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Subtle short-term physiological costs of an experimental
augmentation of fleas in wild Columbian ground squirrels
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Audrey Bergouignan2 and Vincent A. Viblanc2

ABSTRACT
Parasites affect many aspects of host physiology and behavior, and
thus are generally thought to negatively impact host fitness. However,
changes in form of short-term parasite effects on host physiological
markers have generally been overlooked in favor of fitness measures.
Here, we studied flea (Oropsylla idahoensis andOropsylla opisocroistis
tuberculata) parasitism on a natural population of Columbian ground
squirrels (Urocitellus columbianus) in Sheep River Provincial Park,
AB, Canada. Fleas were experimentally added to adult female
U. columbianus at physiologically demanding times, including birth,
lactation and weaning of their young. The body mass of adult females,
as well as their oxidative stress and immunity were recorded multiple
times over the active season under flea-augmented and control
conditions. We also measured the prevalence of an internal parasite
(Trypanosoma otospermophili). Doubly labeled water (DLW) was intra-
peritoneally injected at peak lactation to examine energy expenditure.
Effects of parasites on oxidative stress were only observed after
offspring were weaned. There was no direct effect of experimentally
heightened flea prevalence on energy use. A short-term 24 h mass
loss (−17 g) was detected briefly after parasite addition, likely due to
U. columbianus preferentially allocating time for grooming. Our parasite
augmentation did not strongly affect hosts and suggested that short-
term physiological effects were unlikely to culminate in long-term fitness
consequences. Columbian ground squirrels appear to rapidly manage
parasite costs, probably through grooming.
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INTRODUCTION
The resources that parasites extract from their hosts are often thought
to produce negative effects on host fitness (Møller et al., 1994;
Delahay et al., 1995; Careau et al., 2010). Parasitism can induce
direct costs through sapping resources from their hosts (Nelson
et al., 1975) and indirect costs through changes in behavioral
activity (Giorgi et al., 2001; Scantlebury et al., 2007), acting as
pathogen vectors (Smith et al., 2006), or modifying physiological
tradeoffs (Bertrand et al., 2006b; Sorci et al., 2017). These host–
parasite links are illustrated by eastern grey kangaroos selectively
foraging away from better quality, but fecally contaminated grass

patches (Garnick et al., 2010) or male grey squirrels suffering from
higher flea parasitization when upregulating testosterone levels
(Scantlebury et al., 2010). As a result, parasites, when numerous,
have the potential to generate a high resource toll on their hosts
(Khokhlova et al., 2002; Krasnov et al., 2008). For example, when
feral rock doves had lice levels experimentally increased, they
steadily lost feather and body mass, resulting in compromised
integument insulation (increased thermal conductance) and
increased metabolic rate (Booth et al., 1993).

It is often difficult to distinguish direct resource loss to the parasite
from the costs of anti-parasite defense or environmental effects
(Bonneaud et al., 2003), such as effects of temperature extremes
(Cohen et al., 2017) on energetics. Additionally, it is hard to discern
whether parasites are the cause of poor host health and body condition
or the result of it (Boonstra et al., 1980). Thus, it is useful to examine
parasite effects through controlled experimental manipulation
(Keymer and Read, 1991) to directly address these questions. Such
research has been conducted in laboratory studies, but these have often
failed to account for natural host–parasite dynamics such as the ‘80:20
rule’, an aggregated negative binomial distribution where a few hosts
(20%) harbor the majority of parasites (80%) in a population (Galvani,
2003; Poulin, 2004; Craig et al., 2007). This underlines the parasite
preference for hosts in terms of age, sex, condition and season (Dick
and Patterson, 2007; Bize et al., 2008; Liberman et al., 2011), which
are often overlooked and indicate the value of further field studies.

These factors, coupled with experimental studies that frequently
focus on long-term fitness costs, may explain findings of muted
parasite effects in wild studies (Khokhlova et al., 2002) compared
with laboratory tests. An alternative research design might quantify
more subtle short-term physiological modifications while preserving
natural features of wild conditions. An emphasis of short-term effects
on physiological changes serves two purposes. Firstly, short-term
physiological shifts should be more detectable and directly
quantifiable than multi-faceted fitness outcomes. Secondly,
collection of these chronically sustained short-term effects may
allow improved interpretation of potential long-term costs.

In this study, we experimentally tested the effects of ectoparasitic
fleas (Oropsylla idahoensis and Oropsylla opisocroistis
tuberculata) on a wild population of adult female Columbian
ground squirrels (Urocitellus columbianus). We subjected a group
of Columbian ground squirrels to an experimental increase in their
natural flea loads and compared their physiological responses with
those of a group of ground squirrels in which flea loads were left
unchanged. Columbian ground squirrels are hibernating sciurid
rodents with a 3–4 month annual active season, during which
reproduction takes place (Dobson et al., 1992). Parental care is
restricted to the highly territorial mothers during the 24 days of
gestation, 27 days of lactation and a short period after weaning
(Murie and Harris, 1982). This species is naturally parasitized by
both ecto- (ticks, mites, botflies) and endo-parasites (helminths,Received 18 March 2019; Accepted 16 May 2019
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coccidia, trypanosomes). The most visible of these are fleas (Raveh
et al., 2011, 2015) that seem to follow the aggregated 80:20
distribution. As fleas are often localized to individual hosts and
burrows, natural parasite dispersal is low, thus allowing enhanced
isolation of parasite effects on hosts. As such, breeding female
U. columbianus are an ideal model system to reveal parasite costs
because of the lack of confounding factors such as parasite transfer
or dispersal (Krasnov et al., 2003b; Hawlena et al., 2005).
Prior studies on parasite effects in U. columbianus have resulted

in variable outcomes (little to no effect: Raveh et al., 2011,
2015; negative effect: Neuhaus, 2003). These studies applied
experimental reductions of fleas, in a species that naturally has
relatively low levels of infestation, to assess fitness consequences on
individuals. Such detection of parasite effects may have been
limited by the natural parasite distribution when using the approach
of parasite removal in lightly infested populations. Parasite costs
might only be relevant when present in resource-deficient hosts. Co-
evolution of host–parasite interactions might be favored by natural
selection when they minimize negative effects of the parasite on the
host (Hinnebusch et al., 2017). In these cases, lowering the level of
parasites is unlikely to have strong effects on fitness. Adding
parasites to wild hosts provides an improvement over previous tests
of ectoparasite effects reported in the literature (Booth et al., 1993;
Warburton et al., 2016), because treated hosts should be more likely
to show parasite consequences as a result of exacerbated costs.
Our approach to understanding host–parasite dynamics thus has

two novel features: augmentation of fleas, which is more likely to
reveal costs, and physiological measures that can expose such costs.
Short-term parasite effects on physiological metrics were assessed
during energetically constrained time points, such as lactation
(Rogowitz, 1998; Naya et al., 2008), to augment the perceptibility
of costs through a higher energy budget (Metcalfe and Monaghan,
2013). In particular, we expected thatU. columbianuswould employ
behavioral and immune defenses against flea-induced stress. As fleas
can serve as a vector for pathogens (Durden and Hinkle, 2019), such
as the blood parasite Trypanosoma otospermophili (Freedman, 1947;
Lizundia et al., 2011), trypanosome levels might also increase in the
flea-treated group. We expected higher trypanosome prevalence to
lead to stimulation of nitric oxide (NO), which has been shown to rise
in response to trypanosome infections (Vespa et al., 1994). By doing
so, parasite infestation would be positively correlated with energy
use (Kam et al., 2011) and a subsequently enhanced oxidative stress
due to a non-specific innate immune response (Plumel et al., 2016;
Bertrand et al., 2006a). A difference in the dynamics of mass,
oxidative stress, immunity and energetic demand of heavily infested
individuals would provide evidence supporting a short-term
physiological consequence of parasite infestation inU. columbianus.

MATERIALS AND METHODS
Ethics statement
Animal care was carried out in accordance with Auburn University
IACUC protocol no. 2018-3227 (with additional approval by the
University of Calgary). Authorization for conducting research and
collecting samples in Sheep River Provincial Park was obtained
from Alberta Environment and Parks (research permit no. 58954)
and Alberta Tourism, Parks, and Recreation (research and collection
permit no. 18-448).

Population monitoring
Columbian ground squirrels, U. columbianus (Ord 1815), were
studied at Sheep River Provincial Park, AB, Canada (Meadow B;
50°38′11.3″N, 114°39′56.7″W; 1550 m elevation) from April to

August 2018. The entire U. columbianus population at Meadow B
has been continuously monitored since 1992 (Wiggett and Boag,
1986; Viblanc et al., 2010; Rubach et al., 2016), from the onset of
emergence from hibernation in late April, to the end of offspring
weaning in early July. Female U. columbianus have a short active
season and a single reproductive period each year (Dobson et al.,
1992). Each squirrel in this population is permanently identified
with unique numbered fingerling eartags (#1-Monel metal, National
Band and Tag Company, Newport, KY, USA), and is given a unique
hair dye marking (Clairol, Stamford, CT, USA) at the start of the
season so it can be identified from a distance during field
observations. We followed all reproductive females (n=31) to
determine their mating day from behavioral observations and
inspection of their genitalia (Murie and Harris, 1982). Urocitellus
columbianus were trapped using Tomahawk live traps
(13×13×40 cm; Tomahawk, Hazelhurst, WI, USA) baited with a
small amount of peanut butter. Some of the females (n=5) either
disappeared during the breeding season or were not re-captured and
were thus excluded from analyses.

Experimental manipulation of flea load
We experimentally increased ectoparasite load on 16 females
(treatment group) and compared them with 15 control females
(control group; see below). At the start of the experiment, we
ascertained U. columbianus body condition and then randomly
assigned females of similar condition and age to control and
treatment groups. Body condition was estimated by regressing
individual body mass on zygomatic arch breadth (an index of
structural size; Dobson, 1992). Fleas were collected from squirrels
at a neighboring meadow less than 400 m away from the study site
(50°38′19.7″N, 114°39′47.1″W) by brushing individuals with a
fine-tooth flea comb (Four Paws, Hauppauge, NY, USA) into an
aerated plastic container and transferring the fleas on the same day
to experimental subjects. Because of the need for the same-day
transfer to new hosts, fleas were not identified to species or sex, and
were assumed to belong to one of the two common species found in
prior studies (Hubbard, 1947; Hilton and Mahrt, 1971). Prior to flea
addition, each squirrel was carefully combed on all sides of the
body, including the head, to assess initial natural flea numbers.
After counting, all initially present fleas were returned to their host.

An average of 20 fleas were added to each experimental subject at
each time point, in addition to their inherent number of parasites (see
Results). Fleas were added at three separate time points during the
season: gestation (t1), at lactation onset (t2) and at peak lactation (t3)
prior to weaning. These time points were chosen because they
represent important transitions in the breeding cycle and likely
would incur elevated physiological demands. Additionally, they
coincided with other manipulations of the long-term study, hence
reducing animal handling and stress. We re-captured all non-
hibernating females at a 4th time point (t4; roughly aweek before the
onset of hibernation), but did not re-infest any animals, as a negative
control. Fleas were deposited on the ventral side of the restrained
animal and rubbed into the fur. We ensured all fleas had entered the
animal’s pelage before releasing it. The control group had their
pelage rubbed in a similar manner to simulate flea addition, but with
no change in number of natural fleas.

Trypanosomes
We assayed presence of T. otospermophili through collection of
100 μl whole blood in capillary tubes. After collection, we
centrifuged the capillary tubes at 5000 g for 10 min to apply
quantitative buffy coat methodology. Centrifugation of whole blood
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serves to concentrate trypanosomes in the buffy coat of the solute and
enhance parasite detection (Sato et al., 2007); 5 μl of the buffy coat
was spread on a glass slide in a thin smear and Wright–Giesma
stained (Shandon Kwik-Diff stain, Thermo Fisher Scientific,
Waltham, MA, USA), followed by count estimates of trypanosomes.

Behavior
After flea addition, we released squirrels at the place of initial
capture. We then visually observed control and treated squirrel
behavior for 15 min to gauge how differentially parasitized squirrels
allocated their time-budget to body maintenance. We recorded the
number of seconds spent self-grooming.

Oxidative status and innate immunity
Individual oxidative stress levels and innate immunity were estimated
during time points t1, t2, t3 and t4. Blood (0.5 ml) was collected from
the saphenous vein using a 27 G needle fitted to a 1 ml heparinized
syringe.We kept blood on ice packs in a cooler box while in the field.
After centrifugation (5000 g for 10 min), within 1–2 h of collection,
plasma was separated and kept frozen at −20°C until the end of the
field season, before transportation on dry ice and subsequent frozen
storage at −80°C until laboratory analysis.
We assessed female oxidative status in plasma by global

measures of oxidative damage (d-ROMs test; 8 μl of plasma) and
antioxidant defenses (OXY-absorbent test; 5 μl of 1:100 diluted
plasma) (Diacron International, Grosseto, Italy) (for details, see
Costantini et al., 2011; Costantini et al., 2016; Viblanc et al., 2018).
In addition, we measured NO in plasma (diazotization assay; 10 µl
plasma; for details, see Bourgeon et al., 2007) as a reflection of
macrophage activation by intracellular pathogens (Playfair and
Bancroft, 2004). Reactive oxygen metabolite (ROM) and
antioxidant capacity (OXY) sample measurements were run in
duplicate and NOwas run once per sample. Intra-plate variation was
5.15% for ROMs and 12.1% for OXY. Inter-plate variation based on
a standard sample repeated over plates was 2.74% for ROMs, 8.61%
for OXY and 1.51% for NO.

Estimation of total daily energy expenditure (DEE)
Field protocol
DEE for treated and control females was determined only during peak
lactation (day 25; t3), when reproductive demands on females were
expected to be the highest. DEE was estimated using the doubly
labeled water (DLW) technique, as extensively described elsewhere
(Kenagy et al., 1990; Rimbach et al., 2018), including in U.
columbianus (Skibiel et al., 2013). Briefly, females were weighed (to
the nearest 5 g using a spring scale; 1 kg, Pesola Ag, Baar,
Switzerland) and a first blood draw (100 μl) was collected from the
saphenous vein using a 30 G needle in two 100 µl non-heparinized
capillary tubes to establish background levels of 18O and
2H. Capillaries were immediately sealed with a micro-jet flame and
stored at room temperature until analysis (within 3 months). Squirrels
were then injected intra-peritoneally with a premixed 5 g kg−1 dose
of DLW (10% H2

18O and 99.9% 2H2O, Cambridge Isotopic
Laboratories, Cambridge, MA, USA). After injection, females
(n=26) were held in traps in a quiet, shaded location and covered
with a dark cotton pillowcase for 75 min to allow for isotope
equilibration (Król and Speakman, 1999; Simmen et al., 2010;
Skibiel et al., 2013). Following the equilibration period, another
blood samplewas drawn (n=26), fleas were added to the experimental
animals, and the subjects were released. As part of the DLW test,
subsequent blood samples and weight measurements were taken at
24 h and 72 h post-enrichment (n=26) to estimate isotope elimination

rates (Speakman and Racey, 1987). During the DLWexperiment, we
recorded the average ambient temperature (TA) experienced by
individuals to control for potential thermoregulatory effects on
metabolic rate. We used thermo-loggering iButtons (DS1921G,
Maxim Integrated, San Jose, CA, USA), which recorded TA with
15 min intervals over the course of the experiment. iButtons were
centrally located in the colony, attached to the bases of elevated
observation benches, with the iButtons 1 m above ground level.

Isotope analyses
Sealed capillary tubes were vacuum distilled for 10 min and the
resulting water distillate analyzed by a continuous flow isotope ratio
mass spectrometer (IRMS; IRMS-DELTA V PLUS, Thermo,
Bremen, Germany) as described previously (Chery et al., 2015;
Mahlert et al., 2018). Distillates were pyrolyzed at 1400°C into H2

and CO2 gases in a glassy carbon tube under pure He flow at
90 ml min−1. H2 and CO2 were separated at 110°C on a molecular
sieve GC column before sequential analysis in IRMS. Results were
normalized using the VSMOW2/SLAP2 international scale. In
addition, memory-effect and drift-corrections were applied as
needed. All analyses were performed in quadruplet and samples
were re-analyzed if the standard deviation exceeded 2% for 2H or
0.2% for 18O in more than three out of the four analyses. We
calculated the total body water (TBW) from the 18O dilution space
divided by 1.007 to correct for in vivo isotopic exchange (Racette
et al., 1994). The mean±s.d. isotope dilution space ratio was 1.029±
0.016. We calculated the CO2 production rate from the single pool
model as recommended for the body size of U. columbianus
(Speakman et al., 1993; Speakman and Hambly, 2016). We
converted CO2 production to DEE using a modification of Weir’s
equation and an assumed food quotient of 0.85 based on the
prior literature involving U. columbianus and DLW (Skibiel et al.,
2013). For 6 animals, we observed either capillary leakage or
incomplete DLW equilibration occurring within the standardized
equilibration period, thus prompting their removal from subsequent
analyses.

Statistical analysis
All statistics were done in R 3.5.1 (R Core Team 2018; https://www.
R-project.org). We proceeded in a 3-step analysis. First, we assessed
the efficiency of our treatment by comparing the initial and final
parasite loads of our control and treated individuals at each time
point of infestation. For this, we used either linear mixed models or
generalized linear mixed effects models (LMMs and GLMMs;
lme4 package in R; Bates et al., 2015) with initial or final
(initial+additional fleas) parasite counts entered as the dependent
variable, time point (t1 to t4), treatment group (control or treatment)
and their interaction entered as independent variables, and female
ID as a random factor to account for longitudinal data collection. For
initial flea levels, we used a Poisson distribution as is appropriate
when working with count data and given the distribution of initial
flea loads. For final flea loads, the addition of ca. 20 fleas per
squirrel in the treated group normalized the distribution of residuals
in our model. Second, we investigated changes in body mass,
oxidative status (ROM and OXY) and innate immunity (NO and
trypanosomes) over the season using a similar procedure. Mass,
ROM, OXY, NO or trypanosome levels were entered as dependent
variables in separate LMMs and we tested for the fixed effects of
time point, treatment and their interaction. In those models, we
added female ID and age as random factors to account for repeated
observations and potential age effects on physiological variables.
The number of observations (n) and corresponding number of
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individuals (N ) are indicated for each model. Because of repeated
observations on individuals, n>N. Finally, we analyzed the effects
of our treatment on female energy expenditure during peak
lactation, the period of highest reproductive demand. We
compared treatment and control groups in terms of body mass,
DEE, oxidative status and immunity using linear models (LMs). We
included female age, litter mass at weaning (reproductive
investment) and TA (average temperature between release of the
individual after DLW injection and collection of last blood sample)
as covariates in the model to test for their effects on DEE. For all
analyses, we visually inspected the distribution of model residuals
using Q–Q plots to ensure a reasonable fit to normality. Mean
differences between groups (time points or treatment) were assessed
using post hoc Tukey’s HSD test (‘glht’ package in R; Hothorn
et al., 2008). For each model, we calculated effect sizes (Cohen’s d )
and their 95% confidence intervals (‘effsize’ package in R; https://
CRAN.R-project.org/package=effsize). We used benchmarks
d=0.2, 0.5, 0.8 to indicate small, medium and large effect sizes,
respectively (Nakagawa and Cuthill, 2007). The α-level was set at
0.05 for all statistical analyses and results are presented as means±
1 s.e.m. unless stated otherwise.

RESULTS
Changes in parasite load and individual condition over the
experiment
Fleas
Over the course of the experiment, treated individuals were infested
at three different time points with a mean of 19.59±0.71 fleas per
animal on top of the originally present 0.93±0.24 fleas. In contrast,
control animals had on average 0.61±0.16 fleas per animal at each
time point (Fig. 1B). Thus, after treatment, treated individuals
averaged 33.63 times the flea load of the control individuals (LMM;
t=22.94, P<2e−16, n=90 observations, N=31 individuals). The
number of fleas in the treated individuals had returned to a level near
the initial level by the next experimental infestation (Fig. 1A).

Mass
We did not observe differential mass changes between groups
(Table 1) from t1 to t4. During the DLW experiment, at t3, initial
mass was not significantly different between control and treatment
groups prior to flea application (Table 1): treated U. columbianus
experienced a short-term (24 h) mass loss compared with control
animals but this disparity was negligible at 72 h post-flea
application. As a result of incomplete DLW equilibration, some
individuals (n=5) were removed from mass analyses.

Behavior
After controlling for age, treated U. columbianus responded to flea
infestation by increasing their self-grooming behavior by 73.31%
compared with controls (Fig. 2; t1–t3 20.45±3.41 s, control 11.8±
2.18 s; LMM; t=2.22, P=0.03, n=89, N=31). Grooming decreased
for both groups at peak lactation (t3).

Trypanosomes
Trypanosome prevalence steadily decreased over the season in
both treatment and control groups (Fig. 3A). At t4, we observed a
statistically insignificant increase in average count of
trypanosomes (per 5 μl of buffy coat) in the control group
(329.82±272.43; LM; t=1.789, P=0.09, n=23, N=23) compared
with the treatment group (25.46±19.14). Upon removal of an
extreme outlier, there was no appreciable difference between
treatment and control groups (Fig. 3A; control 62.8±59.72; LM;
t=−0.66, P=0.52, n=22, N=22).

Total DEE at peak lactation (t3)
During peak lactation, treated individuals did not show significantly
higher DEE than controls (Fig. 4; LM; t=0.31, P=0.76, n=20,
N=20), even when we accounted for differences in fat-free mass.
DEE significantly increased with age (Fig. 4; LM; t=2.48, P=0.02,
n=20, N=20). Older breeders did not have larger litter masses at
weaning (LM; t=0.84, P=0.41, n=28, N=28), nor did litter mass
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Fig. 1. Flea infestation in Columbian ground squirrels between April and August 2018. (A) Initial and (B) final flea numbers. Time points: t1, gestation (16
control, 15 treatment); t2, early lactation (14 control, 14 treatment); t3, peak lactation (14 control, 15 treatment); t4, prior to hibernation immergence (11 control, 13
treatment). Data are medians±s.e.m.; asterisks indicate significant differences between groups (***P≤0.001).
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differ substantially between treated and control individuals (Table 1;
LM; t=0.3, P=0.77, n=28, N=28). We did not observe a relationship
between DEE and ROM (Fig. 5; LM; t=0.64, P=0.54, n=20, N=20).
A similar analysis on antioxidant defenses (OXY) revealed a
relationship of decreased OXY levels (LM; t=−2.26, P=0.04, n=20,
N=20) with increased DEE in treatment group females. Upon
removal of a single outlier, this relationship disappeared (LM;
t=−0.61, P=0.55, n=19, N=19).

Changes in innate immunity and oxidative status
Innate immunity (NO levels)
The level of inflammation, assayed through NO concentration, was
similar in the control and treatment groups and over time (Fig. 3B;
LMMwith Tukey’s post hoc test; t=0.25, P=0.63, n=69,N=29). NO
concentration was not associated with ROM (LMM; t=0.07,

P=0.95, n=69, N=29), OXY (LMM; t=1.17, P=0.25) or
trypanosome (LMM; t=0.893, P=0.38) levels.

Oxidative stress
There was a significant effect of time period on ROM and OXY
levels (Fig. 6; ROM z=−5.08, P<0.001, n=107, N=31; OXY
z=−3.26, P<0.001, n=108, N=31). ROM levels decreased from t1 to
t3, but slightly rebounded at t4 in the treated group (LMM; Tukey’s
post hoc test; t=−2.5, P<0.02, n=54, N=15) compared with the
control group. OXY levels steadily decreased in both groups as the
season progressed. As for other metrics, ROM (LM; t=−0.42,
P=0.68, n=69, n=24, N=24) and OXY (LM; t=−0.36, P=0.72)
values were not significantly different between the treatment and
control groups at peak lactation (t3).

DISCUSSION
Our experimental transformation of an aggregated parasite
distribution to a bimodal distribution by adding fleas to some
ground squirrels was an attempt to discern short-term parasite
effects. However, like other U. columbianus studies that removed
parasites, our results indicated that these fleas did not significantly
impact their hosts over the short term in regards to any of our
physiological measures.

Flea augmentation and grooming
By experimentally adding fleas to U. columbianus, we expected a
multitude of downstream physiological responses. This was
partially fulfilled, at least in terms of the flea treatment
temporarily enforcing a large short-term increase of parasites.
This level of parasites was at the extreme high end of what is
normally seen in adult female U. columbianus at this specific field
site, but not outside the natural range of variation. Urocitellus
columbianus, especially males and juveniles, have the capacity to
harbor and maintain numbers of fleas equivalent to or in excess of
the treatment level under natural conditions (Raveh et al., 2015;

Table 1. Seasonal data

Variable Control Treatment Cohen’s d

Age (years) 4.07±0.40 4.13±0.43 0.03 (−0.35, 0.4)
Litter size 1.714±0.37 1.64±0.33 −0.04 (−0.41, 0.34)
Litter mass 179.21±36.99 195.87±40.96 −0.13 (−0.5, 0.24)
Temperature (°C) 13.94±0.29 13.67±0.28 0.27 (−0.54, 1.08)
t3

Mass change 24 h (g) 4.5±6.6 −17.00±6.67 1.02 (0.02, 2.02)
Mass change 72 h (g) 3.5±8.5 −2.22±8.38 0.22 (−0.75, 1.19)

Mass
t1 (g) 552.81±11.36 563.33±8.36 −0.27 (−1.00, 0.47)
t2 (g) 538.21±15.61 540.00±16.28 −0.03 (−0.81, 0.75)
t3 (g) 529.64±14.21 546.13±19.23 −0.28 (−1.05, 0.48)
t4 (g) 545.45±19.93 550.38±19.61 −0.07 (−0.92, 0.78)

t1, gestation (16 control, 15 treatment); t2, early lactation (14 control, 14
treatment); t3, peak lactation (14 control, 15 treatment); t4, prior to hibernation
immergence (11 control, 13 treatment). Data are means±95% confidence
interval. Cohen’s d is given (with 95% confidence intervals), with 0.2 being a
small effect size, 0.5 a medium effect size and 0.8 a large effect size.
Confidence intervals including 0 indicate statistical non-significance.
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Fig. 2. Time spent grooming in Columbian ground
squirrels between April and August 2018. t1, gestation (16
control, 15 treatment); t2, early lactation (14 control, 14
treatment); t3, peak lactation (14 control, 15 treatment). Data
are means±s.e.m. Different letters above boxes indicate
significant differences between time points (Tukey HSD).
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J.D.R., F.S.D. and V.A.V., unpublished observations). Post-flea
addition, treatedU. columbianus allocated almost double the time of
their non-parasitized counterparts to grooming. More importantly,
they allocated energy that would normally be devoted to acquiring
resources to maintenance of low flea levels at energetically and
nutritionally demanding times. Within 24 h (J.D.R. unpublished
observations of recaptured animals), almost all of the added fleas
were removed, as evidenced by the equilibration of initial flea levels
at each time point. This grooming time frame coincides with the
24 h mass shifts seen only in the treated group at the lactation peak
time point (t3). However, in the context of an acute high infestation,
this statistically significant mass loss is hardly biologically costly
given the return to normal mass within 72 h. As this population

behaviorally enforces low parasite levels, a situation of prolonged
high parasitization is improbable and thus is not of high
consequence for most host individuals.

Surprisingly, even during peak lactation, a critical period of the
year where female energy demands are typically highest in
mammals (Oftedal, 1984; Speakman and McQueenie, 1996), we
did not observe an effect of our treatment on female energy
expenditure. This result indicates that these parasites do not impose
a high energetic cost on their host or that the cost of managing
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Fig. 3. Innate immunity of Columbian ground squirrels between April and August 2018. (A) Trypanosome count (per 5 μl of buffy coat) and (B) log nitric
oxide concentration (NO, μmol l−1). t1, gestation (16 control, 15 treatment); t2, early lactation (14 control, 14 treatment); t3, peak lactation (14 control, 15 treatment);
t4, prior to hibernation immergence (11 control, 13 treatment). Data are medians±s.e.m.
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parasites (i.e. grooming) is compensated through other pathways.
Indeed, the time invested in flea removal likely accounts for the loss
in body mass through changes in potential energy intake. With both
species of fleas being ground squirrel specialists (Hubbard, 1947;
Hilton and Mahrt, 1971) and a lack of alternative hosts in the area, it
makes sense that the fleas have muted effects on U. columbianus. If
parasites have co-evolved to specific hosts, they are more likely to
deliver less irritable bites and introduce saliva that does not elicit an
immune or behavioral response from the host (Dick and Patterson,
2007). Unfortunately, our observations do not account for a sex-
biased effect whereupon fleas of a particular sex differentially
induce stress (Hawlena et al., 2005; Krasnov et al., 2008). As fleas
were collected and assigned randomly to treated individuals, we can
assume that any sex bias in the parasites averaged out when the
treated and control groups were compared. However, whether
potential sex ratio bias in flea populations may differently affect
individuals remains to be tested in the future. Given that female fleas
consume larger blood meals (Krasnov et al., 2003a), one might
expect female-biased populations to have a larger impact on hosts
than male-biased populations.
A multitude of studies in other systems have demonstrated that

the complexity of parasite and host energetics obscures the
quantification of parasite effects (Hicks et al., 2018; Careau et al.,
2010). For example, cape ground squirrel (Xerus inauris) DEE was
similarly unaffected when parasite levels were manipulated
(Scantlebury et al., 2007). Rather than parasites, increasing age
stimulated slightly higher DEE. Many attributes associated with
body composition such as larger litters or heavier young (Adams,
2005) would logically result in increased maternal investment and
thus higher DEE. For example, older femaleU. columbianus appear
to undergo reproductive senescence and may require extra energy to
succeed at breeding (Broussard et al., 2003; 2005). In addition,
younger breeding females may exhibit reproductive inefficacies

when breeding for the first time (Broussard et al., 2008; Rubach
et al., 2016), perhaps resulting in younger animals having lower
reproduction-associated DEE than older animals (e.g. through
reduced milk production). As such, instead of parasites, age-related
body composition and activity levels largely influence DEE
(Klausen et al., 1997).

Oxidative stress and immunity
Given their relationship, it is natural that a lack of parasite effects on
energy use culminated in a similar lack of treatment consequences
on immunity and oxidative stress. However, given that NO is a key
immune factor involved in the oxidative killing machinery of
macrophages (Playfair and Bancroft, 2004) and has been implicated
in fighting trypanosome infections (Magez et al., 2006; Gobert
et al., 2000), it is somewhat surprising that plasma NO levels did
not mirror trypanosome levels in our study. Trypanosome levels
declined in both groups over the season, but NO concentrations
fluctuated equally in the two groups. One likely explanation of the
lack of treatment effect is that this species of flea is simply an
inefficient trypanosome vector (Eisen et al., 2009). This putative
inefficiency, in addition to the rapid grooming response, affords
only a short transmission window and a subsequent lack of
NO response to trypanosomes. This absence indicates that, at least
in U. columbianus, trypanosomes are of little consequence or are at
least not managed by NO in macrophages.

In contrast, oxidative stress patterns were more responsive to
change over time in that they mirrored prior studies (Viblanc et al.,
2018), likely because of the establishment of an oxidative shield
early on during lactation (Blount et al., 2016; Vitikainen et al.,
2016) that allowed costs to be offset. The oxidative shielding model
proposes that mothers increase antioxidant defenses early in
reproduction to prevent the transfer of damaged molecules to their
offspring, which may occur as maternal oxidative stress increases
through gestation and lactation (i.e. the oxidative cost of breeding).
In our study, effects of parasites appeared to manifest in the post-
shielding period (t4), with treated individuals experiencing larger
increases in ROM levels. This may reflect a poorer capacity of
parasitized females to buffer reproduction-associated oxidative
increases or a potential delayed effect of parasites. Generally,
similar flea infestation studies have largely found no results of
parasites on oxidative stress (Devevey et al., 2008; Maronde et al.,
2018; Wegmann et al., 2015). That said, our finding of an
interaction between parasitism and oxidative stress where others
have found no relationship is not surprising given the multifaceted
and non-linear relationship between the two (Costantini and Møller,
2009).

Conclusion
We attempted to quantify the previously variable costs of parasitism
in U. columbianus by discriminating between short- and long-term
effects (Asghar et al., 2015). However, it became clear that the
tendency of U. columbianus to prioritize immediate grooming of
parasites was likely the reason for the initial low level of fleas (Raveh
et al., 2011, 2015) and the lack of seasonal effects of our experimental
parasite manipulation. This strong grooming response coupled
with oxidative shielding likely resulted in the dampening of any
physiologically detectable parasite effects, even during the
energetically demanding reproductive period. Some subtle short-
term effects do manifest but are unlikely to culminate in detrimental
long-term fitness consequences unless parasitemia is chronically
sustained. As such, fleas, even when experimentally augmented in
number to increase their impact, do not strongly affect these hosts.
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Fig. 6. Oxidative status in Columbian ground squirrels between April and
August 2018. (A) ROM concentration and (B) OXY concentration. t1, gestation
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lactation (14 control, 15 treatment); t4, prior to hibernation immergence (11
control, 13 treatment). Data are medians±s.e.m. Different letters above boxes
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This result suggests that while hosts in poor condition may exhibit
high flea loads, flea infestation by itself is unlikely to debilitate hosts.
Seasonal variance in parasite levels over many species coupled with
larger processes (i.e. oxidative shielding t1–t3) temporarily masking
costs may result in studies overlooking parasite effects as a result of a
short detection time frame. Given the current direction of climate
change, it is eminently possible for parasite prevalence to increase
(Cohen et al., 2017), and with it, the manifestation of these subtle
costs. As such, short-term physiologicalmeasurementsmay be a better
approach than long-term fitness estimates to detect parasite costs in
wild populations.
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