
CORRECTION

Correction: Reducing gravity takes the bounce out of running
(doi:10.1242/jeb.162024)
Delyle T. Polet, Ryan T. Schroeder and John E. A. Bertram

There were two errors published in J. Exp. Biol. (2018) 221, jeb162024 (doi:10.1242/jeb.162024).

First, a single coefficient Awas used to denote what should have been three separate proportionality constants. Three distinct uses of Awere:

A1: Efreq=A(g/V )k, used in Eqn 1, with units of J sk,

A2: Efreq=Af
k, used in the list of symbols and in the caption to Fig. 4, also with units of J sk,

A3: V¼A
ffiffiffi
g

p
, used in Appendix 2, and in Eqns 3 and A15, with units of

ffiffiffiffi
m

p
.

For impulsive running, A2=2
kA1. By setting k=2, taking the derivative of Eqn 1 with respect to V and setting to zero, we can solve for A3 in

terms of A1, and find A3=(2A1/m)
1/4, for A1 at k=2.

Second, a missing exponent in the code generating Fig. 4 led to improperly scaled axes. Although each axis should be down-scaled, the
relative shape of the curves is unchanged in the corrected figure (see below). The optimal take-off velocities in the corrected figure
correspond approximately to those of the best fit in Fig. 2B for each level of gravity.

The premise and conclusions of the paper are unchanged. The authors would like to thank the reader who brought these errors to their
attention.

The authors apologise for any inconvenience this may have caused.
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Fig. 4. The energetic costs
according to the model are plotted
as a function of vertical take-off
velocity (V ) for the five levels of
gravity tested. The hypothetical
subject has a mass of 65 kg and a
frequency-based proportionality
constant (A2 in Efreq=A2f2) derived
from the best fit in Fig. 2B. Labels of
gravity levels (g) are placed over the
colours they represent. The collisional
cost curve (Ecol=mV2/2, black dot-
dashed line) does not change with
gravity, whereas the frequency-based
energetic cost curve (Efreq, dotted
lines) is sensitive to gravity, leading to
an effect on total energy per step (Etot,
solid lines). In lower gravity, a runner
can stay in the air longer for a given
take-off velocity, so the associated
frequency-based cost goes down.
However, the cost of collisions at that
same velocity is unchanged, because
it depends only on the velocity itself.
The relaxation of frequency-based
cost allows the runner to settle on a
lower optimal take-off velocity (yellow
stars) with both a lower frequency-
based and collisional cost, compared
with higher gravity.
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RESEARCH ARTICLE

Reducing gravity takes the bounce out of running
Delyle T. Polet1,*, Ryan T. Schroeder2 and John E. A. Bertram3

ABSTRACT
In gravity below Earth-normal, a person should be able to take
higher leaps in running. We asked 10 subjects to run on a treadmill
in five levels of simulated reduced gravity and optically tracked
centre-of-mass kinematics. Subjects consistently reduced ballistic
height compared with running in normal gravity. We explain this trend
by considering the vertical take-off velocity (defined as maximum
vertical velocity). Energetically optimal gaits should balance
the energetic costs of ground-contact collisions (favouring lower
take-off velocity), and step frequency penalties such as leg swing
work (favouring higher take-off velocity, but less so in reduced
gravity). Measured vertical take-off velocity scaled with the square
root of gravitational acceleration, following energetic optimality
predictions and explaining why ballistic height decreases in
lower gravity. The success of work-based costs in predicting this
behaviour challenges the notion that gait adaptation in reduced gravity
results from an unloading of the stance phase. Only the relationship
between take-off velocity and swing cost changes in reduced gravity;
the energetic cost of the down-to-up transition for a given vertical take-
off velocity does not change with gravity. Because lower gravity allows
an elongated swing phase for a given take-off velocity, the motor
control system can relax the vertical momentum change in the stance
phase, thus reducing ballistic height, without great energetic penalty to
leg swing work. Although it may seem counterintuitive, using less
‘bouncy’ gaits in reduced gravity is a strategy to reduce energetic costs,
to which humans seem extremely sensitive.

KEY WORDS: Bipedal running, Reduced gravity, Leg swing,
Energetics, Optimization, Biomechanics

INTRODUCTION
Under normal circumstances, why do humans and animals select
particular steady gaits from the myriad possibilities available? One
theory is that the chosen gaits minimize metabolic energy
expenditure (Alexander and Jayes, 1983; Ruina et al., 2005). To
test this theory, one can subject organisms to abnormal
circumstances. If the gait changes to a new energetic optimum, it
can be inferred that energetics also govern gait choice under normal
conditions (Bertram and Ruina, 2001; Long and Srinivasan, 2013;
Selinger et al., 2015).
One ‘normal’ gait is the bipedal run, and one abnormal

circumstance is that of reduced gravity. Movie 1 demonstrates the
profound effect reducing gravity has on running kinematics. A

representative subject runs at 2 m s–1 in both Earth-normal and
simulated lunar gravity (approximately one-sixth of Earth-normal).
The change in kinematics is apparent: the gait in normal gravity
involves pronounced centre-of-mass undulations compared with the
near-flat trajectory of the low-gravity gait. Although centre-of-mass
vertical excursions during stance are known to decrease in reduced
gravity (Donelan and Kram, 2000), we observed that the height
achieved in the flight phase also decreases. This gait modification
seems paradoxical: in reduced gravity, people are free to run with
much higher leaps. Instead, they seem to flatten their gait. Why
should this be?

A simple explanation posits that the behaviour is energetically
beneficial. To explore the energetic consequences of choosing
to run with lower leaps in reduced gravity, we first considered the
impulsive model of running, following Rashevsky (1948) and
Bekker (1962), which treats a human runner as a point mass
body bouncing off rigid vertical limbs (Fig. 1). Stance is treated
as an inelastic, impulsive collision with the ground. In reality,
stance occurs in finite time, and elastic mechanisms exist. However,
the inelastic approximation is remarkably productive in explaining
gait choice (Ruina et al., 2005). When we use the term ‘energetic
cost of collisions’, we are generally referring to non-recoverable
energy loss during stance resulting from some interaction of the
centre of mass with the ground (Bertram and Hasaneini, 2013).
Such losses may arise from damping, active negative work or
discontinuous velocity profiles. In any case, modelling these
interactions as an inelastic collision provides a simple estimation
of the net cost.

During this collision, all vertical velocity is lost while horizontal
velocity is conserved (Fig. 1B). The total kinetic energy lost per step
is therefore Ecol=mV

2/2, where m is the runner’s mass and V is their
vertical take-off velocity. Lost energy must be recovered through
muscular work to maintain a periodic gait, and so an energetically
optimal gait will minimize these losses. If centre-of-mass kinetic
energy loss were the only source of energetic cost, then the optimal
solution would always be to minimize vertical take-off velocity.
However, such a scenario would require an infinite stepping
frequency as V approaches zero (Alexander, 1992; Ruina et al.,
2005), as step frequency (ignoring stance time and air resistance) is
f =g/(2V ), where g is gravitational acceleration.

Let us suppose there is an energetic penalty that scales with
step frequency, as Efreq∝f k∝gk /Vk, where k>0. Such a penalty may
arise from work-based costs associated with swinging the leg, which
are frequency dependent (k=2; Alexander, 1992; Doke et al., 2005),
or from short muscle burst durations recruiting less efficient, fast-
twitch muscle fibres (k≈3; Kram and Taylor, 1990; Kuo, 2001).
Notably, this penalty increases with gravity, as the non-contact
duration will be shorter for any given take-off velocity in higher
gravity. The penalty also has minimal cost when V is maximal;
smaller take-off velocities require more frequent steps, which is
costly. Therefore, the two sources of cost act in opposite directions:
collisional loss promotes lower take-off velocities, whereas
frequency-based cost promotes higher take-off velocities.Received 29 April 2017; Accepted 4 December 2017
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If these two effects are additive, then it follows that the total cost
per step is:

Etot ¼ Ecol þ Efreq

¼ mV 2=2þ Agk=Vk ;
ð1Þ

where A is an unknown proportionality constant relating
frequency to energetic cost. As the function is continuous and
smooth for V >0, a minimum can only occur either at the boundaries

of the domain, or when
@Etot

@V
¼ 0. Solving the latter equation for V

yields:

V � / gk=ðkþ2Þ ð2Þ
as the unique critical value. Here the asterisk denotes a predicted
(optimal) value. Because Etot approaches infinity as V approaches 0
and infinity (Eqn 1), the critical value must be the global minimum
in the domain V>0. As k>0, it follows from Eqn 2 that the
energetically optimal solution is to reduce the vertical take-off
velocity as gravity decreases.
The observation of He et al. (1991) that V / ffiffiffi

g
p

implies k=2, a
finding consistent with frequency costs arising from the work
of swinging the limb (Alexander, 1992; Doke et al., 2005). In
reality, He et al. (1991) measured vertical speed at initial foot
contact, but for the impulsive model in its simplest form, this is
indistinguishable from take-off velocity. Their empirical assessment
of the relationship used a small sample size, with only four subjects.
We tested the prediction of Eqn 2 by measuring the take-off velocity
over each running stride in 10 subjects using a harness that simulates
reduced gravity. [In this paper, we are taking the vertical take-off
velocity as the maximum vertical velocity during the gait cycle,
following Cavagna (2006).] We also measured the maximum
vertical displacement in the ballistic phase to verify whether the
counterintuitive observation of lowered ballistic centre-of-mass

height in hypogravity, as exemplified in Movie 1, is a consistent
feature of reduced-gravity running.

MATERIALS AND METHODS
We asked 10 healthy subjects to run on a treadmill for 2min at 2 m s–1

in five different gravity levels (0.15, 0.25, 0.35, 0.50 and 1.00 ge,

High V, low fw fff

U
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m

U
V

m U m

U

V

Stance Stance + dtStance − dt
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B

Fig. 1. Schematics explaining the
energetic model. (A) In the impulsive
model of running, a point mass bounces
off vertical, massless legs during an
infinitesimal stance phase. As the
horizontal velocity U is conserved, the
vertical take-off velocityV dictates the step
frequency and stride length. Smaller take-
off velocities (light grey) result in more
frequent steps that incur an energetic
penalty, while larger take-off velocities
(dark grey) reduce the frequency penalty
but increase losses during stance. The
dotted outline represents a short time
around stance that is expanded in B.
(B) We assume that the centre-of-mass
speed at landing is equal to the take-off
speed. The vertical velocity V and its
associated kinetic energy are lost during
an impulsive foot–ground collision of
infinitesimally short duration. The lost
energy must be resupplied through
muscular work. Horizontal acceleration is
assumed to be small and is neglected in
the model. m is body mass and dt is a
short time step.

List of symbols
A proportionality constant in the relationship Efreq=Afk(J sk)
B proportionality constant in the relationship

Eswing ¼ Bml2ð f 2 � f 2n Þ
Ecol energetic cost of collisions (J)
Efreq energetic cost related to step-frequency (J)
Eswing energetic cost of leg swing work (J)
Etot total energetic cost (Ecol+Efreq or Ecol+Eswing, in J)
f step frequency (Hz)
fn natural pendular frequency (Hz)
g gravitational acceleration (m s−2)
ge Earth-normal gravitational acceleration (9.8 m s−2)
Gr Groucho number (≡vω0/g)
H ballistic height (m)
I leg moment of inertia about the hip (kg m2)
k exponent in proportionality (Efreq∝fk)
l leg length (m)
m total subject mass (kg)
r leg length change from rest length (m)
t time after toe-down (s)
t* time at which maximum vertical speed is achieved (s)
tm time at which maximum vertical velocity is achieved (s)
ts stance period (s)
U average horizontal speed (m s−1)
v vertical velocity at toe-off (m s−1)
V vertical velocity at take-off (maximum vertical velocity, in m s−1)
V* predicted (optimal) vertical take-off velocity (m s−1)
θ leg angle (rad)
ω0 vertical natural angular frequency in the spring-mass model

(rad s−1)
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where ge is 9.8 m s–2). A belt speed of 2 m s–1 was chosen as a
comfortable, intermediate jogging pace that could be accomplished at
all gravity levels. Reduced gravities were simulated using a harness-
pulley system similar to that used by Donelan and Kram (2000), but
differing in the use of a spring-pendulum system to generate near-
constant force for a large range of motion. Hasaneini et al. (2017
preprint) provide more details of the apparatus. The University of
Calgary Research Ethics Board approved the study protocol and
written informed consent was obtained from all subjects. Leg length
for each subject was measured during standing from the base of the
shoe to the greater trochanter on one leg.
Owing to the unusual experience of running in reduced gravity,

subjects were allowed to acclimate at their leisure before indicating
they were ready to begin each 2-min measurement trial. In each
case, the subject was asked simply to run in any way that felt
comfortable. Data from 30 to 90 s from trial start were analyzed,
providing a buffer between acclimating to experimental conditions
at trial start and initiating slowdown at trial end.

Implementation and measurement of reduced gravity
Gravity levels were chosen to span a broad range. Of particular
interest were low gravities, at which the model predicts unusual
body trajectories. Thus, low levels of gravity were sampled more
thoroughly than others. The order in which gravity levels were
tested was randomized for each subject, so as to minimize sequence
conditioning effects.
For each gravity condition, the simulated gravity system was

adjusted in order to modulate the force pulling upward on the
subject. In this particular harness, variations in spring force caused
by support-spring stretch during cyclic loading over the stride were
virtually eliminated using an intervening lever (see figs 3 and 4 in
Hasaneini et al., 2017 preprint). The lever moment arm was adjusted
in order to set the upward force applied to the harness, and was
calibrated with a known set of weights prior to all data collection. A
linear interpolation of the calibration was used to determine the
moment arm necessary to achieve the desired upward force, given
the subject weight and targeted effective gravity. Using this system,
the standard deviation of the upward force during a trial (averaged
across all trials) was 3% of the subject’s Earth-normal body weight.
Achieving exact target gravity levels was not possible because the

lever’s moment arm is limited by discrete force increments
(approximately 15 N). Thus, each subject received a slight
variation of the targeted gravity conditions, depending on their
weight. A real-time data acquisition system allowed us to measure
tension forces at the gravity harness and calculate the effective gravity
level at the beginning of each new condition. The force-sensing
system consisted of an analog strain gauge (Micro-Measurements
CEA-06-125UW-350, Wendell, NC, USA), mounted to a C-shaped
steel hook connecting the tensioned cable and harness. The strain
gauge signal was passed to a strain conditioning amplifier (National
Instruments SCXI-1000 amp with SCXI-1520 eight-channel
universal strain gauge module connected with SCXI-1314 terminal
block, Austin, TX, USA), digitized (NI-USB-6251mass termination)
and acquired in a custom virtual instrument in LabVIEW (National
Instruments). The tension transducer was calibrated with a known set
of weights once before and once after each data collection trial to
correct for modest drift error in the signal. The calibration used was
the mean of the pre- and post-experiment calibrations.

Centre of mass kinematic measurements
A marker was placed at the lumbar region of the subject’s back,
approximating the position of the centre of mass. Each trial was

filmed at 120 Hz using a Casio EX-ZR700 digital camera (Casio
Computer Co., Ltd, Shibuya, Tokyo, Japan). The marker position
was digitized in DLTdv5 (Hedrick, 2008). Position data were
differentiated using a central differencing scheme to generate
velocity profiles, which were further processed with a fourth-order
low-pass Butterworth filter at 7 Hz cut-off. The vertical take-off
velocity was defined as the maximum vertical velocity during each
gait cycle (V in Fig. 1). This definition corresponds to the moment at
the end of stance where the net vertical force on the body is null, in
accordance with a definition of take-off proposed by Cavagna
(2006).

Vertical take-off velocities were identified as local maxima in the
vertical velocity profile. Filtering and differentiation errors
occasionally resulted in some erroneous maxima being identified.
To rectify this, first any maxima within 10 time steps of data
boundaries were rejected. Second, the stride period was measured as
time between adjacent maxima. If any stride period was 25% lower
than the median stride period or less, the maxima corresponding to
that stride period were compared and the largest maximumwas kept,
with the other being rejected. This process was repeated until no
outliers remained.

Position data used to determine ballistic height were processed
with a fourth-order low-pass Butterworth filter at 9 Hz cut-off.
Ballistic height was defined as the vertical displacement from take-
off to the maximum height within each stride. No outlier rejection
was used to eliminate vertical position data peaks, as the filtering
was slight and no differentiation was required. If a take-off could not
be identified prior to the point of maximum height within half the
median stride time, the associated measurement of ballistic height
was rejected; this strategy prevented peaks from being associated
with take-off from a different stride.

Statistical methods
Take-off velocities and ballistic heights were averaged across all gait
cycles in each trial for each subject. To test whether ballistic height
varied with gravity, a linear model between ballistic height and
gravitational acceleration was fitted to the data using least-squares
regression, and the validity of the fit was assessed using an F-test. A
linear model was also tested for log(V ) against log(g) using the
same methods. Because the proportionality coefficient between V*
and

ffiffiffi
g

p
is unknown a priori, we derived its value from a least-

squares best fit of measured vertical take-off velocity against the
square root of gravitational acceleration, setting the intercept to
zero. Given a minimal correlation coefficient of 0.5 and sample
size of 50, a post hoc power analysis yields statistical power of
0.96, with type I error margin of 0.05. Data were analyzed using
custom scripts written in MATLAB (v. 2016b, MathWorks,
Natick, MA, USA).

RESULTS
Response of ballistic height and take-off velocity to gravity
Data from all trials are shown in Fig. 2. Ballistic height increases
with gravity (linear versus constant model, P=4×10–4, R2=0.24,
N=50; Fig. 2A), validating the counterintuitive result exemplified in
Movie 1 as a consistent feature of running in hypogravity.

Take-off velocity also increases with gravitational acceleration
(Fig. 2B), and a least-squares fit of Eqn 2 using k=2 follows
empirical measurements well (R2=0.73, N=50). Other values of k
were also tested (Fig. 3). If the impulsive model is accurate, then the
best-fit slope of a scatter plot of log(V ) against log(g) should
correspond to k/(k+2) (Eqn 2), that is, slopes of 0.33, 0.50 or 0.60
for k=1, 2 and 3, respectively. Only the slope predicted by k=2
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falls within the 95% confidence interval of the least squares slope
(0.47±0.09; Fig. 3).
A best fit at k=2 implies a frequency-based cost arising primarily

from the work of leg swing. However, because only the centre of
mass is offloaded by the harness, the natural frequency of limb

swing remains unchanged for all target gravity levels (Donelan and
Kram, 2000). Because metabolic energy of swing is minimal at
natural frequency (Doke et al., 2005), it is necessary to adjust the
predictions from the impulsive model (Appendix 1). An adjusted
model exhibits a fit with R2=0.745 (N=50; Fig. A1), only
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Fig. 2. Human subjects lower both ballistic height
and take-off velocity during running in reduced
gravity. (A) Mean ballistic height (data points) increases
with gravity (linear versus constant model under two-
tailed F-test, P=4×10–4, N=50). The dashed line is the
prediction for ballistic height from the impulsive model,
which deviates from observation at high g. The dot-
dashed line adds a correction factor for finite stance time
from the spring-mass model (Eqn 3). This second
prediction lies within the 95% confidence intervals (CI) of
the least-squares linear fit (grey area). Both predictions
use take-off velocities from the best fit in B. (B) Measured
vertical take-off velocities increase proportionally with
the square root of gravitational acceleration, following
work-based energetic optimality. The least squares fit of
the impulsive model with k=2 is shown as a dashed line.
The fit has an R2 value of 0.73 (N=50). For both panels,
each data point is a mean value measured in one subject
(10 subjects total) across multiple steps (n≥50) during a
1-min period at a given gravity level. If error bars (twice
the s.e.m.) are smaller than the markers, then they are
not shown. Data used for creating these graphics are
given in Table S1.
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Fig. 3. A log–log plot of vertical take-off velocity against gravitational acceleration shows that the impulsivemodel yields the best fit whenEfreq∝f2. The
least-squares linear fit is shown in red as a solid line, with 95%CI as a grey area. The linear fit exhibitsR2=0.70 and a slope of 0.47±0.09 (best estimate ±95%CI,
N=50), which is not significantly different from the predicted slope of 0.5 for k=2 (black solid line), where k is the exponent relating frequency to cost (Efreq∝fk). Both
k=1 and k=3 (shallow and steep dashed lines, respectively) yield predicted slopes (0.33 and 0.60, respectively) that lie outside the 95%CI, indicating that a work-
based swing cost at k=2 is a superior fit to the data, while a simple linear frequency cost (k=1) and an approximate force/time cost (k=3; see Kuo, 2001) do not
represent these data well. Data points are from 10 subjects running at five gravity conditions each, and each point is the mean of at least 64 take-offs measured
during each trial.
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marginally better than the simple model with k=2 (R2=0.73;
Fig. 2B). The predictions do not change greatly, because time spent
in the air is affected by gravity, and more air time requires less work
to swing the legs, regardless of natural frequency [as long as stride
frequency is greater than natural frequency, which is very likely the
case for the present study (Appendix 1)].

Predicting ballistic height trends
The impulsive model with k=2 predicts that the ballistic height
should remain constant (dashed line in Fig. 2A). This constant value
agrees with empirical data at low g, but exhibits increasing error
towards Earth-normal g.
We defined ‘take-off’ as occurring when the net force on the body

was null andvelocitywasmaximal; however, this does not equate to the
moment when the stance foot leaves the ground. After the point of
maximal velocity, upward ground reaction forces decay to zero. During
this time, the net downward acceleration on the body is less than
gravitational acceleration. Thus, the body travels higher than would be
expected if maximal velocity corresponded exactly to the point where
the body entered a true ballistic phase, as in the model (Fig. 1).
We can account for the missing impulse with the spring-mass

model. This model describes the kinematics and dynamics of running
well (McMahon and Cheng, 1990; He et al., 1991; Blickhan and Full,
1993), and provides a way to estimate stance time from take-off
velocity (though it lacks the ability to predict take-off velocity;
McMahon and Cheng, 1990). Notably, correcting the prediction
V / ffiffiffi

g
p

with spring-mass model estimates of finite stance yields the
following relationship for ballistic height (Appendix 2):

H ¼ g

2v2
0

þ A2

2
; ð3Þ

whereω0 is the natural angular frequency of vertical oscillation, andA
is a constant in the relationship V ¼ A

ffiffiffi
g

p
. Note that Eqn 3 is linear in

g, and approaches the predictions from the impulsive model alone as
g→0. Taking ω0=18 rad s−1 from He et al. (1991), and A from the
best-fit in Fig. 2B, Eqn 3 gives the dot-dashed line shown in
Fig. 2A. The predicted relationship (Eqn 3) has a slope of
0.015 m ge

−1 and an intercept of 0.03 m, and is within the 95%
confidence interval of the best-fit slope (0.021±0.01 m ge

–1) and
intercept (0.029±0.006 m), indicating that finite stance accounts for
the discrepancy within error, though it somewhat underpredicts the
true slope.

DISCUSSION
Human runners lower the height achieved in the ballistic phase
as gravity decreases. This adaptation requires pronounced
modification of the take-off velocity, as maintaining the latter
parameter in all conditions would result in substantially increased
ballistic height in reduced gravity. Why human runners would
modify their gait so greatly was initially unclear.

A simple work-based model of energetic cost explains the trends
well. The fit in Fig. 2B exhibits an R2 value of 0.73, indicating that a
simple energetic model can explain over two-thirds of the variation
in maximum vertical velocity resulting from changes in gravity.
Human runners seem to be sensitive to these energetic costs and
adjust their take-off velocity accordingly. However, the model has
its limitations, and an accounting of finite stance (which was
initially neglected in the model) was necessary to explain the trend
of increasing ballistic height with gravity. Despite the updated
model matching the general trend of the data, the slope in Eqn 3 is
reduced compared with the empirically derived slope.

The use of the external lumbar point as a centre of mass
approximation may explain some of the remaining difference
between Eqn 3 and observation. At lower gravity, the body
maintained a relatively erect, rigid posture (as exemplified by
Movie 1), and so the lumbar marker likely follows the centre of mass
closely. However, at higher gravity, the legs move through larger
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levels (g) are placed over the colours
they represent. The collisional cost
curve (Ecol=mV2/2, black dot-dashed
line) does not change with gravity,
whereas the frequency-based
energetic cost curve (Efreq, dotted
lines) is sensitive to gravity, leading to
an effect on total energy per step (Etot,
solid lines). In lower gravity, a runner
can stay in the air longer for a given
take-off velocity, so the associated
frequency-based cost goes down.
However, the cost of collisions at that
same velocity is unchanged, because
it depends only on the velocity itself.
The relaxation of frequency-based
cost allows the runner to settle on a
lower optimal take-off velocity (yellow
stars) with both a lower frequency-
based and collisional cost, compared
with higher gravity.
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excursions and the torso exhibits slight rotation, making the lumbar
estimate less accurate. At normal gravity, Slawinski et al. (2004)
showed that the lumbar point overestimates vertical oscillations of
the flight phase (by less than 1 cm), though their trials were at a high
belt speed (5 m s−1). If the same results hold in our case, we would
expect that the measured ballistic height in Fig. 2A should be
slightly lower at higher levels of gravity, reducing the actual slope
and possibly improving the agreement to Eqn 3. Future work could
use a multisegment model to improve centre of mass and ballistic
height measurements, but such a technique is unlikely to reverse
the trend of increasing ballistic height with gravitational
acceleration.
The present results indicate that the cost of step frequency is a key

factor in locomotion. Although the exact value of the optimal take-
off velocity depends on both frequency-based penalties and
collisional costs, the former penalties change with gravity while
the latter do not (Fig. 4). The collisional cost landscape is
independent of gravity because the final vertical landing velocity
is alone responsible for the lost energy. Regardless of gravitational
acceleration, vertical landing speed must equal vertical take-off
speed in the model, so a particular take-off velocity will have a
particular, unchanging collisional cost.
However, taking off at a particular vertical velocity results in

greater flight time at lower levels of gravity; thus, the frequency-
based cost curves are decreased as gravity decreases (Fig. 4).
Frequency-based costs, particularly limb-swing work, appear to be
an important determinant of the effective movement strategies
available to the motor control system. Their apparent influence
warrants further investigation into the extent of their contribution to
metabolic expenditure.
Although the present study corroborates others in finding that a

work-based cost (k=2) predicts locomotion well (Alexander, 1980,
1992, Hasaneini et al., 2013), other authors have favoured a higher-
order ‘force/time’ cost (Kuo, 2001; Doke et al., 2005; Doke and
Kuo, 2007). Interestingly, a higher-order model in frequency cost
(k=3) did not fit the present data; however, our simple model with
k=3 only approximates the force/time cost in the swing phase, and
does not account for a rate cost during stance. Further research must
be done to distinguish the predictive value of work-based cost to its
alternatives; however, for the present results, a work-based model is
sufficient, at least for take-off velocity.
The present results challenge the notion that metabolic cost of

running is determined largely by the cost of generating force during
stance (Kram and Taylor, 1990; Arellano and Kram, 2014),
purportedly supported by the observation that metabolic cost is
proportional to gravity (Farley and McMahon, 1992). According to
the best-fit model presented here, the net cost (Eqn 1) at optimal take-
off velocity (Eqn 2) is expected to increase in proportion to
gravitational acceleration [that is, Etot(V*)∝g], as Farley and
McMahon (1992) observed. The cost of vertical acceleration of the
centre of mass can decrease as gravity is reduced only because the
relationship between take-off velocity and swing cost changes; this
allows the subject to settle on a lower stance cost, whose relationship
to take-off velocity does not change as a function of gravity (Fig. 4).
These trends can be explained simply from muscular work, and do
not rely on any independent force-magnitude cost.
The model presented in this article is admittedly simple and makes

unrealistic assumptions, including impulsive stance, no horizontal
muscular force, non-distributed mass, and a simple relationship
between step frequency and energetic cost. Further, horizontal
accelerations will incur a larger portion of energetic losses as
horizontal speed increases (Willems et al., 1995), and the trade-off

between swing and stance costs may change. The present model
would not be able to anticipate any such trend, as it has no
dependence on horizontal speed. Future investigations could evaluate
work-based costs using more advanced optimal control models
(Srinivasan and Ruina, 2006; Hasaneini et al., 2013), eliminating
some of these assumptions and allowing for an investigation into
horizontal speed dependence. Despite its simplicity, the impulsive
model with work-based swing cost is able to correctly predict the
observed trends in take-off velocity with gravity, and demonstrates
that understanding the energetic cost of both swing and stance is
crucial to evaluating why the central nervous system selects specific
running motions in different circumstances.

Although many running conditions are quite familiar, running in
reduced gravity is outside our general experience. Surprisingly,
releasing an individual from the downward force of gravity does not
result in higher leaps between foot contacts. Rather, humans use less
bouncy gaits with slow take-off velocities in reduced gravity, taking
advantage of a reduced collisional cost while balancing a stride-
frequency penalty.

APPENDIX 1
Cost of swing work in partial reduced gravity
The experimental apparatus (Hasaneini et al., 2017 preprint)
unloads a subject’s centre of mass, but does not act directly on
their limbs. Consequently, while their centre of mass might
experience reduced weight, the limbs swing under the influence
of normal gravity. It is prudent to check how this affects the
predictions of the impulsive model.

The work required to swing a limb is (Doke et al., 2005):

Eswing / Ið f 2 � f 2n Þ; ðA1Þ
where I is the moment of inertia of the limb about the hip, f is the
frequency of oscillation and fn is the natural frequency (equal toffiffiffiffiffiffiffi

g=l
p

for a simple pendulum, where l is leg length). Here we are
assuming that the limb changes configuration little during the swing
phase, and so I is approximately constant. Note that Eqn A1 is only
valid when f >fn (Doke et al., 2005), because if sufficient time is
available the limb can swing passively. The swing frequency is
slightly greater than the stride frequency (swing period is two flight
phases and one stance phase, or one stance phase shorter than stride
period), which in the present study ranged from trial-mean values of
0.69 to 1.47 Hz over all subjects and conditions (Table S1). Doke
et al. (2005) found the natural frequency of swinging legs to be
0.64±0.02 Hz (mean±s.d.) for a subject group with mean leg length
of 0.88±0.07 m (N=12). Our subject group exhibited larger mean
leg length (0.92±0.06 m, N=10), so would very likely have smaller
natural frequencies. Therefore, the assumption that f >fn very likely
holds in this case.

The leg moment of inertia about the hip scales approximately as
I∝ml2, where m is body mass and l is leg length (Winter, 2009).
Assuming f=g/(2V ), and invoking Etot=Ecol+Eswing, we have:

Etot ¼ mV 2=2þ Bml2
g

2V

� �2
� f 2n

� �
; ðA2Þ

where B is some proportionality constant. To achieve the
energetically optimal take-off velocity, we take the derivative of
Eqn A2 with respect to V, yielding:

@Etot

@V

����
V¼V �

¼ mV � � Bml2
g2

2ðV �Þ3 ¼ 0; ðA3Þ
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where we note that any dependence on fn has disappeared. However,
there is a new dependence on l. Solving Eqn A3 for V*, we find:

V � / ffiffiffiffi
gl

p
: ðA4Þ

Empirical V is plotted against gl in Fig. A1 with the least-square fit
of Eqn A4. The fit exhibits R2=0.745, only a slight improvement
compared with the simple impulsive model (R2=0.73). Eqn A4
depends on l, but if the variation in l is small, then Eqn A4 is
indistinguishable from the simple swing-cost model (Eqn 2 with
k=2). Indeed, the leg lengths of our subject group varied only by a
factor of 1.3 (range 0.81 to 1.04 m), while the highest experimental
g was six times the smallest value. Because the variation in leg
length is comparatively small, it has little impact on the results.

APPENDIX 2
Ballistic height corrections from the spring-mass model
We seek to predict the vertical centre-of-mass displacement
achieved between take-off (maximum vertical velocity) and the
maximum height during the flight phase. The vertical displacement
from toe-off is v2/(2g), where v is the vertical velocity at toe-off.
However, we do not know the displacement between take-off and
toe-off, nor do we know how to relate the velocity at take-off to the
velocity at toe-off. Both of these unknowns could be calculated
using the ground reaction force during stance, but this was not
measured empirically.
Instead, we can rely on the spring-mass model, which gives a

decent approximation of the ground reaction forces assuming the
velocity at toe-off and natural angular frequency (ω0) are given
(McMahon and Cheng, 1990). In our case, the toe-off velocity is
unknown, but the spring-mass model allows us to relate it to the
maximum vertical velocity, which can in turn be predicted by the
impulsive model. ω0 is defined as

ffiffiffiffiffiffiffiffiffi
k=m

p
, where k is the ‘spring’

stiffness and m is mass. k is not actually the tendon stiffness, but is
the virtual stiffness generated by the motor control system during
stance (Farley and Ferris, 1998; Donelan and Kram, 2000); that is,
the muscle and tendon forces combine to generate ground reaction
forces as if there were one linear spring acting on the centre of mass.
The complicated interplay between muscles, tendons and energetics
makes the angular frequency hard to predict.
Fortunately, the vertical spring stiffness is held more-or-less

constant through changes in gravity (He et al., 1991), so we can use
the empirically derived value of ω0∼18 rad s−1. It remains simply to
find the displacement between take-off and toe-off, and the vertical
toe-off velocity, in terms of the vertical take-off velocity and gravity.

[The value of ω0 was calculated by taking the average value of
vertical stiffness data in fig. 7 of He et al. (1991), dividing by
average subject mass from the same study and taking the square
root. ω0=18 rad s−1 falls within all the error bars of fig. 7, and so
seems representative of the natural angular frequency at all levels of
gravity.]

We follow McMahon and Cheng (1990) in assuming a point-
mass body of massm and massless legs. We assume that the ground
reaction force is well approximated by the compression of a spring
with angular frequency ω0. For simplicity, we use a hopping model,
which assumes that a person exhibits a small excursion angle (i.e.
θ∼0). The leg length minus resting length is r, and so the dynamics
of the system are:

€r þ v2
0r þ g ¼ 0: ðA5Þ

Setting the vertical landing velocity to _rð0Þ¼�v, and the initial
position as r(0)=0, the solution to the ordinary differential equation
is (McMahon and Cheng, 1990):

v2
0rðtÞ ¼ �v0v sinðv0tÞ þ g cosðv0tÞ � g: ðA6Þ

The instantaneous velocity is thus:

_r ¼ �v cosðv0tÞ � g

v0
sinðv0tÞ: ðA7Þ

Eqns A5–A7 are valid for 0≤t≤ts, where ts=[2π–2arctan(Gr)]/ω0 is
the stance period, and we have introduced the non-dimensional
Groucho number Gr=vω0/g (McMahon and Cheng, 1990). For
ts<t<ts+2v/g, the body is in a ballistic phase.

We can now determine the timing and magnitude of the peak
vertical velocity. Let t* correspond to any time at which a maximum
speed is achieved. Because Eqn A7 is smooth and periodic, local
maxima and minima in velocity must satisfy €r¼0. Therefore, from
Eqn A5:

rðt�Þ ¼ � g

v2
0

: ðA8Þ

Combining Eqn A8 with A6 and solving for 0≤t*≤ts yields:

t� ¼ ½arctanðGr�1Þ þ np�=v0; n ¼ 0; 1; ðA9Þ
corresponding to the points of maximal speed during stance. The
second point (n=1), corresponds to the time at which maximal
velocity is achieved:

tm ¼ ðarctanðGr�1Þ þ pÞ=v0: ðA10Þ
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)
Fig. A1. Vertical take-off velocity scales with the
square root of gravitational acceleration times leg
length during running. The least-squares fit for the
model given by Eqn A4 is shown as a dashed line. The fit
exhibits R2=0.745, using all 50 data points. Error bars
(twice standard error of the mean take-off velocity
measured during a trial, n≥64) are smaller than the
marker size.
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To determine the peak velocity V, we insert Eqn A10 into A7. Using
the relationships cosðarctanðxÞÞ¼1= ffiffiffiffiffiffiffiffiffiffi

x2þ1p
and sinðarctanðxÞÞ¼

x=
ffiffiffiffiffiffiffiffiffiffi
x2þ1p

, we find:

V ¼ g

v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gr2 þ 1

p
and ðA11Þ

v2 ¼ V 2 � ðg=v0Þ2: ðA12Þ
In the main text, we define the ballistic height (H ) as the vertical
displacement from the time of maximal vertical velocity to the
maximum height achieved during a stride, that is:

H ¼ v2

2g
� rðtmÞ: ðA13Þ

We need only insert Eqns A8 and A12 into Eqn A13 to find:

H ¼ V 2

2g
þ g

2v2
0

: ðA14Þ

Note that the first term is identical to the prediction of the impulsive
model (i.e. V=v), while the second term gives a correction from the
spring mass model, due to finite stance time. Because we have
established that V¼A

ffiffiffi
g

p
, the prediction forH in terms of g alone is:

HðgÞ ¼ A2

2
þ g

2v2
0

: ðA15Þ
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