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Genetic accommodation and the role of ancestral plasticity in the
evolution of insect eusociality
Beryl M. Jones1,* and Gene E. Robinson1,2,3,4

ABSTRACT
For over a century, biologists have proposed a role for phenotypic
plasticity in evolution, providing an avenue for adaptation in addition
to ‘mutation-first’ models of evolutionary change. According to the
various versions of this idea, the ability of organisms to respond
adaptively to their environment through phenotypic plasticity may
lead to novel phenotypes that can be screened by natural selection. If
these initially environmentally induced phenotypes increase fitness,
then genetic accommodation can lead to allele frequency change,
influencing the expression of those phenotypes. Despite the long
history of ‘plasticity-first’ models, the importance of genetic
accommodation in shaping evolutionary change has remained
controversial – it is neither fully embraced nor completely discarded
by most evolutionary biologists. We suggest that the lack of
acceptance of genetic accommodation in some cases is related to
a lack of information on its molecular mechanisms. However, recent
reports of epigenetic transgenerational inheritance now provide a
plausible mechanism through which genetic accommodation may
act, and we review this research here. We also discuss current
evidence supporting a role for genetic accommodation in the evolution
of eusociality in social insects, which have long been models for
studying the influence of the environment on phenotypic variation, and
may be particularly good models for testing hypotheses related to
genetic accommodation. Finally, we introduce ‘eusocial engineering’, a
method by which novel social phenotypes are first induced by
environmental modification and then studied mechanistically to
understand how environmentally induced plasticity may lead to
heritable changes in social behavior. We believe the time is right to
incorporate genetic accommodation into models of the evolution of
complex traits, armed with new molecular tools and a better
understanding of non-genetic heritable elements.

KEY WORDS: Epigenetics, Eusocial evolution, Genetic
accommodation, Plasticity, Social insects

Introduction
A compelling question in evolutionary biology involves the origins
and evolution of novel traits. For centuries, biologists have been
interested in the diversity of phenotypes across life and how this
diversity arose. The role of genetic factors in the origination of novel
traits has been especially well studied, including the roles
of mutation, genetic drift and recombination in producing

novel genetic combinations and phenotypes (Carroll, 2008).
‘Mutation-first evolution’ (see Glossary), where a new mutation
provides novel phenotypes that can be ‘screened’ by natural
selection, is easily studied when the mutation can be directly linked
to the phenotype. Even without knowledge of the phenotypic
consequences of alleles, mutation-first evolution studies can be
initiated in both natural populations and laboratories simply by
documenting changes in allele frequencies over time.

However, novel traits are also suggested to originate independent
of new mutations, via the environmental and developmental
induction of phenotypes. One of the first biologists to emphasize
this was Baldwin, who at the turn of the 20th century suggested a
process of ‘organic selection’ by which fitness differences arising
from phenotypic plasticity (see Glossary) during development
would, over many generations, lead to genetic change moderating
this plasticity (Baldwin, 1896; Baldwin, 1902; Morgan, 1896;
Osborn, 1897). Whether plasticity facilitates or slows down
evolutionary diversification remains controversial (Pigliucci,
2006), but growing evidence suggests plasticity can influence the
evolution of novel traits (Moczek et al., 2011; Pfennig et al., 2010).
The potential role of phenotypic plasticity in shaping evolution was
more comprehensively discussed a century later by West-Eberhard
(2003), who emphasized that selection acts upon phenotypes, not
genotypes. Phenotypes are not formed exclusively from genetic
factors, but emerge from the integration of genetic, epigenetic (see
Glossary) and environmental factors that act during development.
While evolution is most commonly defined by changes in allele
frequencies, a focus on genetic factors ignores the potential
importance of environmental influences on phenotypic variation
and evolution.

Other evolutionary biologists have also emphasized the potential
importance of phenotypic plasticity in shaping evolution (Moczek
et al., 2011; Pfennig et al., 2010; Pigliucci, 2006). Phenotypic
plasticity can have large effects on fitness, allowing organisms to
adapt to a changing environment and respond appropriately to
inputs received during development. Plasticity itself may therefore
be a target of selection (Nussey et al., 2005; Pigliucci, 2005; Van
Buskirk and Relyea, 1998), and phenotypic plasticity may also lead
to the origin of novel phenotypes, preceding or even facilitating
evolutionary change (Pfennig et al., 2010; Price et al., 2003).
Plasticity-first evolution (see Glossary) (Levis and Pfennig, 2016)
emphasizes the phenotype as the subject of selection, which can
provide clarity for evolutionary models because phenotypic
variation has a clear connection to natural selection.

The process of an environmentally induced phenotype leading to
allele frequency change is known as genetic accommodation (see
Glossary). Genetic accommodation can lead to either increased
plasticity (such as the emergence of polyphenisms; see Glossary) or
the fixation of an initially plastic trait, a special case known as
genetic assimilation (see Glossary). While genetic accommodation
has gained much theoretical support (Moczek et al., 2011;

1Program in Ecology, Evolution, and Conservation Biology, University of Illinois
at Urbana-Champaign, Urbana, IL 61801, USA. 2Department of Entomology,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. 3Carl R.
Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA. 4Neuroscience Program, University of Illinois at
Urbana-Champaign, Urbana, IL 61801, USA.

*Author for correspondence (bmjones2@illinois.edu)

B.M.J., 0000-0003-2925-0807

1

© 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb153163. doi:10.1242/jeb.153163

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

mailto:bmjones2@illinois.edu
http://orcid.org/0000-0003-2925-0807


Pfennig et al., 2010; Pigliucci, 2006; West-Eberhard, 2003), it is
difficult to test directly, which has likely influenced debate over the
importance of plasticity-first evolution.
Arguments against plasticity-first evolution cite a lack of

evidence for the molecular mechanisms enabling environmentally
induced traits to become heritable in comparison to those that
explain mutation-first evolution (Wray et al., 2014). Indeed, few
examples of genetic accommodation have been elucidated to this
level in the laboratory or in natural populations (e.g. Casasa and
Moczek, 2018; Dworkin, 2005; Jones et al., 2017; Suzuki and
Nijhout, 2006; reviewed in Renn and Schumer, 2013; Schlichting

and Wund, 2014). However, it is unclear whether the current low
number of genetic accommodation examples reflects actual rarity in
nature, or a combination of low research effort together with a lack
of known mechanisms. As our ability to study mechanisms of
evolution in natural populations continues to improve, we expect
more cases of genetic accommodation to be reported.

For many years, the molecular mechanisms that might enable
environmentally induced traits to become heritable were unknown,
and our lack of knowledge on the relationship between plasticity and
genetic changes limited support for plasticity-first models.
Recently, evidence for an interplay between plasticity-first

Glossary
Adaptive refinement
Increased fitness relative to an ancestral state, possibly facilitated by constitutive expression in the derived lineage related to the ancestral condition.

Ancestral-proxy lineages
Lineages closely related to the derived lineage of interest that display the ancestral character state for the trait of interest; these lineages lack the derived trait
of interest while in their natural (ancestral) environment, but may exhibit plasticity for the trait when exposed to a novel environment (indicating pre-existing
plasticity).

Cryptic genetic variation
Genetic variation in a population that does not currently contribute to phenotypic outcomes, but that may modify phenotypes following environmental
change or new epistatic interactions with novel alleles.

Epigenetic
Referring to any feature of chromatin, DNA or other cellular features other than the DNA sequence itself that may influence gene expression and function,
and may lead to heritable changes in transcriptional activity across cell divisions and/or generations.

Eusocial engineering
A proposed coupling of forced association studies with transcriptomics, epigenomics and other molecular analyses to test the mechanisms of genetic
accommodation that may have acted on ancestral plasticity in social evolution.

Eusociality
Defined by (1) a reproductive division of labor (a queen that reproduces, workers that do not), (2) overlapping adult generations (often a mother and her
daughters or sisters and their offspring), and (3) cooperative care of brood.

Forced association study
A study involving experimentally induced group formation, including of naturally solitary individuals, members of different natural groups or artificially created
age classes of individuals; used to study emergent properties of groups or to remove confounds of developmental experience in studying social behavior.

Genetic accommodation
A process by which initially environmentally induced and plastic phenotypes are selected upon, resulting in heritable variation influencing the expression of
those phenotypes; genetic accommodation can lead to increased plasticity for the trait (including the emergence of polyphenisms) or decreased plasticity
(see genetic assimilation).

Genetic assimilation
A special case of genetic accommodation, where initially plastic traits become fixed through selection on one or more alternative genotypes; this results in
reduced phenotypic plasticity over evolutionary time.
Intergenerational inheritance
Transference of environmentally mediated epigenetic changes from parent to offspring.

Mutation-first evolution
A mechanism of evolution in which a novel mutation or novel allele in the population alters a phenotype under selection, leading to changes in allele
frequencies; contrast with plasticity-first evolution.

Phenotypic plasticity
The ability of a single genotype to produce multiple phenotypes in response to epigenetic or environmental conditions.

Plasticity-first evolution
A mechanism of evolution in which novel, environmentally sensitive phenotypic variation (i.e. phenotypic plasticity) provides the initial substrate for
selection, followed by changes in allele frequencies in the population through selection on cryptic genetic variation (see above) underlying the phenotypic
plasticity and/or accommodation on the newly selected trait; contrast with mutation-first evolution.

Polyphenism
Discrete phenotypic forms arising from phenotypic plasticity; often phenotypic forms are very distinct, such as queen and worker castes of complex eusocial
insects or color morphs of some butterflies.
Reaction norm
The pattern of expressed phenotypes for a given genotype across one or more environmental variables, typically represented graphically; an individual
shows phenotypic plasticity for a trait if the slope of the reaction norm is non-zero, indicating an interaction effect between genotype and environment for the
phenotype of interest.

Subsocial
Adult females that protect and/or feed their developing offspring, but disperse or die prior to offspring emergence such that there is no adult generational
overlap and no division of labor among adults.

Transgenerational inheritance
Transference of environmentally mediated epigenetic changes across more than two generations.
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mechanisms and elaboration of phenotypes via new mutations has
been reported (Levis et al., 2018), highlighting the importance of
considering both plasticity-first and mutation-first models in studies
of evolutionary novelty. In addition, recent reports of epigenetic
transgenerational inheritance (see Glossary) now provide plausible
mechanisms through which genetic accommodation may act,
priming the field to further investigate the role of plasticity-first
mechanisms, including genetic accommodation, in evolution.
In this Commentary, we briefly review some of these reports,

describe the features of social insects that make them good models
for studying genetic accommodation, and review current evidence
consistent with a role for genetic accommodation in the evolution of
eusociality (see Glossary). We end with a description of an
empirical method to leverage the inherent plasticity of social insects
to further study the mechanisms underlying eusocial evolution; we
hope that this approach will lead to novel insights into the role that
genetic accommodation has played in the evolution of social
behavior.

Epigenetic transgenerational inheritance
There is new evidence for connections between the environment and
adaptive phenotypic change across generations, as advances in the
field of epigenetics provide plausible mechanisms for
transgenerational inheritance. Many studies have demonstrated
intergenerational (parent to offspring; see Glossary) or longer-
lasting transgenerational effects, across plants, insects and
mammals (Agrawal et al., 1999; Benito et al., 2018; Champagne,
2008; Dell and Rose, 1987; Gluckman et al., 2007; Ruden and Lu,
2008; Valtonen et al., 2012). While there is currently more evidence
for intergenerational effects, other studies report evidence for
transgenerational inheritance (Klosin et al., 2017; Siklenka et al.,
2015). Most studies do not address the mechanisms of this
inheritance (see Box 1), but a few have produced provocative
associations with epigenetic changes such as DNA methylation
(Dias and Ressler, 2014; Wei et al., 2014). For example, Dias and
Ressler (2014) demonstrated that after adult male mice are subjected
to odor fear conditioning, their offspring also exhibit fear of the
same odor, despite no direct experience with the learning paradigm
or odor. Additionally, they reported that both generations showed
differences in DNA methylation at the locus encoding the olfactory
receptor responsive to this odor, providing a putative mechanism of
inheritance (Dias and Ressler, 2014).
Additional mechanisms of transgenerational inheritance have

been identified, including small non-coding RNAs and chromatin
remodeling (e.g. Gapp et al., 2014; Greer et al., 2011; reviewed in
Houri-Zeevi and Rechavi, 2017; Jablonka and Raz, 2009). For
example, male mice that engage in higher levels of voluntary wheel
running show altered levels of microRNAs (miRNAs) and tRNA-
derived RNAs in their sperm (Short et al., 2017). These males
produce male offspring with reduced anxiety and suppressed
juvenile fear memory, potentially mediated through post-
transcriptional gene regulation by the altered small RNAs in
sperm (Short et al., 2017). Rodgers et al. (2015) demonstrated a direct
effect of paternal miRNAs on offspring phenotypes through zygotic
injection of nine paternal stress-related miRNAs, which led to
reduced mRNA stores in zygotes and ultimately stress dysregulation
phenotypes in offspring. Benito et al. (2018) also demonstrated a role
for miRNAs in mediating synaptic plasticity in the offspring of male
mice exposed to an environmental enrichment paradigm. Together,
these studies demonstrate the possibly pervasive role of epigenetic
mechanisms as mediators of transgenerational inheritance of
environmentally induced phenotypes.

In addition to mediating environmental effects on phenotypes,
epigenetic changes can also have direct effects on allele frequencies.
For example, methylated cytosines make up nearly one-third of all
germline and somatic point mutations as a result of increased rates of
hydrolytic deamination at methylated cytosines when compared
with unmethylated cytosines (Duncan and Miller, 1980; Shen et al.,
1994). This leads to a depletion of CpG dinucleotides in genomes
that undergo DNA methylation (Flores and Amdam, 2011).
Environmental induction of methylation may thus lead to mutation
of phenotypically relevant sites (Flores et al., 2013), altering the
DNA sequence directly. Additionally, epigenetic marks for open
chromatin lead to increased rates of transposable element insertion
and meiotic recombination in maize (Liu et al., 2009). Thus, histone
modifications that lead to accessible chromatin also increase the
probability of genetic change. These mechanisms provide plausible
links between phenotypic plasticity and mutation, demonstrating
that these processes co-exist. While we are still in the early stages of
understanding mechanisms by which parental experience shapes
offspring phenotypes, mounting evidence suggests that mechanisms
of transgenerational inheritance may be powerful modulators of
phenotypic plasticity and, thus, evolution itself.

Box 1. Mechanisms of epigenetic inheritance
The environment experienced by parents can influence offspring
phenotypes, either through direct exposure to an event (e.g. as germ
cells or in utero) or as a result of altered parental care or other parent-
mediated behaviors. When transmission is limited from parent to
offspring (intergenerational epigenetic inheritance), epigenetic
mechanisms are not required to explain inherited phenotypes, and
work must be done to differentiate direct exposure to environmental
stimuli from epigenetic inheritance. Transgenerational epigenetic
inheritance, in contrast, reflects long-lasting epigenetic effects in the
absence of direct exposure to the stimulating environment. In recent
years, concerns about the evolutionary relevance of epigenetic
inheritance have been raised (Charlesworth et al., 2017), particularly in
systems where causal connections have not been identified between
epigenetic changes and the phenotype of interest. Still, many reports
have identified epigenetic inheritance, and we briefly describe the main
classes of mechanisms below (reviewed in Heard and Martienssen,
2014; Jablonka and Raz, 2009).
Chromatin-based mechanisms
Changes in chromatin, such as DNAmethylation or histonemodifications,
are the best studied of all epigenetic inheritance mechanisms. In many
cases, changes can be directly linked to differences in gene expression,
and many laboratory assays (such as bisulfite sequencing and chromatin
immunoprecipitation with sequencing) exist to readily measure chromatin-
based epigenetic changes.
RNA-based mechanisms
Many types of RNA, including long non-coding RNA, small interfering
RNA and microRNA, can persist across cell divisions and generations,
altering DNA and histone modifications and/or directly affecting
transcriptional and translational activity. Many of these RNA types have
been found in germ line tissue, and manipulation of parentally mediated
RNA can affect offspring phenotypes.
Self-sustaining regulatory loops
In bacteria and fungi, stable phenotypic states can involve transcriptional
or post-transcriptional metabolic circuits that persist across generations.
This was first reported in the lac operon of Escherichia coli (Novick and
Weiner, 1957) and later demonstrated in other taxa.
Structural templates
Proteins, such as prions, which self-propagate by altering the structure of
similar proteins, can transmit across cell divisions and have been shown to
have transgenerational phenotypic effects in fungi. Protein chaperones
may also mediate epigenetic variation by affecting protein folding across
generations.
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Phenotypic plasticity in social insects
Social insects have long been models for studying the role of
environment on phenotype. Across species, a range of social forms is
observed, from solitary to communal to complex eusocial species
(Michener, 1974), with multiple independent origins of social
phenotypes (Bourke, 2011). The breadth of behavioral plasticity
across species provides unique opportunities to compare mechanisms
of behavioral plasticity in a phylogenetic context. Additionally, many
eusocial species exhibit extreme levels of plasticity between social
castes, such as between individuals of different ages or between
queens and workers.
Through the study of highly eusocial species such as the western

honey bee (Apis mellifera), we know that environmental differences
during development (e.g. larval nutrition) lead to caste differences,
mediated by epigenetic mechanisms (Foret et al., 2012; Kucharski
et al., 2008). Social insects have also played a critical role in
uncovering the molecular basis of behavioral plasticity, with early
transcriptomic studies of honey bees demonstrating for the first time
that brain gene expression is predictive of behavioral state
(Whitfield et al., 2003). Since then, many gene expression studies
of social insects have identified transcriptomic differences
associated with numerous phenotypic differences, including
differences between queens and workers (Barchuk et al., 2007;
Feldmeyer et al., 2014; Pereboom et al., 2005; Toth et al., 2007),
differences between worker subcastes (Scharf et al., 2003;Whitfield
et al., 2006) and different responses to socially relevant stimuli
(Grozinger et al., 2003; Shpigler et al., 2017).
Brain transcriptional plasticity has been further modeled in the

honey bee by using a large set of behavioral transcriptomic studies
and reconstructing a brain transcriptional regulatory network. This
network demonstrated context-dependent plasticity in the
relationships between transcription factors and their target genes
(Ament et al., 2012; Chandrasekaran et al., 2011), which is likely
mediated through epigenetic mechanisms. Changes in DNA
methylation and histone modifications have also been implicated
in caste-related social behaviors in bees and ants (Herb et al., 2012,
2018; Lyko et al., 2010; Simola et al., 2015). Additionally, in a
comparative study across 10 bee species, capturing multiple origins
and elaborations of social behavior, sociality was correlated with
increases in the occurrence of transcription factor binding sites and
numbers of methylated genes, suggesting that eusocial lineages
have an increased capacity for regulatory complexity (Kapheim
et al., 2015b).
Although we have a good understanding of the mechanisms

underlying behavioral plasticity in eusocial insects, less is known
about whether phenotypic plasticity is a precursor to eusocial
evolution. West-Eberhard (2003) suggested that the worker caste, a
defining feature of eusocial colonies (Wilson, 1971), evolved
through environmental induction of phenotypically plastic traits.
While much indirect evidence suggests an environmentally induced
worker origin, including existing plasticity and experimental
inducibility in related species (West-Eberhard, 2003), no direct
evidence for a plasticity-first origin of worker castes has been
demonstrated.
Levis and Pfennig (2016) outlined an empirical approach for

assessing plasticity-first evolution in natural populations, with
relevance for social insects. They describe characteristics of study
systems well suited for studying genetic accommodation and
plasticity-first evolution, including knowledge of phylogenetic
relationships in the broader taxonomic group and five other criteria.
Table 1 outlines these criteria and gives examples of how social insects
match many of these characteristics. We review these characteristics in

the next section, and describe how features of social insects make them
amenable to studies of genetic accommodation.

Social insects as models for studying genetic
accommodation
The multiple evolutionary origins of eusociality allow for
comparisons of derived lineages with ancestral-proxy lineages
(see Glossary) to resolve signals of eusocial evolution. A
comparative approach has already been useful in finding patterns
of evolution associated with social behavior, leveraging the natural
variation in social forms present across bees (Kapheim et al., 2015b;
Woodard et al., 2011). Across the hymenopteran social insects,
eusociality has evolved at least 10 times (Bourke, 2011), with
divergence times from solitary ancestors ranging from 20 to 100
million years ago (mya).While the selective forces acting on different
lineages are not always known, some ecological circumstances such
as nest-site limitation and parasitism have been implicated as
determinants of group living (Gunnels et al., 2008; Langer et al.,
2004), suggesting that these factors may be selective agents favoring
eusocial evolution.

Social insects also exhibit quantifiable phenotypes that are amenable
to molecular analysis, allowing us to explore how plasticity is achieved
mechanistically. For example, a key component of eusociality is the
presence of a reproductive division of labor between queens and
workers. The degree of division of labor can be quantified using the
skew in reproduction across adults (Sherman et al., 1995), with more
complex eusocial species exhibiting greater skew. Reproductive skew
can be measured in a laboratory setting, and has been used to assess
whether a division of labor occurs when typically solitary or subsocial
(see Glossary) individuals are forced to cohabit (e.g. during forced
association studies; seeGlossary). Behavioral traits that are not related to
reproduction can also be measured in a laboratory setting; such
behaviors include excavation (Fewell and Page, 1999), foraging
(Tenczar et al., 2014), guarding and nursing (Rittschof et al., 2014;
Shpigler and Robinson, 2015). These quantifiable phenotypes could be
useful in assessing the mechanisms underlying behavioral plasticity in
eusocial colonies, and how these mechanisms may have changed
throughout eusocial evolution.

Two social insect groups best match the characteristics outlined in
Table 1 – bees and wasps. The multiple evolutionary origins of
social behavior within each of these groups allows for phylogenetic
comparisons of the mechanisms underlying eusocial evolution. In
addition to multiple origins, closely related species display a range
of social phenotypes, and growing genomic resources in these
groups enable molecular studies of phenotypic plasticity (Ferreira
et al., 2013; Jones et al., 2015; Kapheim et al., 2015b; Kocher et al.,
2013; Standage et al., 2016). Already, these groups have shown
promise in helping us to understand the potential role of genetic
accommodation in eusocial evolution, as discussed in the
next section.

Evidence for genetic accommodation in eusocial evolution
In addition to suggesting characteristics of ideal study systems for
assessing plasticity-first evolution, Levis and Pfennig (2016)
summarized four criteria necessary to establish that plasticity-first
evolution has occurred, as listed below and in Table 2. Many studies
of social insects demonstrate aspects of these criteria, although they
were rarely formalized as studies of genetic accommodation (see
references in Table 2). Below, we describe the criteria and provide
examples from social insect studies that are consistent with each
one. For social insects, the ‘focal trait’ (i.e. the phenotype under
examination for testing predictions of genetic accommodation) we
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highlight is the presence of a reproductive division of labor between
reproductive queen(s) and non-reproductive worker(s), as this is a
defining feature of eusociality that is absent in non-eusocial
ancestors.

Criterion 1: the focal trait can be environmentally induced
in ancestral-proxy lineages
Reproductive division of labor has been induced experimentally in
multiple solitary and subsocial species through forced association

studies, where typically non-associating females are forced to
cohabit. Many examples come from the small carpenter bees
(Sakagami and Maeta, 1984, 1989, 1987) and sweat bees (Jeanson
et al., 2005, 2008), groups that show high levels of social plasticity
and may be especially useful for assessing genetic accommodation
(Jones et al., 2017; Kocher and Paxton, 2014; Shell and Rehan,
2017). In some cases, a single species displays both solitary and
social forms (Davison and Field, 2016; Smith et al., 2003; Soucy
and Danforth, 2002), and in situations where these forms are

Table 2. Criteria for establishing plasticity-first evolution in natural populations (adapted from Levis and Pfennig, 2016), with examples from
social insects

Criterion Example from social insect literature Taxa/references

Focal trait can be environmentally induced
in ancestral-proxy lineages

Induction of castes in artificial multi-female nests of
solitary or subsocial species

Ceratina japonica (Sakagami and Maeta, 1984, 1987),
Ceratina okinawana (Sakagami and Maeta, 1989),
Lasioglossum spp. (Jeanson et al., 2005, 2008)

Cryptic genetic variation is uncovered when
ancestral-proxy lineages experience the
derived environment

Indirect evidence: inducible social phenotypes, and
some genetic differentiation between social and
solitary forms

Ceratina japonica (Sakagami and Maeta, 1984); Ceratina
flavipes (Sakagami and Maeta, 1987); Lasioglossum
albipes (Kocher et al., 2013)

Focal trait exhibits evidence of evolutionary
change in regulation/form in derived
lineages

Evidence of positive selection on caste-related
genes in multiple lineages
Social lineages exhibit increases in transcription
factor binding site strength/presence and
increased numbers of methylated genes

Solenopsis spp. (Hunt et al., 2012), Temnothorax
longispinosus (Feldmeyer et al., 2014), Apis mellifera
(Harpur et al., 2014; Hunt et al., 2010), Megalopta
genalis (Jones et al., 2017)
10 bee species comparison (Kapheim et al., 2015b)

Focal trait exhibits evidence of adaptive
refinement in derived lineages

Highly specialized queen and worker castes in
complex eusocial lineages

Most ant species, Apis mellifera

Table 1. Characteristics of study systems well suited to studies of plasticity-first evolution (adapted from Levis and Pfennig, 2016), as well as select
examples from social insects

Characteristic Examples from social insects Taxa/references

Knowledge of phylogenetic
relationships in the broader
taxonomic group

Well-resolved phylogenies for many groups of social
insects

(Branstetter et al., 2017; Johnson et al., 2013;
Romiguier et al., 2016)

Multiple parallel derived lineages,
with variable divergence times

Bees: 4–6 independent origins, ranging from 20 to
65 mya
Wasps: 4 independent origins, unknown origin dates
for all but one lineage (100 mya)

(Bourke, 2011; Brady et al., 2006; Cameron and Mardulyn,
2001; Chenoweth et al., 2007; Schwarz et al., 2007;
Thompson and Oldroyd, 2004)

Knowledge of ecological
circumstances and selective
agents acting on lineages

Nest-site limitation: habitat saturation selects for
non-dispersal and group living
Parasitism/predation: groups are better protected
from parasites or predators

Exoneura nigrescens (Langer et al., 2004), Mischocyttarus
mexicanus (Gunnels et al., 2008), Xylocopa sulcatipes
(Stark, 1992), Megalopta genalis (Smith et al., 2003)

Quantifiable trait that can be induced
under laboratory conditions

Reproductive skew, behavioral castes, division of labor;
induced in forced association studies or
environmental manipulations, or observed naturally
in observation nests of social species

Veromessor pergandei (Rissing and Pollock, 1986),
Ceratina flavipes (Sakagami and Maeta, 1987),
Pogonomyrmex barbatus (Fewell and Page, 1999), Apis
mellifera (Robinson et al., 1989), Megalopta genalis
(Jones et al., 2017)

Adequate genomic resources to
investigate molecular
underpinnings

Genomes per group (fromNCBI, accessed 25 February
2018):
Ants: 18
Bees: 15
Vespid wasps: 2
Termites: 3

Acromyrmex echinatior, Atta cephalotes, Atta colombica,
Camponotus floridanus, Cyphomyrmex costatus,
Dinoponera quadriceps, Harpegnathos saltator, Lasius
niger, Monomorium pharaonis, Ooceraea biroi,
Pogonomyrmex barbatus, Pseudomyrmex gracilis,
Solenopsis invicta, Trachymyrmex cornetzi,
Trachymyrmex septentrionalis, Trachymyrmex zeteki,
Vollenhovia emeryi, Wasmannia auropunctata; Apis
cerana, Apis dorsata, Apis florea, Apis mellifera, Bombus
impatiens, Bombus terrestris, Ceratina calcarata,
Dufourea novaeangliae, Eufriesea mexicana, Euglossa
dilemma, Habropoda laboriosa, Lasioglossum albipes,
Lepidotrigona ventralis, Megachile rotundata, Melipona
quadrifasciata; Polistes canadensis, Polistes dominula;
Cryptotermes brevis, Nasutitermes exitiosus,
Zootermopsis nevadensis

Features amenable to lab rearing,
including fast generation time,
numerous offspring, etc.

High variability across groups, but many species are
easy to maintain in lab colonies, and social species
produce many offspring

Solenopsis invicta (Banks et al., 1981), Bombus impatiens
(Cnaani et al., 2002), Polistes metricus (Daugherty et al.,
2011), Polistes fuscatus (Gibo, 1974)
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environmentally determined, exploration of this variation may be
particularly useful in studies of genetic accommodation.

Criterion 2: cryptic genetic variation is uncovered
when ancestral-proxy lineages experience the
derived environment
The capacity for variation in eusocial behavior can be uncovered
through experimental manipulations of the social environment, as
mentioned above for criterion 1. In the primarily solitary bee
Ceratina japonica, artificial induction of multi-female nests results
in a division of labor among females, including skew in
reproduction between adults (Sakagami and Maeta, 1984). Similar
multi-female nest induction in the related bee Ceratina flavipes
results in fewer nests that successfully rear brood, but those that do
also show evidence of a rudimentary caste system (Sakagami and
Maeta, 1987). Whether successful multi-female nests contain
females with cryptic genetic variation (see Glossary) enabling
division of labor has not been explored. However, populations of the
facultatively eusocial Lasioglossum albipes with different social
forms display genetic differentiation, suggesting that variation in
sociality may be facilitated by genetic variation (Kocher et al.,
2013). As genomic tools become available for many social insect
species, investigations of how cryptic genetic variation influences
environmentally induced trait variation will be a critical step in
studies of genetic accommodation in social insects.

Criterion 3: the focal trait exhibits evidence of evolutionary
change in regulation and/or form in derived lineages
Levis and Pfennig (2016) suggest that both genetically
accommodated and assimilated traits will exhibit changes in the
slope of the reaction norm (see Glossary) when comparing derived
with ancestral-proxy lineages. Genetically assimilated traits would
additionally have fixed reaction norms across different
environments, compared with more flexible phenotypes in the
ancestral-proxy species (Levis and Pfennig, 2016). Finally, the
mechanisms underlying changes in reaction norms should be
evident, such as changes in hormonal signaling, cis-regulatory
elements and alternative splicing (Levis and Pfennig, 2016). This
criterion is well supported from multiple indirect lines of evidence
in social insects. Among obligately eusocial insects, division of
labor is fixed compared with ancestral-proxy lineages in which
colonies can exist in multiple states, including those without
division of labor (e.g. the colony-founding phase of single Bombus
queens) or species with both solitary and social forms (e.g.
Megalopta genalis and Lasioglossum albipes: Kocher and Paxton,
2014). Many caste-related genes show evidence of positive
selection in ants (Solenopsis spp.: Hunt et al., 2012; Temnothorax
longispinosus: Feldmeyer et al., 2014) and bees (Apis mellifera:
Harpur et al., 2014; Hunt et al., 2010; Megalopta genalis: Jones
et al., 2017; cross-species comparison: Woodard et al., 2011)
relative to genes not related to caste expression. These results
suggest a change in usage of these genes relative to their expression
in solitary ancestors that affects their evolutionary rates. In addition,
computational analysis shows that changes in gene regulatory
capacity correlate with the level of eusociality, in two different
contexts. First, there are predicted increases in the strength and
prevalence of transcription factor binding sites in gene promoters of
species with increased levels of eusociality (Kapheim et al., 2015b).
Second, there are greater predicted numbers of methylated genes
associated with increased levels of eusociality, and the role of gene
methylation in controlling expression and splicing in social insects
further suggests greater regulatory tuning in social species

(Kapheim et al., 2015b). These cis-regulatory and transcription
factor differences suggest that genes related to eusociality have
experienced evolutionary change in both sequence and regulation.

Criterion 4: the focal trait exhibits evidence of having
undergone adaptive refinement in derived lineages
If selection has acted to increase the frequency with which a trait is
expressed through genetic accommodation, that trait should
experience adaptive refinement (see Glossary) as a result of
more consistent exposure to selection (West-Eberhard, 2003).
Therefore, genetically accommodated traits in derived lineages
should be superior versions of the trait compared with those in
ancestral-proxy lineages (Levis and Pfennig, 2016). In the majority
of social insect species, a comparison of fitness in solitary and
eusocial nests is not possible; however, alternative social strategies
of the facultatively eusocial Megalopta genalis were found to have
similar levels of fitness and to co-exist in evolutionary models based
on field-based parameters, potentially explaining the maintenance
of facultative eusociality in this species (Kapheim et al., 2015a).
Further studies that rear solitary and eusocial species in competition
may help elucidate whether eusocial traits have undergone adaptive
refinement more directly. In addition, several indirect lines of
evidence support the idea that eusociality has undergone adaptive
refinement in derived lineages, including extensive elaborations of
form and function in queen and workers castes. In some derived
lineages, workers have lost the ability to mate and are sterile, while
queens have reproductive capacities that are orders of magnitude
greater than those of their ancestral-proxy counterparts. This
specialization of castes would likely not be possible without the
fixed sociality present in these complex eusocial species, where
queen and worker traits have been exposed to selection for millions
of years. Species with flexible castes or facultative eusociality are
less consistently exposed to selection, and do not display the same
features as complex eusocial species, suggesting a greater capacity
for adaptive refinement in lineages with complex and obligate
eusociality. Elaborate chemical communication systems have also
evolved in many of these complex eusocial groups, leading to less
overt competition over reproduction and highly specialized
nestmate recognition systems, providing further evidence for
adaptive refinement in derived lineages.

Eusocial engineering
Most studies providing empirical support for genetic accommodation
employ artificial selection on experimentally induced phenotypes,
some of which may not occur in nature (Suzuki and Nijhout, 2006;
Waddington, 1942, 1953). Other empirical studies demonstrate
phylogenetic relationships between environmentally sensitive
phenotypes in ancestral lineages and more fixed phenotypes in
derived lineages (Heil et al., 2004; Santana and Dumont, 2009;West-
Eberhard, 2003), but do not examine the underlying mechanisms or
show evidence of allele frequency change associated with fixation of
the phenotype. Here, we outline a new method that builds upon and
extends these approaches.

As discussed above, evidence across the social insects suggests
that phenotypic plasticity may have facilitated the origin of
eusociality through genetic accommodation. However, many of
these lines of evidence come from different lineages and distinct
origins of eusocial behavior, making it difficult to assess whether
plasticity-first evolution has taken place. We suggest that particular
social insect groups can be used to test the predictions of plasticity-
first evolution, coupling manipulative experiments with deep
molecular probing of the mechanisms involved in shifts between
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social forms. Specifically, we propose using experimental
environmental induction of novel social traits (as in Table 2,
criterion 1) to test the hypothesis that genetic accommodation can act
on existing plasticity in social evolution. We call this approach
‘eusocial engineering’ (see Glossary), and hope that it will enable
better understanding of how environmentally induced phenotypes
may be involved in gains and losses of eusocial behavior.
Fig. 1 outlines two approaches to eusocial engineering. The

forward eusocial engineering technique (Fig. 1A) is as follows. For
a species closer to the solitary end of the social spectrum with
potential for non-lethal association of females (i.e. communal or

facultatively eusocial species), nests are established with pairs or
trios of age-matched, mated females of the same generation
(mimicking a semisocial origin of eusociality; Michener, 1974),
or mother and daughter(s) groups (mimicking a subsocial origin;
Michener, 1974). Nests are monitored until successful generation of
brood, which may occur in a subset of nests. After emergence of
offspring, founding females are analyzed to examine changes in
gene expression and epigenetic regulation, and offspring are used to
establish new nests to artificially select for high fitness in the
induced social environment. While the molecular approaches we
suggest may be expensive and require practical considerations,

Successful
reproduction

Pair 1

Pair 2

Pair 9

Pair 10

.

.

.

Analysis of
nesting pairs

Offspring used to
initiate new nests

X

X

Pairs of
mated females

Gene expression
Physiological measurements 

Methylation
Chromatin accessibility
Histone modifications
Genome sequencing

A

Successful
reproduction

Individual 1

Individual 2

Individual 9

Individual 10

.

.

.

Analysis of
successful mothers

Offspring used to
initiate new nests

X

X

Isolated
mated females

Gene expression
Physiological measurements 

Methylation
Chromatin accessibility
Histone modifications
Genome sequencing

B

Fig. 1. Schematic diagramoutlining forward and reverse eusocial engineering. (A) Forward eusocial engineering. The first generation includesmultiple pairs
of individuals, some of which may successfully produce offspring (colored pairs, arrows; some pairs fail to produce offspring, denoted by ‘X’). Offspring of these
successful pairs (shown in green and purple) will be paired again in the next generation, to either successfully produce another generation or fail to produce
offspring. This pairing and selection scheme continues for many generations, with sampling of successful pairs throughout to identify transcriptomic, epigenomic
and allele frequency changes associated with selection for cooperation. (B) Reverse eusocial engineering. The first generation includes isolated females, some of
which may successfully produce offspring (shown in yellow and blue, arrows; some individuals fail to produce offspring in isolation, denoted by ‘X’). Offspring of
successful females (shown in green and purple) will be isolated again for the next generation. Much like in forward eusocial engineering, successful individuals
can be sampled throughout to identify transcriptomic, epigenomic and allele frequency changes associated with selection for solitary reproduction. Many
variations of this scheme are possible depending upon the species of interest.
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sequencing costs and more tractable techniques for non-model
organisms are being developed with increased frequency, bringing
these methods within reach of many biologists.
Throughout a study, observations would identify behavioral

division of labor, and successful females would be preserved for
physiological and molecular measurements. Genotyping of
offspring (for females, this would be conducted after their own
nests have completed a brood cycle) would identify which founding
female successfully reproduced, with ovarian dissection of all
females to assess reproductive potential. Transcriptomics on
collected foundresses would look for differences in gene
expression associated with variation in phenotype induced by the
social environment. Genes with plastic expression associated with
the social induction would be candidates for selection through
genetic accommodation. In addition to differences in gene
expression, novel regulation of genes can be assessed by
examining differences in chromatin accessibility and methylation
using a number of techniques (e.g. ATAC-seq: Buenrostro et al.,
2013; ChIP-seq: Barski et al., 2007; bisulfite sequencing: Clark
et al., 1994) to address which molecular mechanisms have enabled
the plasticity in behavior induced by the novel social environment.
Sampling of females throughout many generations of artificial
selection would allow a direct test of genetic accommodation by
assessing whether candidate genes exhibit allele frequency change
or novel variants following selection. In early generations,
transcriptomic differences may be observed without reinforcement
from epigenetic mechanisms. Epigenetic reinforcement may be
expected later, with eventual accommodation of changes resulting
in allele frequency change relative to the starting population of
individuals. Careful genetic surveying of populations before and
after the selection regime would be necessary to understand the role
that cryptic genetic variation might play in the emergence of social
traits. Longitudinal studies of laboratory bacterial evolution provide
excellent experimental guides for this work (e.g. Bohannan and
Lenski, 2000).
Reverse eusocial engineering (Fig. 1B) would use species with

higher social complexity, and involve the initiation of nests with
single females followed by selection on those individuals that
successfully reproduce under solitary conditions. As with the
forward eusocial engineering scheme above, molecular techniques
would be used to assess mechanisms associated with reversions to
solitary living, as well as test for genetic accommodation for the
environmentally induced solitary phenotype. An additional
approach could use selected lines from forward eusocial
engineering as a starting point, with molecular monitoring to
address how eusociality may be lost when females are forced to
rear offspring in isolation.
The foundational behavioral aspects of the forward eusocial

engineering approach have already been established, as forced
association studies have been successful in multiple species of both
ants and bees (Fewell and Page, 1999; Rissing and Pollock, 1986;
Sakagami and Maeta, 1987). Reverse eusocial engineering has less
behavioral precedence, but eusocial behavior has been lost multiple
times in some groups (e.g. Danforth et al., 2003), suggesting that
reversion to solitary behavior may be a common phenomenon and
therefore important to study. Other work has successfully
manipulated the social environment (Robinson et al., 1989, 1992;
Ross and Keller, 2002), including changing colony demographics
in ‘pseudomutant’ colonies and comparing the performance of this
artificial construct with naturally formed colonies (Wilson, 1985),
as well as many instances of queen removals to induce worker
reproduction across ants, bees and wasps (e.g. Dietemann and

Peeters, 2000; Jones et al., 2017; Reeve and Gamboa, 1987). What
is unique about the eusocial engineering approach is the coupling of
these manipulative studies with artificial selection and multiple
genetic, transcriptomic and epigenetic monitoring approaches,
enabling real-time tracking of the plastic and heritable
components of environmentally induced traits. With recent
advances in transgenic approaches in social insects (Schulte
et al., 2014; Trible et al., 2017; Yan et al., 2017), eusocial
engineering could be followed by genome editing to directly test
the effects of any discovered genetic and epigenetic variants that
are found to be associated with transitions in social behavior. We
expect that eusocial engineering will be valuable in testing the
role of genetic accommodation and phenotypic plasticity in
eusocial evolution.

Outside of social insects, phenotype engineering has been
previously introduced and implemented in birds; hormonal
manipulations were utilized to change behavior and physiology in
the dark-eyed junco (Ketterson and Nolan, 1992). This work
suggests an approach similar to eusocial engineering may also be
fruitful in testing genetic accommodation in non-insects.

Conclusions
An emphasis on plasticity-first evolution does not diminish the
importance of mutation-first mechanisms of evolutionary change,
but rather adds a potential avenue for scientists to explore for
comprehensive analyses of the evolution of complex traits.
Selection pressure is agnostic to the mechanism leading to the
phenotype, such that individuals that inherited fitness benefits via
reversible epigenetic means would survive equally well as
individuals with a genetic mutation permanently altering the
phenotype, all else being equal. In changing environmental
conditions, however, a plastic response may be more
advantageous and lead to maintenance of a transgenerational
mechanism of inheritance. By contrast, if a population experiences a
stable environment, individuals with a fixed and genetically
determined phenotype may ultimately edge out those with plastic
responses, either because of the costs of plasticity or because of
differences in the reliability of phenotypic expression (DeWitt et al.,
1998). In this case, the population may experience allele frequency
change, completing the plasticity-first model of evolution.

Plasticity-first models of evolution arose before our current
knowledge of the possible mechanisms of genetic accommodation,
but growing understanding of epigenetics and transgenerational
plasticity allows us to now test the predictions of these models.
Social insects are well suited for this goal, and an empirical
approach that combines behavioral manipulations with ‘omics work
will open the door to understanding how transcriptional plasticity in
the ancestors of eusocial species may have facilitated the evolution
of eusocial traits. With this approach applied more broadly in other
taxa, we believe that the time has come to consider the role of
genetic accommodation more rigorously, in order to determine its
significance as a driver of evolutionary change. In doing so, we will
not only broaden our understanding of the role of phenotypic
plasticity in the origin and elaboration of novel traits but also
provide a framework by which multiple modes of evolution may
work in concert to influence adaptation.
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