent
on how frequently the energetic landscape is changing. To
demonstrate this, we simulated protocols where the landscape
alternates between Q�

off and Q�
on with a period varying between

1 min and 12 h, and a duty cycle of 50%. We simulated 24 h of
walking and evaluated learning rates ranging between 0.01 and
1.00.We kept the measurement and execution noise constant at their
nominal values of 2.0% and 1.5%, respectively. We repeated model
simulations 100 times for each period of landscape change and each
learning rate. We then determined the average energetic cost across
all steps (before measurement noise was applied), and then averaged
across repeats to get an average energetic cost for each combination
of period and learning rate. Finally, we solved for the learning rate
that minimized the energetic cost for each period.

RESULTS
High natural gait variability can spontaneously initiate
optimization
During this First Experience Period, we identified six of the 36
participants to be spontaneous initiators. They displayed gradual
adaptations in gait to converge to lower, less costly, step frequencies
consistent with the energetic optima in the new cost landscape
(Fig. 3A,B). On average, the spontaneous initiators converged
toward the optima with an average time constant of 65.7±2.7 s, or
about 120 steps. They settled on step frequencies significantly lower
than their initial preferred values (−8.0±2.5%, P=0.0005; Fig. 3D).
These new frequencies were not different from the optimal step
frequency measured in our previous experiment (P=0.23; Selinger
et al., 2015). The non-spontaneous initiators remained at step
frequencies that were not different from their initial preferred step
frequency (0.8±2.7%; Fig. 3D).

Prior to the controller being turned on, these spontaneous initiators
displayed higher variability in step frequency than non-spontaneous
initiators (1.5±0.3% and 1.1±0.3%, respectively, P=0.018; Fig. 3C).
This suggests that high natural gait variability is a predictor of
spontaneous initiation. In support of this, we found a weak but
significant correlation (R2=0.22, P=0.004) across all 36 participants
between individual participant’s step frequency adaptation during the
First Experience Period and their baseline variability. The modest
correlation is perhaps not unexpected given that other factors, such as
the gradient of a participant’s cost landscape and their levels of
sensory andmotor noise, will affect the saliencyof the cost landscape,
and in turn the likelihood and degree of adaptation.

Experience with lower cost gaits initiates optimization
During the Second Experience Period, if just prior to the first probe
participants were walking at low step frequencies, and thus
experienced lower energetic costs, they appeared to initiate
optimization and adapt toward the new optima (Fig. 4). However,
if they were walking at high step frequencies, and thus experienced
higher energetic costs, they rapidly returned to the initial preferred
step frequency (Fig. 4). This difference in adaptation after low and
high cost gaits was consistent regardless of whether the prior
experience was self guided or metronome guided (P=0.03 for both).
If instead participants were returned to the initial preferred step
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frequency immediately before the probe, as was the case with the
metronome guided broad experience, they showed no adaptation
(P=0.55; Fig. 4). This was despite these participants having broad
experience with the cost landscape. It appears that providing
participants with experience at a low cost gait and then allowing
them to self-select their gait is sufficient for initiating optimization,
while high cost experience and expansive experience with the new
landscape is not. Importantly, the energy cost at the low cost gait is
lower relative to the energy cost at the initially preferred step
frequency under the new cost landscape, but not the original cost
landscape (Fig. 1E). This indicates that the nervous system is
updating its expectation of the energetic consequences of its gaits.

A local search strategy is used to converge on energetically
optimal gaits
To investigate the interaction between high and low cost experience,
as well as the order of the experience, we used the subset of
participant data from the metronome guided discrete experience
group that had experience with either the highest (+10%) or lowest
(−15%) step frequency just prior to the first and last probes.
Participants that had their first discrete experience at high step
frequencies appeared to use prediction to rapidly move away from
this high cost step frequency (Fig. 5A; Fig. S3A). They did so with
an average time constant of 2.0±0.5 s, or about four steps. But their
prediction was erroneous – having not yet experienced lower cost
gaits, they returned to their initial preferred step frequency, which
was suboptimal in the new cost landscape (1.7±2.3%, P=0.17;
Fig. 5B; Fig. S3A). Participants that had their first discrete
experience with low step frequencies more slowly descended the
cost gradient, with an average time constant of 10.8±1.7 s, or about

20 steps (Fig. 5A). They eventually converged on the new optimal
step frequency; the preferred step frequency during this probe of
self-selected gait was significantly lower than the initial preferred
step frequency (−6.6±1.5%, P=0.003; Fig. 5A; Fig. S3A) and not
different from the optimal step frequency measured in our previous
experiments (P=0.66; Selinger et al., 2015). This analysis is
restricted to the first probe in participants whose first discrete
experience was at −15% step frequency. This is a much lower
frequency than the optimal frequency in the new cost landscape.
Consequently, these participants had no prior explicit experience
with the new optimum step frequency yet they converged to it
(Fig. 5B). Gradual and sequential convergence to the new optima is
consistent with a local search process. It is not consistent with a
choose-best strategy, which would have required remaining at the
−15% step frequency, or a sampling strategy, which would have
required a broader sampling of a range of new gaits.

Optimization leads to new predictions of energy optimal
gaits
During the last probe of self-selected gait, participants rapidly
converged to the final preferred step frequency, regardless of the
direction of prior experience (experience high: 2.8±0.5 s;
experience low: 2.5±0.6 s; Fig. 5C,D; Fig. S3B). Also
independent of the prior experience, the final preferred step
frequency was not different from the optimal step frequency
measured in our previous experiments (experience high: P=0.68;
experience low: P=0.88). On average, participants’ final preferred
step frequency was −4.8±3.1%, significantly lower than the initial
preferred step frequency (P=0.0015) and consistent with the
expected optima. These results indicate that participants no longer
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Fig. 3. Non-spontaneous and spontaneous
initiators. (A) Self-selected step frequency
during the final 3 min of the Baseline Period for
a representative non-spontaneous initiator
(blue) and spontaneous initiator (red). (B) Step
frequency data during the First Experience
Period for the same two representative
participants. The horizontal bar indicates when
the controller was turned on (green fill) and off
(white fill). (C) Across all participants,
spontaneous initiators displayed greater
average step frequency variability than non-
spontaneous initiators during the Baseline
Period. (D) By the final 3 min of the First
Experience Period, spontaneous initiators
appeared to adapt their step frequency to
converge on the energetic minima, while non-
spontaneous initiators did not. Error bars
represent 1 s.d. Asterisks indicate statistically
significant differences between spontaneous
and non-spontaneous initiators.
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display slow adaptations consistent with optimization after
experience with low cost gaits, but instead rapidly predict the
optimal gait. They also indicate that participants’ erroneous
predictions after high cost gaits have been corrected and they now
predict to the new cost optimum. The nervous system’s optimization
process appears to culminate in the formation of new predictions
about optimal movements and the abolishment of old predictions.
Consistent with this conclusion, when the controller was turned off
and participants returned to the original cost landscape, they slowly
unlearned the new prediction. With a time constant of 10.5±
1.8 s, they returned to a step frequency indistinguishable from their
initial preferred step frequency (−0.8±3.0%, P=0.48).

Energy optimization as reinforcement learning
Our simple reinforcement learning model well describes the
behaviour of our spontaneous initiators. We found that over about
the same number of steps as our human participants, the model can
converge on new energetically optimal gaits to achieve small cost
savings (Fig. 6D). It also learns to predict the new cost landscape,
rapidly returning to new cost optima when perturbed away, just as we
found in our human experiments. When returned to the original and
previously familiar cost landscape, it does not instantly remember old
optima but instead has to unlearn its new prediction (Fig. 6E). This
simple reinforcement learner cannot, however, explain the behaviour
of our non-spontaneous initiators. Unlike the majority of our
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experimental participants, this model will always spontaneously
initiate optimization and begin converging on the optimal gait. This is
true even for low learning rates where past predictions are muchmore
heavily weighted over new measures (Fig. S2A).
The reference cost reinforcement learning model can capture

many key behavioural features of our non-spontaneously initiating
participants. First, it does not spontaneously initiate optimization
(Fig. 6D). Second, it only initiates after experience in the new cost
landscape with a frequency that has a lower cost than that at the
initially preferred frequency. Third, after initiation, the algorithm

gradually converges on the new optimum (Fig. 6F). Finally, much
like our original model of spontaneous initiators, after convergence
it can leverage prediction to rapidly return to the new optimum after
a perturbation (Fig. 6G) but must slowly unlearn this optimum if
returned to the original cost landscape (Fig. 6E).

DISCUSSION
Here, we used energy minimization in humanwalking to understand
how the nervous system initiates and performs the optimization of
its motor control strategies. We found that some participants tended
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to explore, through naturally high gait variability, leading them to
spontaneously initiate optimization. Others were more likely to
exploit their current prediction of the optimal gait and required
experience with lower cost gaits to initiate optimization. When
optimization was initiated, participants gradually adapted their gait,
in a manner consistent with a local search strategy, to converge on
the new optima. Given more time and experience, this slow
optimization was replaced by a new and rapid prediction of the
optimal gait. These observed behaviours, where participants
iteratively learn and then rapidly predict the new energy optimal
gait, resemble the behaviours produced by our reinforcement
learning algorithms. This suggests that the nervous system may use
similar mechanisms to optimize gait for energy in walking, and
perhaps optimize other movements for other objective functions.
Although our reinforcement learning models are simple, it is

reasonable to ask whether even simpler algorithms could capture
our experimental behaviour. One logical simplification would be to
forgo the storing of the entire value function and only store the
optimal gait and its associated cost. This simplified model would
indeed capture our central behavioural observations by initiating
optimization after experience with a lower cost, converging on a
new energetic optimum using a local search, and rapidly predict the
new optimum when perturbed away. Despite this, we prefer our
slightly more complex models that learn value functions because we
suspect they will better generalize to learning in the real world, for
two reasons. First, storing information about non-optimal gaits
seems valuable given that at times one may be constrained from
using the globally optimal gait. For example, the no-value function
model would need to relearn the optimal walking speed when
constrained by a slow crowd that prevents walking at the globally
optimal speed. In contrast, our value function models, which have
memory of past non-optimal walking experience, would rapidly
predict the new cost optimal speed in the face of this constraint
(Pagliara et al., 2014; Snaterse et al., 2011). Ignoring this potentially
useful past experience seems unlikely on the part of the nervous
system, given that there will be times when it is energetically
beneficial to recall it. Second, the simpler model avoids a value
function only in the case where the learning task has one dimension,
such as in our experimental paradigm. If instead, for example, the
nervous system had to learn the optimal speed and step frequency, it
would need to store the optimal step frequency, and its cost, at each
speed (or vice versa). This is a one-dimensional value function for a
two-dimensional optimization problem. As the nervous system
cannot know a priori the dimensionality of the optimization
problem, it may benefit from learning a high dimensional value
function and then constraining the optimization problem depending
on the constraints of the task.
Another logical simplification would be to forgo the updating of a

reference cost prior to initiation of optimization. However, a model
with this simplification does not reproduce key features of our
experimental data. In our model of non-spontaneous initiators, prior
to initiation of optimization, the learner only updates a reference cost
(Fig. 6B). Without this feature, direct and gradual convergence to
the new energetic optimum after forced experience with a low cost is
not produced. Instead, because the reference cost has not been
updated and therefore is expected to be that experienced under the
controller off condition, this model will first rapidly shoot back to
the old cost optimum after experience with a low cost. Only after
updating this cost estimate, to its now higher cost value under the
controller on condition, will it then gradually adapt to the new
optimum. This updating of a reference cost prior to initiating
optimization not only is necessary to reproduce our experimental

findings but also has many parallels in neurophysiological
habituation (Desmurget and Grafton, 2000; Shadmehr and
Krakauer, 2008; Wolpert, 1997).

It is unclear from our experiments exactly what constitutes
sufficient experience with a low cost gait to initiate optimization.
For example, it may require a substantially lower cost, a sufficient
number of steps at a lower cost, or some combination of these
criteria. It is possible that high natural gait variability, as displayed
by our spontaneous initiators, is in fact also triggering initiation
through the updating of a reference cost because it provides
sufficient experience with a low cost gait. If treated as so, all
participants’ behaviour could be explained by the reference cost
model. However, deciphering an exact low cost experience criterion
that fits all participants’ behaviour is difficult, and perhaps not
possible, as it probably varies across participants and is affected by
additional factors such as the gradient of their cost landscape, their
levels of sensory and motor noise, and their weighting of newly
experienced costs. In addition, how the reward (or energetic cost)
is measured (or sensed) is an open area of research (Dean, 2013;
Wong et al., 2017). For the purposes of modelling, we assume
that the criteria have been met during the experience with low
cost prior to the first probe, in keeping with our experimental
findings.

Principles of energetic optimality may determine the nervous
system’s balance between exploration and exploitation. Variability
can aid with initiation by allowing the nervous system to locally
sample a more expansive range of the cost landscape, clarify its
estimate of the cost gradient, and identify the most promising
dimensions along which to optimize (Herzfeld and Shadmehr,
2014; Tumer and Brainard, 2007; Wu et al., 2014). This variability
may simply be a consequence of noisy sensorimotor control that
fortuitously benefits the exploration process, or it may reflect
intentional motor exploration by the nervous system (Tumer and
Brainard, 2007; Wu et al., 2014). Recent work suggesting that
humans actively reshape the structure of their motor output
variability to elicit faster learning of reaching tasks is evidence of
the latter (Wu et al., 2014). Learning rate also affects variability
because new cost measurements are imperfect. The higher the
learning rate, the greater the influence of the new and noisy cost
measurements on the predicted optimal movement, resulting in
more volatile predictions of the optimal gait and therefore more
variable steps. This can accelerate learning of new optimal strategies
in new contexts, reducing the penalty due to the accumulated cost of
suboptimal movements during learning. But there is also a penalty
to this high motor variability – once the new optimal strategy is
learned, motor variability around this optimum means most
movements are suboptimal. The optimal solution to this trade-off
depends on how quickly the context is changing (Fig. 7). It is better
to learn quickly and suffer steady-state variability about the new
optimum when the context is rapidly changing. But, when the
context changes infrequently, it is better to learn slowly and more
effectively exploit the cost savings at the new optimum.
Interestingly, the learning rate in our models, which we chose to
match our experimental constraints, is optimal for a cost landscape
that is changing approximately every 10 to 15 min, a rate of change
not dissimilar from that applied in our experiment protocol. In
humans, the nervous system probably has control over both the
learning rate and the amount of exploration. It may adjust both based
on its confidence in the constancy of the energetic conditions. This
suggests that exploration, and potentially faster learning, could be
promoted not through consistent experience in an energetic context
but rather by experimentally alternating energetic contexts.
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Identifying the dimension of an optimization problem may be the
trigger for initiation. The coordination of walking is a task of
dauntingly high dimension (Bernstein, 1967; Scholz and Schöner,
1999). Various gait parameters, including walking speed, step
frequency and step width must be selected, and numerous
combinations of muscle activities can be used to satisfy any one
desired gait. When presented with new contexts, the nervous system
must identify which parameters, if any, to change in order to
optimize its objective function. The difficulty of this task may partly
explain why non-spontaneous adaptors do not initiate optimization
when the exoskeletons are turned on and they are immediately
shifted to a higher cost gait. Although it may be clear to the nervous
system that energy costs are higher, it may remain unclear how it
should change movement to lower the cost. This could also explain
why in some past experiments, by our group (Selinger et al., 2015)
and others (Reinkensmeyer et al., 2004; Zarrugh et al., 1974),
participants did not initiate optimization and discover new energy
optimal coordination strategies. Experience with lower step
frequencies, and therefore lower costs, may have allowed the
nervous system to identify that this is the relevant dimension along
which to optimize. This behavioural phenomenon is captured by the
addition of a reference cost to our simple reinforcement learning
algorithm, and has parallels in classical feedback control models as
well as neurophysiological habituation (Desmurget and Grafton,
2000; Shadmehr and Krakauer, 2008; Wolpert, 1997). Our
experiments have demonstrated how the nervous system rapidly
solves a one-dimensional optimization problem, where we alter the
energetic consequences of a single gait parameter and apply
targeted experience along this dimension of gait. How the identified
mechanisms extend to optimizing higher dimension movement
problems, like those often encountered in real-world conditions,
remains an open area of research (Wong et al., 2019).
Prioritizing the learning of a reference cost, rather than constantly

exploring new gaits, is perhaps a better general strategy for cost
optimization in real-world conditions. Energetic cost continuously
varies as conditions change in the real world, but unlike our
experiment, only some conditions may benefit from the adoption of
a new gait and exploring gaits away from the optimal gait comes
with an energetic penalty. The continuous updating of a reference
cost allows the nervous system to detect when there are reliable cost
savings to be gained relative to the predicted optimal gait. It also
allows the nervous system to compare differences between the two
gaits and understand which walking adjustments led to the lower

cost (Wolpert and Landy, 2012; Wolpert et al., 2011). This may
allow the nervous system to learn the dimension along which
exploration should proceed and quickly converge on the new
optimal gait (Kording et al., 2007; Wolpert et al., 2011, 2001).

Unveiling the mechanisms that underlie the real-time learning of
optimal movements may indicate how this process can be accelerated.
This has direct applications in the development of rehabilitation
programmes, the control of assistive robotic devices and the design of
sport training regimes. A stroke patient faced with a change to their
body, a soldier adapting to the new environment created by an
exoskeleton and an athlete attempting to learn a novel task all seek new
optimal coordination strategies. Our findings indicate that eliciting
exploration through high motor variability as well as targeted
experience along the relevant movement dimension could rapidly
accelerate motor learning in these circumstances by cueing the
nervous system to initiate optimization. Therapists and coaches may
commonly be doing just this, based on years of accumulated
knowledge about effective learning strategies. In this view, a more
mechanistic understanding of the nervous system’s internal algorithms
could aid therapists and coaches in setting a course for a patient or
athlete to navigate through various possible movement strategies.
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