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Light exposure enhances urea absorption in the fluted giant clam,
Tridacna squamosa, and up-regulates the protein abundance
of a light-dependent urea active transporter, DUR3-like,
in its ctenidium
Christabel Y. L. Chan1, Kum C. Hiong1, Mel V. Boo1, Celine Y. L. Choo1, Wai P. Wong1, Shit F. Chew2

and Yuen K. Ip1,3,*

ABSTRACT
Giant clams live in nutrient-poor reef waters of the Indo-Pacific and rely
on symbiotic dinoflagellates (Symbiodinium spp., also known as
zooxanthellae) for nutrients. As the symbionts are nitrogen deficient,
the host clam has to absorb exogenous nitrogen and supply it to them.
This study aimed to demonstrate light-enhanced urea absorption in the
fluted giant clam, Tridacna squamosa, and to clone and characterize
the urea active transporter DUR3-like from its ctenidium (gill). The
results indicate that T. squamosa absorbs exogenous urea, and the
rate of urea uptake in the light was significantly higher than that in
darkness. TheDUR3-like coding sequence obtained from its ctenidium
comprised 2346 bp, encoding a protein of 782 amino acids and
87.0 kDa. DUR3-like was expressed strongly in the ctenidium, outer
mantle and kidney. Twelve hours of exposure to light had no significant
effect on the transcript level of ctenidial DUR3-like. However, between
3 and 12 h of light exposure, DUR3-like protein abundance increased
progressively in the ctenidium, and became significantly greater than
that in the control at 12 h. DUR3-like had an apical localization in the
epithelia of the ctenidial filaments and tertiary water channels. Taken
together, these results indicate that DUR3-likemight participate in light-
enhanced urea absorption in the ctenidium of T. squamosa. When
made available to the symbiotic zooxanthellae that are known to
possess urease, the absorbed urea can be metabolized to NH3 and
CO2 to support amino acid synthesis and photosynthesis, respectively,
during insolation.
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INTRODUCTION
Tropical waters are often referred to as ‘deserts’, characterized by
poor nutrient content due mainly to the lack of overturn (de Goeij
et al., 2013). To overcome the scarcity of nutrients, specialized
tropical marine invertebrates, such as hard corals and giant clams,
live in symbiosis with symbiotic dinoflagellates of the genus

Symbiodinium, which are also known as zooxanthellae (Trench,
1987). Giant clams (Phylum: Mollusca, Family: Cardiidae,
Subfamily: Tridacninae, Genus: Tridacna or Hippopus) are
common inhabitants of coral reefs in the tropical Indo-Pacific.
The host clam harbors symbiotic zooxanthellae (Symbiodinium
clade A, C and D; LaJuenesse et al., 2004; Takabayashi et al., 2004;
Hernawan, 2008; Lee et al., 2015) which live extracellularly in a
branched tubular system surrounded by hemolymph (Norton et al.,
1992). Zooxanthellae reside mainly inside the tiny tertiary tubules
located below the surface of the fleshy and colorful outer mantle
(Norton et al., 1992; Hiong et al., 2017b), where they conduct
photosynthesis when light is available. More than 95% of the
photosynthates produced by the zooxanthellae is donated to
the host, accounting for a high percentage of the clam’s energy
requirements (Fisher et al., 1985; Klumpp et al., 1992). The
donation of photosynthates from the symbionts to the host closes the
nutrient gap in tropical waters. For that reason, giant clams can
increase the rate of shell formation during insolation (Sano et al.,
2012; Ip et al., 2017a) and maintain a high growth rate in nutrient-
deficient tropical waters with the availability of sunlight (Lucas
et al., 1989). Because of photosynthesis in the symbiotic
zooxanthellae, attention has been devoted previously to inorganic
carbon assimilation in giant clams (Rees et al., 1994; Baillie and
Yellowlees, 1998; Leggat et al., 2002, 2005; Yellowlees et al.,
2008). However, the growth of giant clams requires not only carbon
but also nitrogen. While symbiotic zooxanthellae can fix molecular
CO2 into organic compounds (e.g. glucose and glycerol), they are
not known to fix N2; hence, they must obtain nitrogen from the host
because of the lack of direct access to the ambient seawater. The a
priori assumption is that the host clam absorbs inorganic and
organic nitrogen from the ambient seawater and supplies them to its
symbionts; however, there is currently a dearth of information on the
molecular mechanisms of nitrogen uptake in the host clam.

Living organisms need nitrogen, which is a basic component of
nucleic acids and amino acids that make up all proteins. The
degradation of amino acids produces ammonia, which must be
removed because of its toxicity (Campbell, 1991). Most free-living
aquatic animals excrete ammonia as the major nitrogenous waste
and are regarded as ammonotelic (Ip and Chew, 2010; Chew and Ip,
2014). By contrast, symbiotic cnidarians and giant clams can absorb
and assimilate exogenous ammonia during insolation (Muscatine
et al., 1979;Wilkerson andMuscatine, 1984;Wilkerson and Trench,
1986; Miller and Yellowlees, 1989). Zooxanthellae isolated from
giant clams are nitrogen deficient and absorb ammonia and nitrate
from the external medium (Wilkerson and Trench, 1986). For intact
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nitrogen to the ambient seawater enhances photosynthesis in the
symbionts (Summons et al., 1986) and augments the growth rate of
the host (Onate and Naguit, 1989; Hastie et al., 1992). Overall, the
assimilation and recycling of nitrogen contribute to the success of
symbiotic cnidarians and giant clams in nutrient-poor waters in the
tropics.
Symbiotic invertebrates have access to multiple sources of

nitrogen, as they can capture prey and absorb dissolved nutrients
directly from the environment. In seawater, dissolved inorganic
nitrogen is available in the form of ammonium, nitrite and nitrate,
while dissolved organic nitrogen is available as urea and amino
acids. Nitrate is one of the main N sources for phytoplankton; its
concentration ranges between undetectable and 50 μmol N l−1 in
oceanic waters, and up to 500 μmol N l−1 in coastal waters (Collos
and Berges, 2003). Ammonium is generally present in small
quantities (undetectable to 2 μmol N l−1), except in polluted areas
(up to 600 μmol N l−1). Urea, with the chemical formula of
CO(NH2)2, contains two nitrogen atoms, and is therefore a good
nitrogen source for many species of phytoplankton. Its
concentration ranges from undetectable to 1 μmol N l−1 in
oceanic waters (Bronk, 2002; Painter et al., 2008) and up to
25 μmol N l−1 in coastal waters (Solomon et al., 2010). In reef
environments, urea concentrations vary from <0.2 µmol N l−1

(Wafar et al., 1986) to 2.0 µmol N l−1 (Beauregard, 2004). Some
lower organisms possess urease, an enzyme that hydrolyzes urea
into ammonia and carbon dioxide, and can therefore utilize
exogenous urea as a source of nitrogen. Although urea is
available at seemingly low concentrations around coral reefs, it
represents a significant amount of nitrogen in the seawater (Crandall
and Teece, 2012). Urea in reef waters is derived primarily from
bottom sediments and fishes schooling around seagrass beds. It has
been established that hard corals can absorb urea from the external
medium, and the rate of urea absorption can be enhanced by light
(Grover et al., 2006). While both the host and zooxanthellae can
absorb urea, the rate of urea uptake in the coral–zooxanthellae
association (1028 μg urea mg−1 protein h−1) is higher than that in
the isolated zooxanthellae (728 μg urea mg−1 protein h−1) (Barnes
and Crossland, 1976). At present, no information is available on
exogenous urea uptake in giant clams, although it is logical to
hypothesize that they can do so in order to satisfy the nutritional
requirement of the nitrogen-deficient symbionts.
It has been established that giant clams absorb and assimilate

exogenous ammonia in the presence of light (Wilkerson and
Trench, 1986; Fitt et al., 1993a). In fact, instead of excreting
ammonia, giant clams have the ability to deplete seawater of
inorganic nitrogen (Wilkerson and Trench, 1986). The rate of
ammonia absorption in Tridacna derasa is 5–18 times faster in light
than in darkness (Fitt et al., 1993b). Furthermore, the addition of
ammonia and nitrate to the external medium augments pigmentation
and division of zooxanthellae, and enhances the growth rate in giant
clams (Hastie et al., 1992; Fitt et al., 1993a; Belda et al., 1993). It
has been suggested that the major site of ammonia uptake and
assimilation in giant clams is the ctenidium (gill), which is basically
a respiratory organ located inside the mantle cavity (Rees et al.,
1994; Hiong et al., 2017a). Recently, a Glutamine Synthetase (GS)
gene of host (clam) origin has been cloned and characterized from
the ctenidium of the fluted giant clam, Tridacna squamosa (Hiong
et al., 2017a). Light exposure leads to significant increases in the
expression levels of this ctenidial GS gene and GS protein,
indicating an increase in the assimilation of the absorbed
ammonia to glutamine. In addition, the ctenidium of T. squamosa
apparently also participates in proton excretion and inorganic

carbon uptake, as light exposure also upregulates the gene and
protein expression levels of ctenidial vacuolar-type H+-ATPase
subunit A (ATP6V1A; Ip et al. 2018), Na+/H+ Exchanger 3
(NHE3)-like (Hiong et al., 2017b) and Dual Domain Carbonic
Anhydrase (DDCA; Koh et al., 2018). Hence, it is logical to
hypothesize that the ctenidium could also take part in the absorption
of urea from the external medium.

The hydrophobic phospholipid bilayer of biological membranes
has a relatively low permeability to the highly hydrophilic urea
molecule (Goodman, 2002). Nevertheless, transmembrane urea
movement can be augmented by urea transporters, including
facilitated urea transporters (UTs) and urea active (energy-
dependent) transporters, which are found in all living organisms
(Bankir, 2014). To date, several UTs have been cloned (Sands,
2002), and a few urea active transporters that can raise the
concentration of intracellular urea above that of the medium have
also been identified (Bankir, 2014). The most well established urea
active transporter is DUR3, which has been characterized in bacteria
(Navarathna et al., 2011), yeast (ElBerry et al., 1993), fungi (Morel
et al., 2008; Abreu et al., 2010) and plants (Liu et al., 2003; Kojima
et al., 2007; Wang et al., 2012). Considering the low concentrations
of urea in reef waters, it is logical to hypothesize that the ctenidia of
giant clams would express some sort of urea active transporter to
augment urea absorption.

Therefore, the first objective of this study was to demonstrate
light-enhanced urea uptake in T. squamosa by determining the rate
of urea absorption in darkness or in light. The second objective was
to clone and characterize a homolog ofDUR3 (DUR3-like) from the
ctenidium of T. squamosa. The identity of DUR3-like and its host
(animal) origin was confirmed by sequence similarity analysis. The
gene expression of DUR3-like in various organs and tissues was
examined to verify the ctenidium as the main site of expression. In
addition, the effects of light and dark exposure on the expression
levels of DUR3-like gene and DUR3-like protein in the ctenidium
were determined to test the hypothesis that light would exert an up-
regulatory effect to support light-enhanced urea uptake. Finally,
immunofluorescence microscopy was performed to confirm that
DUR3-like was localized to the apical membrane of the ctenidial
epithelial cells, where it could engage in urea absorption from the
ambient seawater.

MATERIALS AND METHODS
Giant clams
Adult T. squamosa Lamarck 1819 weighing 500±180 g (N=30)
were purchased from Xanh Tuoi Tropical Fish, Ltd (Ho Chi Minh
City, Vietnam), and maintained in the laboratory as described by Ip
et al. (2015), but at 26±1°C. Research on giant clams did not require
any institutional approval (National University of Singapore
Institutional Animal Care and Use Committee).

Urea uptake experiments
Clams were maintained on a 12 h light: 12 h dark regime. For the
urea uptake experiments, 10 individuals of T. squamosa were
randomly selected and individually transferred in complete
darkness to a clear container containing 8 volumes (volume:mass
of clam) of artificial seawater with optimal aeration. The clams were
acclimatized in darkness for 2 h prior to the addition of urea at a
concentration of 50 µmol l−1. The initial concentration of
50 µmol l−1 was higher than the urea concentration reported for
reef waters (∼2.2 μmol l−1; Crandall and Teece, 2012), but was
required to sustain the continued uptake of urea by the giant clam
over a 6 h experimental period. Two minutes after the addition of
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urea (time 0), 5 giant clams were exposed to light (80–
85 µmol m−2 s−1) while the remaining 5 giant clams were kept in
darkness (control). Water was sampled at 0, 3, 4 and 6 h for urea
assay. Preliminary experiments indicated that an initial 3 h period
was needed to achieve a substantially detectable decrease in urea
concentration in the external medium. The experiment was stopped
at the 6th hour because the urea concentration would have decreased
by ∼50%. Containers with only urea in artificial seawater were set
up as blanks to verify the constancy of the urea concentration during
the experimental period. Water samples were kept at 4°C, and urea
analysis was performed within 1 week, following the method of Jow
et al. (1999). The decrease in urea concentration in the external
medium was expressed as percentage change with reference to
the initial urea concentration, which displayed some variation
(48–53 µmol l−1), and the rate of urea absorption by the giant clam
was expressed as µmol urea g–1 h–1.

Experimental conditions for tissue sampling
In order to simulate the conditions in their natural habitat, parallel
controls were not adopted in this study so that no giant clam was
exposed to >12 h of darkness. Giant clams were anesthetized with
0.2% phenoxyethanol before they were killed. For molecular work,
5 giant clams were killed for tissue sampling at the end of a 12 h
dark period (controls; N=5); another 15 giant clams (N=5 for each
time point) were killed for tissue sampling after 3, 6 or 12 h of light
exposure. Samples of the ctenidium, outer mantle, inner mantle,
foot muscle, adductor muscle, kidney and hepatopancreas were
dissected, blotted dry, frozen with aluminium tongs precooled in
liquid nitrogen, and kept at −80°C until analysis. Separately,
ctenidium samples from 4 other giant clams that had been exposed
to light for 12 h and anesthetized in 0.2% phenoxyethanol were
collected for immunofluorescence microscopy.

Gene sequencing and sequence analyses
Total RNAwas extracted from the tissues of T. squamosa using TRI
Reagent™ (Sigma-Aldrich, St Louis, MO, USA), purified by the
RNeasy Plus Mini Kit (Qiagen, Hilden, Germany), and quantified
by a Shimadzu BioSpec-nano spectrophotometer (Shimadzu
Corporation, Tokyo, Japan). RNA integrity was examined
electrophoretically, and RNA was then used for cDNA synthesis
using a RevertAid™ first-strand cDNA synthesis kit (Thermo
Fisher Scientific Inc., Waltham, MA, USA).
A pair of primers (forward: 5′-GAYGARCAYAACCTRGAC-

AC-3′; reverse: 5′-AWACAATACACCARGTYTTG-3′), designed
based on the conserved regions of Crassostrea gigas DUR3 (XM_
011436019.1), Aplysia californica DUR3-like (XM_013086007.1),
Octopus bimaculoides DUR3-like (XM_014928571.1) and Lingula
anatine DUR3-like (XM_013532760.1), was used to obtain a partial
DUR3-like sequence from the ctenidium of T. squamosa. PCR and
cloning were performed according to the methods described in
Hiong et al. (2017a,b) with minor modifications. The cycling
conditions were 94°C (3 min), followed by 35 cycles of 94°C (30 s),
55°C (30 s), 72°C (1.5 min) and 1 cycle of final extension at 72°C
(10 min). Analyses of multiple clones of DUR3-like fragments
did not reveal the presence of isoforms. Using 5′ and 3′ RACE
(SMARTer™ RACE cDNA amplification kit, Clontech
Laboratories, Mountain View, CA, USA) and a set of specific
primers (forward: 5′-CAGTTACCGCAGTCAAGCTAACGCTC-3′;
reverse: 5′-ACGACCTTGCTGCCAGATTGTCCA-3′), the
complete cDNA sequence of DUR3-like was obtained. Sample
preparation and sequencingwere performed according to themethods
of Hiong et al. (2017a,b). Sequences were assembled using BioEdit

version 7.2.5 (Hall, 1999), and the cDNA sequence of DUR3-like
(accession number MF073181) was deposited in GenBank.

The DUR3-like nucleotide sequence was translated into the
DUR3-like amino acid sequence using the ExPASy Proteomic
server (http://web.expasy.org/translate/). The transmembrane
regions (TMs) were identified using MEMSAT3 and MEMSAT-
SVM provided by the PSIPRED protein structure prediction server
(http://bioinf.cs.ucl.ac.uk/psipred/). DUR3-like of T. squamosa was
aligned and compared with selected DUR3 or DUR3-like sequences
from various animals using BioEdit. A sequence similarity table
was generated to confirm the identity of DUR3-like from
T. squamosa.

Gene expression of DUR3-like in various tissues/organs
The mRNA expression of DUR3-like in various tissues/organs of T.
squamosa was examined through PCR using a set of gene-specific
primers (forward: 5′-GCCTTATCTACGGTATTGTGCTC-3′;
reverse: 5′-TAGAAGACTTAGACTCCGCCCT-3′). The PCR
reaction was performed in a total volume of 10 μl using DreamTaq
polymerase (Thermo Fisher Scientific) with the following cycling
conditions: 95°C for 3 min, followed by 30 cycles of 95°C for 30 s,
55°C for 30 s, 72°C for 1 min, and a final extension of 72°C for
10 min. PCR products were separated by 1% agarose gel
electrophoresis.

Determination of transcript level by quantitative real-time
PCR (qPCR)
A StepOnePlus™ Real-Time PCR System (Thermo Fisher
Scientific) was used to perform the absolute quantification of
DUR3-like transcripts by qPCR following the methods of Hiong
et al. (2017a,b). Using the RevertAid™ first-strand cDNA synthesis
kit, cDNA (4 µg) was synthesized from total RNA with random
hexamer primers. The specific qPCR primers used were forward: 5′-
ATTATCCTCTGCTGTCCGCC-3′ and reverse: 5′-CATTCCCG-
CTCCTCATCGT-3′. The amplification efficiency was 98.1%. Al-
though we performed absolute quantification of DUR3-like
transcripts, a pair of specific qPCR primers (forward: 5’-GTGCC-
AAAGGATGTCAATGTC-3′; reverse: 5’-CTTAGCCATATCTC-
CGCCTG-3′) was designed to quantify the transcript level of
α-tubulin as the reference gene; the aim was to demonstrate the
constant transcript level of the reference gene throughout the 12 h of
light exposure as compared with the control.

Antibodies and immunoblotting
Based on the epitope sequence of LRQNRAESKSSREM that
corresponded to residues 769–782 of DUR3-like of T. squamosa, a
rabbit polyclonal anti-DUR3-like antibody was custom-made by
GenScript (Piscataway, NJ, USA). The anti-α-tubulin 12G10
antibody was produced by the Developmental Studies Hybridoma
Bank of the Department of Biological Sciences in the University
of Iowa.

For immunoblotting, protein extraction and SDS-PAGE were
performed according to the methods of Hiong et al. (2017b) with
minor modifications. The samples were not heated before
electrophoresis. Proteins (100 µg) were separated by SDS-PAGE,
and then transferred electrophoretically onto PVDF membranes
(Bio-Rad Laboratories, Hercules, CA, USA). Membranes were first
blocked at 25°C with Pierce Fast Blocking Buffer (Thermo Fisher
Scientific) for 15 min, then with Superblock® Blocking Buffer
(Thermo Fisher Scientific) for another 15 min. Immunoblotting was
performed with Pierce Fast Western Blot kit, SuperSignal®

West Pico Substrate (Thermo Fisher Scientific). The optimized
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concentration of the anti-DUR3-like antibody was 2.5 µg ml−1,
and that of the anti-α-tubulin antibody was 0.05 µg ml−1.
The identity of the DUR3-like band was validated by a peptide
competition test, whereby the anti-DUR3-like antibody (25 µg) was
incubated with the immunizing peptide (125 µg) provided
by GenScript for 1 h at 25°C. Bands were visualized by
chemiluminescence using X-ray films (CL-XPosure™ Film,
Thermo Fisher Scientific). The immunoblot images were digitized
and quantified densitometrically following the methods of Hiong
et al. (2017b). The protein abundance of DUR3-like was presented
as the optical density of the DUR3-like band normalized with that of
the α-tubulin band.

Immunofluorescence microscopy
The subcellular localization of DUR3-like in the ctenidial epithelial
cells was performed by immunofluorescence microscopy as
described previously (Hiong et al., 2017b), using the custom-
made anti-DUR3-like antibody (2.5 µg ml−1) and Alexa Fluor 488-
conjugated goat anti-rabbit secondary antibody (2.5 µg ml−1; Life
Technologies Corporation, Carlsbad, CA, USA). To validate the
specificity of the anti-DUR3-like antibody, a peptide competition
test was performed by incubating the anti-DUR3-like antibody with
the immunizing peptide as described in ‘Antibodies and
immunoblotting’, above. Images were examined using an
Olympus BX60 epifluorescence microscope and DP73 digital
camera (Olympus Corporation, Tokyo, Japan), and were acquired
under optimal exposure settings (300–500 ms) using cellSens
software (Olympus Corporation). Differential interference contrast
(DIC) images were obtained to define gross tissue structure and
tissue orientation.

Statistics
Results were statistically analyzed using SPSS Statistics software,
version 19 (IBM Corporation, Armonk, NY, USA). The
homogeneity of variance was examined by Levene’s test.
Differences among means were evaluated by one-way analysis of
variance (ANOVA). Depending on the homogeneity of variance,
the post hoc test used was either Tukey’s or Dunnett’s T3 test.
Statistical significance was set at P<0.05.

RESULTS
Rates of urea absorption in darkness or in light
The urea concentration in seawater without giant clams remained
unchanged for 6 h, but that in containers with T. squamosa exposed
to darkness or light decreased almost linearly with time (Fig. 1A).
These results indicate that T. squamosa could absorb urea from the
external medium, and the rate of urea absorption during the first 3 h
was significantly higher (∼1.6-fold; P<0.05) in light than in
darkness (Fig. 1B). The lack of significant changes in the rate of
urea absorption at 4 and 6 h could be attributable to the resulting
decreases in urea concentration in the external medium. Overall, the
average rate of urea absorption over the entire 6 h experimental
period in clams exposed to light (0.045±0.013 µmol urea g–1 h–1,
N=5) was significantly higher than that in clams exposed to
darkness (0.029±0.005 µmol urea g–1 h–1, N=5).

Nucleotide sequence, deduced amino acid sequence and
molecular characterization of DUR3-like/DUR3-like
The complete cDNA coding sequence (2346 bp) of DUR3-like
obtained from the ctenidium of T. squamosa has been deposited in
GenBank (accession no. MF073181). The sequence coded for a
protein of 782 amino acid residues with an estimated molecular

mass of 87.0 kDa. The deduced DUR3-like of T. squamosa had the
highest similarity with sequences of urea active transporter from
mollusk species (56.1–69.5%), followed by those of echinoderms
and chordates (42.4–55.1%; Table 1). However, it had low similarity
with urea active transporter from plants (38.2–46.9%), and displayed
the lowest similarity to Urea Active Transporter A and Urea Active
Transporter B of the single-celled alga Chlamydomonas reinhardtii
(38.2–40.6%). These results confirmed that the DUR3-like obtained
from the ctenidium of T. squamosa had a host (animal) origin.

A multiple sequence alignment of DUR3-like from T. squamosa
with sequences of urea active transporter from several organisms
obtained from GenBank (DUR3 of Aspergillus nidulans, DUR3-
like of Pyropia yezoensis and the predicted urea–proton symporter
DUR3-like of Crassostrea gigas) revealed a number of highly
conserved amino acid residues (Fig. 2). Notably, residues (W131,
T180, D335, Y440 and W555; numbered according to DUR3-like
of T. squamosa in Fig. 2) involved in urea binding, and possibly
translocation of urea in DUR3 of A. nidulans, were conserved in
DUR3-like of T. squamosa (Sanguinetti et al., 2014). Residues
involved in protein folding and structure (G216, P757, G146 and
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R188) were also highly conserved. DUR3-like of T. squamosa had
15 TMs according to the PSIRED MEMSAT-SVM server (Nugent
and Jones, 2009). An analysis using the Conserved Domain
Database (Marchler-Bauer et al., 2005) indicated that DUR3-like
from T. squamosa had conserved domains corresponding to the
sodium solute carrier 5- and 6-like families, with five predicted
sodium-binding residues (S127, L130, A422, S425 and T426).

Gene expression of DUR3-like in various tissues/organs
In T. squamosa, the strongest expression ofDUR3-likewas detected
in the ctenidium, followed by the kidney and outer mantle (Fig. 3).
In comparison, DUR3-like was weakly expressed in the inner
mantle, adductor muscle and hepatopancreas, and undetectable in
the foot muscle (Fig. 3).

Effects of light on expression levels of DUR3-like/DUR3-like
in the ctenidium
The transcript level of DUR3-like in the ctenidium of T. squamosa
remained statistically unchanged throughout the 12 h of light
exposure, despite being slightly higher at 3 h compared with the
control (Fig. 4). There was no significant change in the transcript level
of α-tubulin throughout the 12 h of light exposure (results not shown).
Immunoblotting revealed a band of interest at 95 kDa, which was

close to the estimated molecular mass of 87 kDa (Fig. 5A). Results
from the peptide competition assay supported the identity of this
band as DUR3-like. Between 3 and 12 h of light exposure, therewas
a progressive increase in the protein abundance of ctenidial DUR3-
like, which became significantly higher (by ∼8-fold) than the
control value at 12 h (Fig. 5B).

Subcellular localization of DUR3-like in the ctenidium
DUR3-like was immunolocalized to the apical epithelium of the
ctenidial filaments of T. squamosa (Fig. 6A). In addition, almost all
the epithelial cells surrounding the tertiary water channels displayed
apical DUR3-like immunofluorescence (Fig. 6B). The validity of
the immunofluorescence labeling of DUR3-like was validated by
the peptide competition test (Fig. 7).

DISCUSSION
Light-enhanced urea absorption in T. squamosa
In giant clams, the host clam absorbs inorganic nitrogen, mainly as
ammonia, and supplies it to the symbiotic zooxanthellae, which are

nitrogen deficient (Wilkerson and Trench, 1986). In addition to
ammonia, urea can also act as a source of nitrogen for some
symbiotic invertebrates (Barnes and Crossland, 1976; Grover et al.,
2006). Our results reveal for the first time that T. squamosa can
absorb urea from the external medium, and the rate of urea
absorption was higher in light than in darkness. Hence, exogenous
urea may be an important source of organic nitrogen to the giant
clam–zooxanthellae association, and the host clam must logically
possess some sort of urea active transporter because of the low
concentration of exogenous urea.

Only a few urea active transporters have been cloned, mainly
from unicellular organisms (ElBerry et al., 1993; Mills et al., 1998;
Valladares et al., 2002). Although the vectorial transport of urea
across epithelia of higher organisms has been well characterized
functionally (Katz et al., 1981; Beyer and Gelarden, 1988; Sands
et al., 1996b; Zanin et al., 2014), none of the related urea active
transporters have been identified. In marine elasmobranchs, which
retain urea for osmoregulatory purposes, active urea absorption is
known to occur in the intestine and kidney (Bankir, 2014), but the
associated urea active transporters have not been cloned or
characterized. In mammals, active urea transport may be involved
in urea secretion in the proximal tubule of the kidney (Sands et al.,
1996a; Bankir, 2014), but again no urea active transporter has been
cloned. Functional characterization of these transport processes
indicates that, in some cases, urea transport is Na+ dependent.

Molecular characterization of DUR3-like from T. squamosa
This is the first report on the complete coding sequence and
characterization of DUR3-like from an invertebrate. DUR3-like of
T. squamosa consisted of 15 predicted TMs, differing from
members of the UT family, which are characterized by 10 TMs
(Levin and Zhou, 2014). Unlike the urea-binding ABC transporters
and Bra proteins of bacteria (Hoshino and Kose, 1990; Valladares
et al., 2002), DUR3-like of T. squamosa did not contain any ATP-
binding motifs. DUR3-like of T. squamosa was confirmed to be a
urea transporter, as residues W131, D335 and W555 are known to
be involved in urea binding and recognition in DUR3 of Aspergillus
nidulans (Sanguinetti et al., 2014). Residues W131 and D335 were
located in the transmembrane regions, while W555 was found in a
small extracellular region. These urea-binding residues could be
involved in different stages of the translocation process, whereby
W555 could bind to an exogenous urea molecule and channel it into

Table 1. Percentage similarity between the deduced amino acid sequence of DUR3-like from Tridacna squamosa and sequences of urea active
transporters from other species obtained from GenBank

Phylum Species (accession number) Protein Similarity (%)

Mollusks Crassostrea gigas (XP_011447729.1) Predicted urea-proton symporter DUR3-like 69.5
Crassostrea gigas (EKC42095.1) Putative urea active transporter 1 60.7
Aplysia californica (XP_012934693.1) Solute carrier 5- and 6-like 57.9
Octopus bimaculoides (XP_014784057.1) Urea-proton symporter DUR3-like 56.1

Echinoderms Strongylocentrotus purpuratus (XP_011662595.1) Urea-proton symporter DUR3 55.1
Brachiopods Lingula anatina (XP_013388214.1) Urea-proton symporter DUR3-like 55.8
Hemichordata Saccoglossus kowalevskii (XP_006823326.1) Urea-proton symporter DUR3-like 54.7
Chordata Branchiostoma belcheri (XP_019622723.1) Urea-proton symporter DUR3-like 51.9

Branchiostoma floridae(XP_002611485.1) Solute carrier 5- and 6-like 45.6
Arthropods Limulus polyphemus (XP_013780777.1) Solute carrier 5-like 42.4
Plantae Chondrus crispus (XP_005716890.1) Urea active transporter-like protein 1 46.9

Nelumbo nucifera (XP_010255736.1) Predicted urea-proton symporter DUR3 42.2
Brassica rapa (XP_009128785.1) Predicted urea-proton symporter DUR3 41.5
Chlamydomonas reinhardtii (EDO97038.1) Urea active transporter A 40.6
Chlamydomonas reinhardtii (EDO97039.1) Urea active transporter B 38.2

Sequences are arranged in a descending order of similarity.
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the transporter pore. Furthermore, it has been established that
residues T180 andW555 are involved in substrate (urea) selectivity,
while W555 can also function as an extracellular filter gate
(Sanguinetti et al., 2014).
Based on the Conserved Domain Database (Marchler-Bauer

et al., 2005), DUR3-like of T. squamosa contained characteristic

domains of the solute carrier families 5 (SLC5) and 6 (SLC6). In
human, members of SLC5 are known to be Na+/glucose
cotransporters, while those of SLC6 are described as Na+- and
Cl−-dependent/solute symporters (Turk and Wright, 2004).
Although the sequences selected for alignment with DUR3-like of
T. squamosa (Fig. 2) had been characterized as urea/H+ symporters

Fig. 2. A multiple sequence alignment of T. squamosa DUR3-like with Aspergillus nidulans DUR3 (ACZ62639.1), Pyropia yezoensis DUR3-like
(BAU04114.1) and Crassostrea gigas DUR3-like (XM_020074166.1). Identical or similar residues are indicated by shading. Asterisks indicate residues
involved in urea binding. Open triangles indicate residues involved in protein structure and folding. Filled triangles indicate residues involved in the Na+-binding
site. The transmembrane regions (TM1 to TM15) predicted fromPSIPRED using theMEMSAT-SVM server aremarked by red boxes. The region corresponding to
the solute carrier 5- and 6-like families as predicted by the Conserved Domain Database of the National Center for Biotechnology Information (NCBI) is
underlined.
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(Sanguinetti et al., 2014; Kakinuma et al., 2016), they also
contained conserved domains of SLC5 and SLC6 members. In
fact, similar to DUR3-like of T. squamosa, all of them apparently
contained Na+-binding sites according to the Conserved Domain
Database. Specifically, the Na+-binding site of DUR3-like of
T. squamosa comprised residues S127, L130, A422, S425 and T426
(Fig. 2). Hence, DUR3-like of T. squamosa could actually be a
secondary active transporter using the Na+ motive force to drive the
active uptake of urea (Jung, 2002). Furthermore, residues R188 and
G216 involved in maintaining the structure of DUR3-like of
T. squamosa in the plasma membrane are also highly conserved in
the Na+/solute symporter family of transporters (Sanguinetti et al.,
2014). Taken together, DUR3-like of T. squamosa could be a
secondary active transporter that utilizes the electrochemical
potential gradient of Na+ to drive the active uptake of urea.

DUR3-like of T. squamosa is expressed strongly in the
ctenidium, where it is localized apically in the ctenidial
epithelium
A priori, the pattern of gene expression of DUR3-like in various
tissues/organs might provide clues to the physiological functions of
DUR3-like in T. squamosa. In T. squamosa, DUR3-like was
strongly expressed in the ctenidium. The ctenidium has a large
surface area to volume ratio as it consists of many filaments and
tertiary water channels (Norton and Jones, 1992), and is known to
take part in the absorption of ammonia and phosphate (Fitt et al.,
1993a; Rees et al., 1994). Hence, it is probable that the ctenidial
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Fig. 3. mRNA expression ofDUR3-like in T. squamosa kept in darkness for
12 h. OM, outer mantle; IM, inner mantle; C, ctenidium; FM, foot muscle; AM,
adductor muscle; K, kidney; H, hepatopancreas; NTC, no-template control.
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Results represent means±s.e.m. (N=4).
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Fig. 5. Protein abundance of DUR3-like in the ctenidium of T. squamosa
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(A) Left, example immunoblot of DUR3-like and tubulin. C, control (12 h dark).
Right, immunoblot of DUR3-like (12 h light exposure) using antibody
neutralized with the immunizing peptide (peptide competition assay, PCA).
(B) DUR3-like protein level. The optical density of the DUR3-like band for a
100 µg protein load was normalized to tubulin. The results represent means
±s.e.m. (N=4). Means not sharing the same letter are significantly different
from each other (P<0.05).
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DUR3-like participates in the uptake of exogenous urea. Indeed, the
apical localization of DUR3-like in the epithelial cells of the
ctenidial filaments and water channels confirms that it is positioned
to transport urea between the ambient seawater and the cytoplasm of
the ctenidial epithelial cells.

Expression of DUR3-like in the ctenidium is light dependent
Light exposure had no significant effect on the transcript level of
DUR3-like but led to a significant increase in the protein abundance

of DUR3-like in the ctenidium of T. squamosa. Hence, unlike
ctenidial GS (Hiong et al., 2017a) and NHE3-like (Hiong et al.,
2017b), DUR3-like was regulated predominantly at the translational
level. The increase in protein abundance of DUR3-like in response
to light corroborates the phenomenon of light-enhanced urea
absorption in T. squamosa. Besides DUR3-like, several other
transporters/enzymes of T. squamosa also display light-dependent
gene and protein expression. They include GS (Hiong et al., 2017a),
NHE3-like (Hiong et al., 2017b) and DDCA (Koh et al., 2018) in

i 12 h light (DIC)

A

B
i 12 h light (DIC) ii 12 h light (DUR3-like; green) iii 12 h light (DAPI) iv 12 h light (merged)

ii 12 h light (DUR3-like; green) iii 12 h light (DAPI) iv 12 h light (merged)

CF

WC
HL

WC

WC
HL

WC

HL

CF

Fig. 6. Immunofluorescence localization of DUR3-like in T. squamosa. (A) Immunofluorescence localization of DUR3-like in the ctenidial filaments (CFs) of
the ctenidium of T. squamosa exposed to 12 h of light. (i) The structure of the CFs is revealed through differential interference contrast (DIC) microscopy. (ii, iii) The
green immunofluorescence indicates the presence of DUR3-like (ii) while blue represents DAPI nuclear staining (iii). (iv) The composite image of ii and iii
overlaid with the DIC image. Arrowheads mark DUR3-like immunostaining of the apical membrane of the epithelial cells of the CF. Reproducible results
were obtained from four individual clams. Scale bars: 20 µm. (B) Immunofluorescence localization of DUR3-like in the tertiary water channels (WCs) of the
ctenidium of T. squamosa exposed to 12 h of light. (i) The lattice formation of WCs in the ctenidium is demonstrated in the DIC image. (ii, iii) The green
immunofluorescence indicates the presence of DUR3-like (ii) while blue represents DAPI nuclear staining (iii). (iv) The composite image of ii and iii overlaid with
the DIC. Arrowheads mark DUR3-like immunostaining of the apical membrane of the epithelial cells lining the WC. HL, hemolymph. Reproducible results were
obtained from four individual clams. Scale bars: 20 µm.
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Fig. 7. The validation of DUR3-like
immunostaining of the ctenidium of
T. squamosa by a PCA. DUR3-like
immunofluorescence in ctenidial filaments (CFs)
and tertiary water channels (WCs) exposed to 12 h
of light using the normal anti-DUR3-like antibody
(A,C) or anti-DUR3-like antibody neutralized with
the immunizing peptide (PCA in B,D). DUR3-like
immunofluorescence is shown in green and DAPI
nucleic staining is shown in blue in the DIC image.
Arrowheads in A mark DUR3-like immunostaining
of the apical membrane of the epithelial cells in the
CFs as compared with the lack of DUR3-like
immunostaining with the PCA in B. Arrowheads in
C mark DUR3-immunostaining of the apical
membrane of the epithelial cells surrounding the
WCs as compared with the lack of DUR3-like-
immunostaining with the PCA in D. HL,
hemolymph. Scale bars: 20 µm.
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the ctenidium, the plasma membrane Ca2+-ATPase (Ip et al., 2017a)
and the Na+/K+-ATPase α-subunit (Boo et al., 2017) in the inner
mantle, and carbonic anhydrase 2-like (Ip et al., 2017b) in the outer
and inner mantle. Overall, it would appear that T. squamosa has
acquired a general light-dependent mechanism to coordinate the
expression levels of a variety of enzymes and transporters in relation
to various diurnally light-dependent physiological processes, which
include inorganic carbon absorption, ammonia absorption and
assimilation, and calcification. However, daily changes in the
protein expression level of DUR3-like are energy intensive. So, why
would T. squamosa depend on transcriptional and/or translational
changes to regulate DUR3-like and other transporters/enzymes in
response to light? The reason could be related to the autotrophic
nature of T. squamosa as a clam–zooxanthellae association.
Notably, the host’s daily energy and growth requirements can be
satisfied fully by the photosynthates donated by its symbionts
(Muscatine et al., 1983; Fisher et al., 1985; Edmunds and Davies,
1986; Davies, 1991; Klumpp et al., 1992; Klumpp and Griffith,
1994; Hawkins and Klumpp, 1995).

What happens to the urea absorbed by the host clam?
Animals, with the exception of Aplysia californica (Pedrozo et al.,
1996), do not possess enzymes to catabolize urea. Hence, the urea
absorbed by T. squamosa is probably transported through the
hemolymph and tubular fluid to the symbiotic zooxanthellae, which
reside mainly in the extensible outer mantle. In fact, urea is an
excellent source of nitrogen for many free-living algae (Naylor,
1970), and DUR3 is known to be expressed in the green alga
Chlamydomonas reinhardtii (de Michele et al., 2012). Algae can
metabolize urea, and they express two different types of urea-
degrading enzymes: urease and ATP–urea amidolyase. Urease
releases NH3 and CO2 from urea in a one-step reaction, while urea
amidolyase degrades urea to NH3 and CO2 through a two-step
process (Bekheet and Syrett, 1977; Solomon and Gilbert, 2008).
However, these two enzymes are not known to be present in the
same algal species (Al-Houty and Syrett, 1983). While all members
of Chlorophyceae contain ATP–urea amidolyase, members of other
algal classes contain urease (Leftley and Syrett, 1973).
Analyses of the two available Symbiodinium genome databases

for three different clades (http://palumbi.stanford.edu/data/, Ladner
et al., 2012; http://smic.reefgenomics.org/download, Aranda et al.,
2016) confirm that all consist of Dur3 and Urease, but not ATP–
Urea Amidolyase. Hence, it is probable that symbiotic
zooxanthellae in T. squamosa can absorb urea from the tubular
fluid through their own algal Dur3, and then hydrolyze urea to NH3

and CO2 by urease. In the light, the CO2 released can be utilized by
ribulose-1,5-bisphosphate carboxylase/oxygenase in the plastids
during photosynthesis. Separately, NH3 can combine with H+ to
form NH4

+, and NH4
+ can enter the glutamate synthase cycle (van

den Heuvel et al., 2004), which is present in the zooxanthellae of
T. squamosa (Fam et al., 2018), for the synthesis of glutamate and
other amino acids. Subsequently, some of the carbohydrates and
amino acids produced by the zooxanthellae can be donated to the
host to support its growth and metabolism.

Why would T. squamosa evolve uniquely to absorb urea and
express DUR3-like in its ctenidium?
Urea is normally an excretory nitrogenous waste in animals, and
most animals possess transporters to facilitate urea excretion. As
animals cannot metabolize urea, there is no good reason for aquatic
animals to absorb it from the external medium. However,
T. squamosa is capable of light-enhanced urea absorption, and its

ctenidium expresses a DUR3-like of animal origin. This uncommon
phenomenon could be a result of the selective advantage of
symbiosis in the giant clam–zooxanthellae association. The
degradation of the absorbed urea and the utilization of the
resulting NH3 and CO2 are only feasible through the collaboration
between the host clam and its symbiotic zooxanthellae, as the latter
possess the enzyme for urea degradation. Unlike inorganic
ammonia, each mole of urea comprises two moles of nitrogen and
one mole of carbon. Upon degradation, urea can provide not only
NH3 to support amino acid metabolism but also CO2 to sustain
photosynthesis in the symbiotic zooxanthellae. Hence, despite urea
being present at relatively low concentrations in tropical reef waters
(Crandall and Teece, 2012), it would be advantageous to symbiotic
invertebrates, including giant clams and hard corals, to acquire
mechanisms (e.g. urea active transporters) to absorb exogenous
urea. More importantly, these mechanisms must display light-
dependent properties to enable the host to respond to light in
synchrony with the photosynthetic activity of its symbionts.
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Wang, W.-H., Köhler, B., Cao, F.-Q., Liu, G.-W., Gong, Y.-Y., Sheng, S., Song,
Q.-C., Cheng, X.-Y., Garnett, T., Okamoto, M. et al. (2012). Rice DUR3mediates
high-affinity urea transport and plays an effective role in improvement of urea
acquisition and utilization when expressed in Arabidopsis. New Phytol. 193,
432-444.

Wilkerson, F. P. and Muscatine, L. (1984). Uptake and assimilation of dissolved
inorganic nitrogen by a symbiotic sea anemone. Proc. R. Soc. B 221, 71-86.

Wilkerson, F. P. and Trench, R. K. (1986). Uptake of dissolved inorganic nitrogen
by the symbiotic clam Tridacna gigas and the coral Acropora sp. Mar. Biol. 93,
237-246.

Yellowlees, D., Rees, T. A. V. and Leggat, W. (2008). Metabolic interactions
between algal symbionts and invertebrate hosts. Plant Cell Environ. 31, 679-694.

Zanin, L., Tomasi, N., Wirdnam, C., Meier, S., Komarova, N. Y., Mimmo, T.,
Cesco, S., Rentsch, D. and Pinton, R. (2014). Isolation and functional
characterization of a high affinity urea transporter from roots of Zea mays. BMC
Plant Biol. 14, 222.

11

RESEARCH ARTICLE Journal of Experimental Biology (2018) 221, jeb176313. doi:10.1242/jeb.176313

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

http://dx.doi.org/10.1099/mic.0.045005-0
http://dx.doi.org/10.1099/mic.0.045005-0
http://dx.doi.org/10.1099/mic.0.045005-0
http://dx.doi.org/10.1111/j.1749-6632.1970.tb45170.x
http://dx.doi.org/10.1111/j.1749-6632.1970.tb45170.x
http://dx.doi.org/10.2307/1542028
http://dx.doi.org/10.2307/1542028
http://dx.doi.org/10.1186/1471-2105-10-159
http://dx.doi.org/10.1186/1471-2105-10-159
http://dx.doi.org/10.3354/meps07586
http://dx.doi.org/10.3354/meps07586
http://dx.doi.org/10.3354/meps07586
http://dx.doi.org/10.1016/S0378-5955(96)00147-5
http://dx.doi.org/10.1016/S0378-5955(96)00147-5
http://dx.doi.org/10.1016/S0378-5955(96)00147-5
http://dx.doi.org/10.1007/BF00347516
http://dx.doi.org/10.1007/BF00347516
http://dx.doi.org/10.1007/BF00347516
http://dx.doi.org/10.1097/01.ASN.0000035084.94743.7C
http://dx.doi.org/10.1097/01.ASN.0000035084.94743.7C
http://dx.doi.org/10.1172/JCI118736
http://dx.doi.org/10.1172/JCI118736
http://dx.doi.org/10.1172/JCI118736
http://dx.doi.org/10.1038/ki.1996.234
http://dx.doi.org/10.1038/ki.1996.234
http://dx.doi.org/10.1038/ki.1996.234
http://dx.doi.org/10.1098/rsob.140070
http://dx.doi.org/10.1098/rsob.140070
http://dx.doi.org/10.1098/rsob.140070
http://dx.doi.org/10.1098/rsob.140070
http://dx.doi.org/10.1038/ncomms1763
http://dx.doi.org/10.1038/ncomms1763
http://dx.doi.org/10.1038/ncomms1763
http://dx.doi.org/10.3354/ame01213
http://dx.doi.org/10.3354/ame01213
http://dx.doi.org/10.3354/ame01390
http://dx.doi.org/10.3354/ame01390
http://dx.doi.org/10.3354/ame01390
http://dx.doi.org/10.1098/rspb.1986.0016
http://dx.doi.org/10.1098/rspb.1986.0016
http://dx.doi.org/10.1098/rspb.1986.0016
http://dx.doi.org/10.1098/rspb.1986.0016
http://dx.doi.org/10.1111/j.0022-3646.2003.03-097.x
http://dx.doi.org/10.1111/j.0022-3646.2003.03-097.x
http://dx.doi.org/10.1111/j.0022-3646.2003.03-097.x
http://dx.doi.org/10.1007/s00424-003-1063-6
http://dx.doi.org/10.1007/s00424-003-1063-6
http://dx.doi.org/10.1046/j.1365-2958.2002.02778.x
http://dx.doi.org/10.1046/j.1365-2958.2002.02778.x
http://dx.doi.org/10.1046/j.1365-2958.2002.02778.x
http://dx.doi.org/10.1007/s00018-003-3316-0
http://dx.doi.org/10.1007/s00018-003-3316-0
http://dx.doi.org/10.1007/s00018-003-3316-0
http://dx.doi.org/10.1111/j.1469-8137.2011.03929.x
http://dx.doi.org/10.1111/j.1469-8137.2011.03929.x
http://dx.doi.org/10.1111/j.1469-8137.2011.03929.x
http://dx.doi.org/10.1111/j.1469-8137.2011.03929.x
http://dx.doi.org/10.1111/j.1469-8137.2011.03929.x
http://dx.doi.org/10.1098/rspb.1984.0023
http://dx.doi.org/10.1098/rspb.1984.0023
http://dx.doi.org/10.1007/BF00508261
http://dx.doi.org/10.1007/BF00508261
http://dx.doi.org/10.1007/BF00508261
http://dx.doi.org/10.1111/j.1365-3040.2008.01802.x
http://dx.doi.org/10.1111/j.1365-3040.2008.01802.x
http://dx.doi.org/10.1186/s12870-014-0222-6
http://dx.doi.org/10.1186/s12870-014-0222-6
http://dx.doi.org/10.1186/s12870-014-0222-6
http://dx.doi.org/10.1186/s12870-014-0222-6

