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Interaction between step-to-step variability and metabolic cost of
transport during human walking
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ABSTRACT
Minimizing the metabolic cost of transport can affect selection of the
preferred walking speed. While many factors can affect metabolic
cost of transport during human walking, its interaction with step-to-
step variability is unclear. Here, we aimed to determine the interaction
between metabolic cost of transport and step length variability during
human walking at different speeds. In particular, two aspects of
step length variability were analyzed: the amount of variations
(‘variations’) and the organization of the step-to-step fluctuations
(‘fluctuations’). Ten healthy, young participants walked on a treadmill
at five speeds, ranging from 0.75 to 1.75 m s−1. Metabolic cost of
transport, step length variations (coefficient of variation) and step
length fluctuations (quantified via detrended fluctuation analysis)
were calculated. A mixed-model ANOVA revealed that variations and
walking speed were strong predictors of metabolic cost of transport
(R2=0.917, P<0.001), whereas fluctuations were not. Preferred
walking speed (1.05±0.20 m s−1) was not significantly different from
the speed at which metabolic cost of transport was minimized (1.04
±0.05 m s−1; P=0.792), nor from the speed at which fluctuations were
most persistent (1.00±0.41 m s−1; P=0.698). The minimization of
variations occurred at a faster speed (1.56±0.17 m s−1) than the
preferred walking speed (P<0.001). Step length variations likely affect
metabolic cost of transport because greater variations are indicative
of suboptimal, mechanically inefficient steps. Fluctuations have little
or no effect on metabolic cost of transport, but still may relate to
preferred walking speed.
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INTRODUCTION
Every movement that a person makes requires muscles to act, and
each muscle action requires the consumption of metabolic energy.
As such, humans tend to prefer to walk in a way that makes
economical use of metabolic energy (Alexander, 2002; Selinger
et al., 2015). This typically takes the form of a minimization in the
metabolic cost per unit distance, referred to as the metabolic cost of
transport (MCOT; Bastien et al., 2005; Ralston, 1958). The
minimization of MCOT results from a reduction of the force and
work requirements of the muscles (Bastien et al., 2005; Dean and
Kuo, 2011; Kim and Collins, 2015), and requires the regulation of a
variety of gait characteristics. For example, walking speed is a major
determinant of MCOT (Alexander, 2002; Browning and Kram,

2005; Ralston, 1958) in that there is an optimal speed that results in a
minimizedMCOT.While not all of the determinants of MCOT have
been identified, sustained deviation in preferred step length or
frequency (Minetti et al., 1995), step width (Donelan et al., 2001)
and step variability (O’Connor et al., 2012) result in increased
MCOT.

MCOT has been largely attributed to the force production of
the muscles (Alexander, 2002). This may explain why changes in
walking speed, step length or frequency and other gait
characteristics affect MCOT. For example, consider step length
during walking at a constant speed: very short steps require a high
step frequency, which in turn requires fast muscle contractions that
do not provide as much force as slower contractions (Hill, 1938).
Furthermore, higher step frequencies require greater work to
accelerate the limbs relative to the center of mass (Cavagna and
Franzetti, 1986). As such, short and frequent steps are metabolically
costly. Long steps are also suboptimal, as they require a larger
vertical displacement of the center of mass and therefore more work
is done to accelerate the center of mass (Cavagna and Franzetti,
1986), which necessitates increased force output from the muscles
(Minetti et al., 1995).

In addition to changes in the mean step length, the amount of
variation in step length (i.e. ‘variations’, assessed by the coefficient
of variation) can affect MCOT. Studies that increase step length
variations via visual perturbations (O’Connor et al., 2012) or by
varying terrain (Voloshina and Ferris, 2013) have shown a
proportional increase in the metabolic rate within a given walking
speed, and so we would expect MCOT to follow the same trend.
Increased step length variations are indicative of a larger proportion
of metabolically suboptimal step lengths, and thereby increase
MCOT.

When considering step-to-step variability as a determinant of
MCOT, a complementary aspect to variations is the organization of
the step-to-step fluctuations (i.e. ‘fluctuations’; Hausdorff et al.,
1996). Fluctuations are measured by analyzing the ‘statistical
persistence’ of a series of steps. By measuring step length over
hundreds of consecutive steps, it is possible to investigate changes
in the level of statistical persistence of step length fluctuations
(Hausdorff et al., 1995, 1996). Fluctuations that result in similar
step-to-step changes (e.g. a long step is likely to be followed by
more long steps) are said to have high persistence, and fluctuations
that have high step-to-step dissimilarity (e.g. a long step is likely to
be followed by a short step) are said to have low persistence.

Studies on the statistical persistence of fluctuations have revealed
new information about locomotor control (Hausdorff et al., 1997;
Marmelat et al., 2014a; Nakayama et al., 2010). For example, young
healthy adults exhibit highly persistent fluctuations. This level of
persistence is reduced when people are instructed to walk to the beat
of a metronome (Roerdink et al., 2015) or by targeting specific step
lengths during walking (Bohnsack-McLagan et al., 2016),
indicating that fluctuations are affected by the level of directReceived 6 April 2018; Accepted 13 September 2018
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neural control (i.e. attention to foot placement) as well as the level of
feedback (i.e. error-based correction). In addition, fluctuations are
affected by changes in walking speed (Chien et al., 2015; Jordan
et al., 2007), where an ‘optimal’ level may be observed at preferred
walking speed (PWS). This convergence of both fluctuations and
MCOT at the PWS indicates that the two may be linked.
In order to investigate how step length fluctuations may be related

to MCOT, let us explore how a series of step lengths may be
arranged. If all steps are identical in length, the pendulum
mechanics of walking will be readily maintained, where each
limb will act like an inverted pendulum (Donelan et al., 2002).
Deceleration will occur when the leading limb contacts the ground
and acceleration will be provided by the trailing limb to continue
forward propulsion. However, if consecutive steps are highly
dissimilar (e.g. long–short–long), there will be altered transition
phases from step to step. When transitioning from long to short,
extra muscle action will be required to decelerate the body (Kuo
et al., 2005). When transitioning from short to long, excess/
abnormal acceleration will be required, which will also put a higher
demand on the muscles (Donelan et al., 2002). If this suboptimal
pattern continued for hundreds or thousands of steps, it could incur a
greater MCOT due to altered step-to-step transitions. Additionally,
such suboptimal patterns could lead to an asymmetrical step pattern,
which would also contribute to an increased MCOT (Ellis et al.,
2013). As such, it would seem that maintaining a step pattern of
similar, symmetrical steps (i.e. more statistically persistent
fluctuations) would be metabolically favorable. However, research
investigating the link between fluctuations and MCOT is lacking.
The aim of this study was to determine the interaction between

MCOT and step-to-step variability. Bymanipulating walking speed,
we perturbed MCOT and observed the resulting changes in step
length coefficient of variation (i.e. ‘variations’) and in the
persistence of step length fluctuations (i.e. ‘fluctuations’). Our
primary hypothesis was that increases in MCOT would be
associated with increases in variations and with decreases in
fluctuations. Due to the established relationship between variations
and metabolic rate (O’Connor et al., 2012; Voloshina and Ferris,
2013), we also hypothesized that variations would be a stronger
determinant of MCOT than fluctuations. Lastly, we hypothesized
that the minima (across various walking speeds) of MCOT and
variations, as well as the highest persistence in fluctuations, would
occur near the PWS.

MATERIALS AND METHODS
Subjects
Ten participants (5 female and 5 male) ranging in age from 21 to
33 years (means±s.d.; age: 24.2±3.4 years; height: 1.75±0.09 m;

mass: 80.0±15.7 kg) took part in this study (Table 1). Participants
did not present with conditions that limited walking activity.
Participants with a history of cardiac or neurological problems
were also excluded. Informed consent was obtained from each
participant. All procedures were approved by the Institutional
Review Board at the University of Nebraska Medical Center,
NE, USA.

Procedure
Each participant attended a single session, which included all
experimental procedures. Upon arrival, the participant was fitted
with a tight-fitting suit to facilitate proper marker placement. For all
procedures, participants wore their own footwear. Retroreflective
markers, in conjunction with an infrared camera system (100 Hz;
Motion Analysis, Santa Rosa, CA, USA), provided information
about the participant’s gait kinematics: specifically, pelvis and foot
positions. The 12 cameras were positioned at the perimeter of the
room, with the treadmill (Pro Tread AC 7600, Star Trac, Irvine, CA,
USA) placed at the center of the capture volume. The 13 markers
corresponded to the following anatomical landmarks, from
proximal to distal: anterior and posterior iliac spines, sacrum,
heel, lateral heel, fifth metatarsal head, and second metatarsal head.
After fitting the participant with the markers, a recording of the
static posture was taken with the participant standing, for use as a
model in software for later processing.

A gas exchange system (TrueOne 2400, ParvoMedics, Sandy,
UT, USA) was fitted to the participant in order to measure their
oxygen and carbon dioxide inhalation/exhalation levels. In order to
determine the participant’s standing metabolic rate, measured in
Watts per kg (W kg–1), a trial was recorded prior to walking trials
where he/she stood for 5 min while gas exchange was measured.
This metabolic rate was later subtracted from the metabolic rate
recorded during each trial.

The PWS was determined prior to experimental trials using a
typical incremental protocol (Marmelat et al., 2014b). This involved
the participant walking on the treadmill at a slow speed (1.6 km h−1;
0.44 m s−1), which was increased every 10 s in intervals of
0.1 km h−1 (0.028 m s−1). This was continued until the participant
indicated that a comfortable speed had been reached. The speed was
then further increased until the participant indicated that the speed
was uncomfortable, at which point the speed was incrementally
decreased until a comfortable speed was indicated by the
participant. The speed was adjusted according to participant
feedback until the most comfortable speed was determined.
Participants were blinded to the speed of the treadmill during the
PWS determination. Participants had at least 3 min of rest after the
PWS determination.

Participants completed five walking trials on a treadmill lasting
15 min each. Each walking trial was undertaken at a different speed
(0.75, 1.00, 1.25, 1.50 or 1.75 m s−1; randomized order), and
participants were blinded to the exact speed. Set walking speeds
were chosen, as opposed to relative speeds (e.g. PWS±10%), to
match previous research on MCOT (Browning and Kram, 2005;
Griffin et al., 2002; Malatesta et al., 2003), as well as to better allow
for the proper estimation of variable-specific minima/maxima.
Participants rested for at least 3 min between each trial.

Data processing
The gas exchange from the final 10 min of each trial was used to
calculate mean metabolic rate, in order to ensure subjects were in a
steady metabolic state, which takes an average of 3 min at moderate
exercise (Poole and Richardson, 1997). Metabolic rate was calculated

Table 1. Participant characteristics

Subject Sex
Age
(years)

Mass
(kg)

Height
(m)

RMR
(W kg−1)

PWS
(m s−1)

1 M 22 80.29 1.83 1.48 1.08
2 M 23 68.04 1.79 1.55 1.14
3 F 24 72.57 1.65 0.90 0.92
4 F 22 72.12 1.78 1.24 1.06
5 F 33 55.34 1.57 1.26 1.08
6 F 25 88.90 1.71 1.13 1.31
7 M 21 90.72 1.89 1.48 1.22
8 M 23 89.81 1.74 1.26 0.58
9 F 23 70.76 1.69 1.17 1.06
10 M 26 111.13 1.81 1.05 1.08

RMR, resting metabolic rate recorded during a 5-min standing trial; PWS,
preferred walking speed; M, male; F, female.
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using the Brockway equation, which uses the volumes of oxygen
consumed and carbon dioxide produced to calculate metabolic power
in terms ofWatts, or Joules per second (J s–1; Brockway, 1987), which
was then normalized to body mass. After subtracting the standing
metabolic rate, the value was divided by speed to obtain net MCOT,
which is reported in units of Joules per kilogram of body mass per
meter (J kg−1 m−1) (Peterson and Martin, 2010).
Step variables were determined using Cortex (Motion Analysis,

Santa Rosa, CA, USA), which was used to record and track the data,
and Visual3D (C-motion, Germantown, MD, USA) and MATLAB
(The MathWorks Inc., Natick, MA, USA), which were used to
process the tracked data and calculate mean step length, step length
variations and step length fluctuations. Timing of heel strike and toe
off were determined using the foot velocity with respect to the pelvis
(Zeni et al., 2008). Step time was calculated as the time between
contralateral heel strikes. Step length was calculated using the
following equation:

Step lengthn ¼ ðtvn � step timenÞ � ðHSxnþ1 � HSxnÞ; ð1Þ

where HSxn is the anteroposterior position of the heel marker at the
nth heel strike, and HSxn+1 is the anteroposterior position of the
contralateral heel marker at the next heel strike. The difference
between these positions represents the participant’s forward or
backward movement relative to the treadmill. Treadmill velocity (tv)
was calculated for each step using the average velocity of the stance
foot center of mass during the portion of stance when the foot was
flat on the treadmill. It should be noted that this method of treadmill
velocity calculation is not as robust as if we had directly measured
the instantaneous treadmill belt speed, but appeared to be a reliable
estimation, evidenced by the low standard deviation within a speed
(s.d.=0.0098 m s−1 at the slowest speed, 0.0154 m s−1 at the highest
speed). Treadmill velocity was then multiplied by the time duration
of the step, and combined with the difference in consecutive heel
strikes to obtain the full step length. After calculating the gait events
and foot marker positions in Visual3D, they were exported to
MATLAB for analysis, which was used to calculated step length
mean, standard deviation and coefficient of variation (i.e.
‘variations’). Coefficient of variation was chosen as the measure
of step length variability magnitude because it is normalized to the
mean step length for each condition and has been shown to be speed
dependent (Jordan et al., 2007). Other measures of variability (such
as s.d. of step length, step width and stance time) are reported in
Table S1.
Detrended fluctuation analysis (DFA; Hausdorff et al., 1995) was

used to quantify the level of statistical persistence in the step length
time series (i.e. fluctuations). Briefly, DFA was performed via four
procedural steps: (1) the time series was detrended so that the mean
value was zero. To do this, the mean was subtracted from each value
in the series. (2) The detrended time series was integrated, resulting
in a new time series. (3) The integrated series was separated into
non-overlapping boxes of equal size, n. The average root mean
squared fluctuation error (F ) from a linear fit to the data was
calculated within each box, and averaged for different box sizes (n),
ranging in size from 10 to N/4 data points, where N is the length of
the series. (4) The root mean squared fluctuation [F(n)] was then
plotted against the box size n in log–log coordinates. The presence
of a linear least-squares line of best fit suggests the presence of a
power-law relationship, i.e. F(n)∼nα, where α represents the scaling
exponent estimated from the slope. A slope (i.e. DFA-α) at or above
1.0 would indicate high statistical persistence, with decreases
indicating lower persistence. The results from DFA have also been

referred to as level of ‘self similarity’ (Chien et al., 2015), ‘fractal
fluctuations’ (Marmelat and Delignier̀es, 2011) or degree of ‘1/f
scaling’ (Harrison and Stergiou, 2015). For examples and figures on
the DFA calculation, please see Damouras et al., 2010 and Francis
et al., 2002.

In order to keep inter-subject values comparable, the same
number of data points was used for each subject and for each trial.
Because DFA is sensitive to the number of data points (Damouras
et al., 2010; Delignieres et al., 2006), the number of data points used
was maximized. The number of data points was determined by the
participant who took the fewest steps (1150 steps) in any of the
conditions. The first 350 steps (at least 3 min) were removed to
avoid the possible adaptation period at the beginning of the trial,
which has been shown to be very short in young, healthy
populations (Van De Putte et al., 2006). As such, the final 900
steps of each trial were assumed to represent the steady-state
behavior of the participants and were analyzed to calculate DFA-α
and coefficient of variation.

Statistical analyses
Effect of speed on net MCOT and step-to-step variability
In order to determine whether walking speed had an effect on
each dependent variable, one-factor (five levels of speed)
repeated-measures ANOVAs were used with Greenhouse–Geisser
corrections when necessary (IBM SPSS Statistics, IBM, Armonk,
NY, USA).

Prediction of net MCOT based on speed and step-to-step variability
measures
A mixed-model ANOVA was used to determine the effect of
variations and fluctuations on net MCOT. Because it has been
shown that speed has a non-linear effect on MCOT (e.g. Griffin
et al., 2002), speed and the square of speed were included in the
analysis. The analysis conducted was a mixed-model, five-factor
ANOVA (random effect: subject; fixed effects; speed, square of
speed, step length coefficient of variation, and step length DFA-α)
with net MCOT as the outcome measure (MATLAB).

Preferred walking speed and maxima/minima predictions of net
MCOT, variations and fluctuations
First, the minima of net MCOT and step length variations, as well as
the maximum of step length fluctuations, were determined by fitting
a second order polynomial to each subject’s data as a function of
speed usingMATLAB. The minimum/maximum of these parabolae
represented the predicted speed at which each variable was
minimized/maximized. A one-factor repeated-measures ANOVA
was used to determine whether the predicted speeds were different
from the measured PWS. A least significant difference post hoc test
was used to compare the measured PWS to the predicted speeds at
which each variable (MCOT, variations and fluctuations) were
minimized/maximized (alpha=0.05; IBM SPSS Statistics, IBM,
Armonk, NY, USA).

RESULTS
Effect of speed on net MCOT, variations and fluctuations
For net MCOT, Mauchly’s test, χ29=37.4, indicated a violation of the
assumption of sphericity (P<0.001); therefore, degrees of freedom
were corrected using Greenhouse–Geisser estimates of sphericity
(ε=0.338). A main effect of speed was found on net MCOT
[F1.351,9=77.5, P<0.001, ηp2=0.896 (Fig. 1)].

For step length variations, Mauchly’s test, χ29=33.0, indicated a
violation of the assumption of sphericity (P<0.001); therefore,
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degrees of freedom were corrected using Greenhouse–Geisser
estimates of sphericity (ε=0.389). A main effect of speed was found
on step length variations [F1.557,9=11.3, P=0.002, ηp

2=0.556
(Fig. 1)].

In testing the effect of speed on step length fluctuations,
Mauchly’s test, χ29=4.149, indicated no violation of sphericity
(P=0.904). A main effect of speed was not found on step length
fluctuations [F4,9=1.17, P=0.342, ηp2=0.115 (Fig. 1)].

Net MCOT and step-to-step variability
Mixed model ANOVA revealed that speed (P<0.001), the square of
speed (P<0.001), and step length variations (P<0.001) were
significant predictors of net MCOT (Fig. 2). Step length
fluctuations had a non-significant effect on net MCOT and were
therefore removed from the model. The resulting model equation
was:

Net MCOT ¼ 2:8� ð2:9� SpeedÞ þ ð1:5� Speed2Þ
þ ð11� VariationsÞ; ð2Þ

where net MCOT is measured in J kg−1 m−1, Speed is measured
in m s−1, and Variations is the coefficient of variation of step length
(unitless ratio). The model’s estimated net MCOT values related to
the measured values with an adjusted R2=0.917. It should be
noted that, if this analysis is run without the variations term
(i.e. speed terms only), the adjusted R2=0.906, indicating that
the addition of variations provides a modest improvement to
the model.

Preferred walking speed and speeds predicted by net MCOT,
variations and fluctuations
Mauchly’s test, χ25=15.597, indicated a violation of the
assumption of sphericity (P=0.009); therefore, degrees of freedom
were corrected using Greenhouse–Geisser estimates of sphericity
(ε=0.466). A main effect was found on predicted speed
[F1.40,9=12.6, P=0.002, ηp

2=0.583 (Fig. 3)].
Post hoc comparisons using least significant difference revealed

that the measured PWS (1.05±0.20 m s−1) differed from the speed
at which step length variations were minimized (1.56±0.17 m s−1;
P<0.001). No significant difference was observed between the
measured PWS and the speed of minimum MCOT (1.04±
0.05 m s−1; P=0.792), as well as the maximum of step length
fluctuations (1.00±0.41 m s−1; P=0.698).
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Fig. 1. Effect of speed on net metabolic cost of transport (MCOT),
variations (step length coefficient of variation) and fluctuations (step
length DFA-α).Mean values for each speed condition were calculated (circles,
error bars=±1 s.d.) and fitted with a second order polynomial. Significant
effects of speed were observed on net MCOT (P<0.001) and on variations
(P=0.002). No effect of speed was observed on fluctuations (P=0.342). The
average preferred walking speed (PWS) across participants (dashed vertical
line) was 1.05±0.20 m s−1. Subject-specific figures are shown in Fig. S2. CV,
coefficient of variation; DFA, detrended fluctuation analysis.
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DISCUSSION
Interaction between net MCOT and variations
We had hypothesized that increased variations would be associated
with increased MCOT. This hypothesis was based on the
assumption that there is a metabolically ‘optimal’ step length for
each speed (Minetti et al., 1995), and that increases in step length
variations represent an increased occurrence of suboptimal steps. In
support of our hypothesis, an interaction was observed between step
length variations and MCOT (Fig. 2). Similar to previous research
relating step variability to metabolic rate (O’Connor et al., 2012),
the model from the current study shows that increases in step length
variations may be linearly associated with increases in MCOT. For
example, when walking at 1.25 m s−1, each increase in step length
variations of 0.01 (or 1% of the mean step length) will see a
corresponding increase inMCOTof 5.9% (0.11 J kg−1 m−1). To put
this value in context, an increase in speed from 1.25 to 1.35 m s−1

would achieve a similar increase in MCOT (0.10 J kg−1 m−1),
suggesting that the effect of variations on MCOT may be
substantial. Despite this substantial effect of variations, walking
speed appeared to be a better predictor of MCOT in the current
study. Further research could determine whether the interaction
between variations and MCOT is more pronounced in different
tasks or populations.
Step length variations and net MCOT were both dependent on

walking speed (Fig. 1), which agrees with previous research in
metabolic expenditure (Alexander, 2002; Browning and Kram,
2005; Ralston, 1958) and step variability (Jordan et al., 2007). Also,
the net MCOT calculated in this study resembled the values
observed in previous studies (Bastien et al., 2005; Peterson and
Martin, 2010). The range of step length variations observed in this

study was similar to that of previous research (Jordan et al., 2007;
Roemmich et al., 2013). However, where previous research has
shown a decline in step length coefficient of variation with
increasing speed (Jordan et al., 2007), the results of the current study
may indicate that step length coefficient of variation reaches a
minimum and stabilizes, or begins increasing again with very fast
walking speeds.

No interaction between net MCOT and fluctuations
We also hypothesized that increased step length fluctuations would
be associated with decreased MCOT. Although step length
fluctuations have been studied previously (Jordan et al., 2007) at
a range of walking speeds (75–125% PWS), the current study
employed a wider range of walking speeds in order to further test
how speed may affect fluctuations. The employed speeds (0.75–
1.75 m s−1) ranged from 74.5±20.2 to 173.9±47.3% PWS. Despite
this range, a main effect of speed was not observed on step length
fluctuations, and no interaction was observed between step length
fluctuations and MCOT.

Within the range of speeds tested in the current study, it is likely
that MCOT is not affected by step length fluctuations, or vice versa.
As such, it may be that changes in fluctuations can occur
independently of MCOT. Differences in fluctuations have
previously been observed between young and older adults (Chien
et al., 2015; Hausdorff et al., 1997), as well as between healthy and
pathological populations, such as those with Huntington’s or
Parkinson’s disease (Hausdorff, 2009; Hausdorff et al., 1997).
Similarly, metabolic differences are observed with aging and
pathology (Mian et al., 2006; Waters and Mulroy, 1999), indicating
that a potential function of fluctuations is to decrease energy
expenditure. However, the results of the current study do not support
the hypothesis that fluctuations minimize energy expenditure. As
such, it may be that the function of fluctuations is to facilitate other
gait requirements. For example, fluctuations have been speculated to
be reflective of resistance to perturbations, or adaptability
(Hausdorff et al., 1995; Stergiou et al., 2006). If this is the case,
then it would seem that adaptability in the gait pattern, via
fluctuations, may be adjusted without compromising MCOT. Also,
these results may indicate that fluctuations, and thereby adaptability,
may be robust to changes in energy expenditure. Further
experimentation is needed to determine whether different levels of
fluctuations relate to adaptability, perhaps via changing terrain
surfaces or task demands.

Interactions with preferred walking speed
It has been shown that the human PWS closely coincides with the
minimization of MCOT (Alexander, 2002; Browning and Kram,
2005; Ralston, 1958). The PWSmeasured in the current study (1.05
±0.20 m s−1) was slightly lower than other reported treadmill values
for healthy young participants; for example, 1.15 m s−1 (Roerdink
et al., 2015) and 1.18 m s−1 (Dal et al., 2010). The reason for this
difference is unclear, although one subject in the current study did
have a very low PWS (0.58 m s−1), which lowered the group
average by about 0.05 m s−1. The speed at which net MCOT was
minimized (1.04±0.05 m s−1) was in line with other studies, which
found minima of net MCOT at approximately 1.00 m s−1 (Bastien
et al., 2005; Peterson and Martin, 2010). The similarity between
the PWS and the predicted minimum of MCOT shows the strong
effect of minimizing energy expenditure on preferred movement
strategies.

We hypothesized that more persistent fluctuations may facilitate a
reduction of MCOT, which led us to hypothesize that the speed at
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Fig. 3. Speeds at which net MCOT and variations (step length CV) were
estimated to be minimized, and at which fluctuations (step length DFA-α)
were estimated to be maximized. The minimum of net MCOT was not
significantly different (P=0.792) from the mean PWS (solid horizontal line;
dashed lines=95% confidence interval), nor was the maximum of fluctuations
(P=0.698). However, the minimum of variations was significantly different
from the PWS (P<0.001). Bars represent mean values with error bars
indicating 95% confidence intervals. Least significant difference was used
for post hoc comparisons. CV, coefficient of variation.
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which fluctuations were maximized would coincide with the PWS.
Previous studies have shown interactions between PWS and the
statistical persistence of other measures such as stride time and
stride length (Chien et al., 2015; Jordan et al., 2007), but it would
appear that this may not hold true for step length fluctuations.
Although we did not find a significant difference between the speed
at which fluctuations were maximized and the PWS, it should be
noted that the majority of the subject-specific maxima occurred at
either the slowest or fastest speed. As such, it is possible that the lack
of a statistical difference is due to the high subject-to-subject
variability in the fluctuations maximum (Fig. 3 and Fig. S1), and
thus does not provide strong support for an interaction between
PWS and fluctuations. This inter-subject variability may be
attributable to subject-specific gait strategies across walking
speeds. It should also be noted that these results were obtained
during treadmill walking at a constant speed and therefore may not
directly transfer to overground walking. Future studies may
investigate whether different types of people (e.g. young/old,
athlete/non-athlete) display consistent trends of fluctuations in
different conditions.
Due to the previously shown interaction between step length

variations andMCOT (O’Connor et al., 2012), we hypothesized that
the minimization of variations would coincide with the PWS.
However, the minimization of variations occurred at a higher speed
(1.56±0.17 m s−1) than the PWS (1.05±0.20 m s−1) and was also
higher than the speed predicted to minimize net MCOT (1.04
±0.05 m s−1). Compared to walking speed, variations have a
relatively small impact on MCOT (Fig. 2). Therefore, it may be
that the ability of variations to reduce MCOT is only employed
when MCOT is high (i.e. fast walking speeds) in an attempt to
mitigate the metabolic increase due to speed. However, this does not
explain the potential increase in step length variations observed in
the fastest walking speed (Fig. 1). While the current study is unable
to fully explain the potential increase in step length variations at the
fastest speed, one might speculate that it is due to the participants
approaching the walk-to-run transition speed (1.9–2.1 m s−1;
Bartlett and Kram, 2008; Malcolm et al., 2009; Prilutsky and
Gregor, 2001). It may be that variations increase as the person
comes close to transitioning from unstable walking to stable
running, as has been seen when a person transitions between stable
attractor states (Diedrich and Warren, 1995). However, such an
explanation is beyond the scope of this study and requires further
experimentation.
Furthermore, because variations were not minimized at the PWS,

it may be possible that MCOT could further be reduced at PWS by
reducing variations. For example, if the step length coefficient of
variation was reduced from its predicted value at PWS (∼0.026;
Fig. 1, dashed line) to the predicted minimum (∼0.020; Fig. 1), then
the model would predict a 3.8% decrease in MCOT. Reducing
MCOT has been a common goal of various interventions, and recent
advancements have been made using wearable devices. For
example, powered ankle exoskeletons have thus far been capable
of reducing metabolic expenditure by about 8–24% (Malcolm et al.,
2013; Mooney et al., 2014; Zhang et al., 2017), and unpowered
devices by up to 7.2% (Collins et al., 2015). The results of the
current study indicate that there may be room for metabolic
energy reduction without an external device. This reduction may
even be possible at the PWS, which is often considered the
metabolically optimal speed. Future studies could implement
training protocols that reduce variations in order to investigate
whether this is a feasible approach to reducing metabolic energy
expenditure.

Conclusion
The current study aimed to characterize the interaction between net
MCOT and step-to-step variability while walking at different
speeds. The amount of step length variations was linearly associated
withMCOT, likely because increases in variations are indicative of a
higher occurrence of metabolically suboptimal steps. The step
length fluctuations were not predictive of changes in net MCOT.
This indicates that the persistence of fluctuations likely does not
function to reduce MCOT. Despite its potential to reduce MCOT,
step length variations were not minimized at the PWS but were at
fast walking speeds, where they may be reduced in order to mitigate
the increased MCOT due to increased walking speed.
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