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Impact of differences in nutritional quality of wingless and
winged aphids on parasitoid fitness
Jennifer A.-L. M. Pirotte1,*, Ange Lorenzi2, Vincent Foray3 and Thierry Hance1

ABSTRACT
Winged aphids are described as hosts of lesser quality for parasitoids
because a part of their resources is used to produce wings and
associated muscles during their development. Host lipid content is
particularly important for parasitoid larvae as they lack lipogenesis
and therefore rely entirely on the host for this resource. The goal of
this study was to determine to what extent winged and wingless
aphids differ from a nutritional point of view and whether these
differences impact parasitoid fitness, notably the lipid content. We
analysed the energetic budget (proteins, lipids and carbohydrates) of
aphids of different ages (third instars, fourth instars and adults)
according to the morph (winged or wingless). We also compared
fitness indicators for parasitoids emerging from winged and wingless
aphids (third and fourth instars). We found that in third instars,
parasitoids are able to inhibit wing development whereas this is not
the case in fourth instars. Both winged instars allow the production of
heavier and fattier parasitoids. The presence of wings in aphids
seems to have little effect on the fitness of emerging parasitoids and
did not modify female choice for oviposition. Finally, we demonstrate
that Aphidius colemani, used as a biological control agent, is able to
parasitize wingless as well as winged Myzus persicae, at least in the
juvenile stages. If the parasitism occurs in third instars, the parasitoid
will prevent the aphid from flying, which could in turn reduce virus
transmission.

KEY WORDS: Aphid–parasitoid, Aphid polyphenism, Energetic
reserves, Fitness, Host quality, Wing development

INTRODUCTION
Flight has long been recognized as an expensive activity in terms of
energy, usually to the detriment of reproduction (Zera and Denno,
1997). Costs include the energy used during the flight but also to
produce the wings and the wing musculature during development
(Roff and Fairbairn, 1991). Insects use several flight fuels and their
pattern of utilization depends on the insect order but also varies
within an insect order. For prolonged flights, lipid is the main flight
fuel in Orthoptera (Clark et al., 2013; Zera and Larsen, 2001) and
Lepidoptera (Beenakkers et al., 1985; Murata and Tojo, 2002)
whereas it is mainly sugar and glycogen in Hymenoptera (Amat

et al., 2012; Micheu et al., 2000; Suarez et al., 2005), Diptera (Van
Handel, 1984) and Coleoptera (Zebe and Gäde, 1993). Several
studies have also demonstrated the use of proline in Hymenoptera
(Micheu et al., 2000), Diptera (Scaraffia and Wells, 2003) and
Coleoptera (Zebe and Gäde, 1993).

Aphids offer an interesting case study as the same genotype
can display a winged and a wingless phenotype depending on
environmental conditions (wing polyphenism). Winged and
wingless phenotypes differ as they invest either in dispersal or in
reproduction, respectively (Braendle et al., 2006; Brisson, 2010).
The presence of winged or wingless morphs in the same clone of
aphids allows determination of differences in resource allocation
according to phenotype and their ecological role. Earlier studies in
aphids demonstrated that glycogen is the fuel used at the beginning
of flight whereas lipids are used later during prolonged flight
(Cockbain, 1961).

The nutritional status of the host may be an important cue for
host quality assessment (Li and Mills, 2004) and consequently
larger parasitoids emerge from hosts with higher levels of resources
(Barrette et al., 2009; Harvey and Vet, 1997; van Emden and Kifle,
2002). However, parasitoid fitness will be a matter not only of
resource quantity but also of resource quality (Häckermann et al.,
2007) and relies on the ability of parasitoids to exploit the available
resources (Sampaio et al., 2008). When an egg is laid in an aphid
with wing buds, an inhibition of host wing development by the
parasitoid larva is frequently observed (Christiansen-Weniger and
Hardie, 1998; Demmon et al., 2004; Kati and Hardie, 2010; Zhang
et al., 2009) and can be explained by the need for the parasitoid to
redirect resources otherwise not available for its own development
(Demmon et al., 2004).

Lipids are important for parasitoids as a maintenance energetic
source but also in reproduction for oogenesis (Rivero and Casas,
1999). Lipid levels and availability in hosts during parasitoid larval
development are a major constraint as lipogenesis does not occur
in adult parasitoid wasps (Giron and Casas, 2003; Strand and Casas,
2008; Visser and Ellers, 2008). Proteins are required for egg
production (Rivero and Casas, 1999). Finally, sugar sources in
general may also be used in maintenance or in egg production in
species that mature eggs after emergence (synovigenic) (Jervis et al.,
2008) while glycogen reserves are needed for flight in order to find
food, hosts and mates (Amat et al., 2012). Sugar sources such as
nectar or honeydew can be found during the adult phase and allow
the replenishment of sugar and glycogen reserves (Jervis et al.,
2008). However, nectar and honeydew constitute deficient food
sources (Jervis et al., 2008) as they contain very small amounts of
amino acids (Baker and Baker, 1973; Sabri et al., 2013), proteins
(Peumans et al., 1997; Sabri et al., 2013) and lipids (Lee et al., 2004;
Strong, 1965).

Our hypothesis was that the winged or wingless forms of the
same aphid clone represent hosts of different quality for a female
parasitoid. Therefore, we tested the nutritional quality of aphidsReceived 29 May 2018; Accepted 3 September 2018
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of different ages (third instars, fourth instars and adults) according
to the presence or absence of wing buds or full wings. For this, we
analysed the aphids’ entire energetic budget (proteins, lipids and
carbohydrates). We expected wingless individuals to accumulate
the resources necessary for reproduction and winged individuals
to invest in flight fuels. These differences should appear as
soon as the third instar, for which immature winged aphids are
recognizable based on wing buds (Ishikawa et al., 2008).
Knowledge of the energetic budget through aphid stages will
reveal the dynamics of resource accumulation as the host
will continue to feed during the parasitoid development
(Mackauer, 1986).
Differences in host nutritional status and the ability of the

parasitoid to inhibit host wing development may lead to differences
in parasitoid fitness. To determine these differences, we compared a
series of fitness indicators for parasitoid individuals emerging from
winged and wingless aphids (third and fourth instars) in a no-choice
and a choice experiment. We predicted that wing inhibition is more
important in third instars than in fourth instars (Christiansen-
Weniger and Hardie, 1998; Demmon et al., 2004; Kati and Hardie,
2010; Zhang et al., 2009). Consequently, winged or wingless third
instars should bring the same fitness as resources required for host
wing development will be redirected to parasitoid development
(Demmon et al., 2004). However, wing buds might impose a
physical constraint on oviposition success by increasing handling
time so that winged instars will be less parasitized than wingless
instars. In the same way, it might be less advantageous for
parasitoids to develop in winged fourth instars if no wing inhibition
occurs. Parasitoids emerging from winged fourth instars should
therefore show a lower fitness. If this is the case, parasitoids
should preferentially lay eggs in wingless fourth instars in a choice
experiment.
For this study, we focused on the aphid Myzus persicae (Sulzer

1776) (Hemiptera, Aphididae) and one of its parasitoids, Aphidius
colemani Viereck (Hymenoptera, Braconidae, Aphidiinae). Myzus
persicae is the aphid species capable of feeding on the largest host
plant number and of transmitting the highest number of plant viruses
(Essig, 1948; Mackauer and Way, 1976; van Emden et al., 1969).
Aphidius colemani is widely used for the biological control of
M. persicae, notably in greenhouses (Fernández and Nentwig,
1997; Takada, 1998), but also parasitizes this aphid species in the
field (Starý, 2002).

MATERIALS AND METHODS
Insect rearing
Myzus persicaewas provided by Viridaxis SA (Charleroi, Belgium)
from an aphid clone collected in the Czech Republic. Aphid rearing
was done on artificial diet to avoid any plant effect (Cambier et al.,
2001; Colinet et al., 2005). This artificial diet was also supplied by
Viridaxis SA and kept in the dark at 21±2°C, 40–50% relative
humidity (RH). In order to obtain third and fourth instars exhibiting
wing buds and winged adults, high densities (15 individuals cm−2)
were applied during development of the mothers and their offspring
till second instar. Winged and wingless individuals were both
obtained in these crowded conditions unlike in other studies
(Shi et al., 2010; Xu et al., 2011).
Aphidius colemani individuals were obtained after contact

between one parasitoid female and 50 M. persicae aged 3–4 days
for 24 h. Parasitized aphids were then kept on artificial diet in the
dark at 22±1°C, 50–60% RH until mummification. Ten mummies
were placed in Petri dishes to allow mating after emergence over a
period of 24 h and then used for the experiments.

Experimental design
Aphid energy budget
We compared the four main energy components (glycogen, free
sugars, lipids and proteins) of third and fourth instars and adultswith or
withoutwing buds/wings. Individuals of a given stage are recognizable
based on the number and size of antennal segments, and the cauda
shape (Sorin, 1958; Sylvester, 1954). All individuals were freeze dried
within 3 h of moulting (Shi et al., 2010) at−20°C in 0.5 ml Eppendorf
vials. Because of the small size of M. persicae, particularly for third
instars, 15 individuals per biological replicate were pooled (n=13–14)
and weighed to the nearest 0.01 mg (Mettler-electrobalance Me22,
Mettler-Toledo, Zaventem, Belgium). In total, 210 aphids of each
morph and each stage were used for the analysis except for winged
adults, for which the number was 195 aphids.

We used biochemical analyses modified from van Handel’s
methods to quantify the four energy compartments (Foray et al.,
2012). Briefly, samples were crushed with 180 μl of buffer solution
(prepared with phosphate-buffered saline, pH 7.4; P3813 and
DL-dithiothreitol 1 mmol l−1; 646563, Sigma-Aldrich, Overijse,
Belgium) with a stainless-steel bead (412-3131, VWR, Oud-
Heverlee, Belgium) at 25 Hz for 60 s. After centrifugation, 10 μl
of the supernatant was transferred to a 96-well quartz microplate
(730-009-QG, Hellma Analytics, Müllheim, Germany) with 250 μl
of Bradford reagent (B6916, Sigma-Aldrich), and with bovine
serum albumin (SB8667, Sigma-Aldrich) as a standard. Afterwards,
a chloroform/methanol (1:2 v/v) solution was added to extract total
lipids and carbohydrates (free sugars and glycogen), which were
further assayed with vanillin (V1104, Sigma-Aldrich) and anthrone
(319899, Sigma-Aldrich) reagents, respectively. Lipid and free-
sugar content was based on 400 μl and 300 μl of supernatant
using triolein (92860, Sigma-Aldrich) and D-glucose (G-7528,
Sigma-Aldrich) as standards, respectively.

Consequences of parasitoid development in winged or
wingless aphids
Two different types of experiment were performed in order to study
the fitness consequences for parasitoid larvae of developing in
aphids with wing buds. In both experiment types, two different
aphid stages (third and fourth instars) were used, each with two
phenotypes [winged (WD) and wingless (WL)].

First, we carried out a no-choice experiment. Between 4 and 25
aphids of the same morph and stage (third or fourth instar, WD or
WL) were placed in a Petri dish and parasitism by a 1–2 day old
mated and naive A. colemani female was allowed over a period of
2 h. A preliminary analysis showed that the aphid density had an
impact on fresh mass, dry mass and lipid content of the parasitoids.
Indeed, there was an interaction between aphid morph and aphid
density. The morph effect was more visible at low densities. As this
interaction does not change our conclusions, in order to have
sufficient data, we kept all the replicates regardless of the aphid
density (Table S1). The effect of morph and stage on parasitism rate
and emergence rate was only analysed in low densities (4–10
aphids). We performed 24 replicates for the winged third instars, 20
replicates for the wingless third instars, 21 replicates for the winged
fourth instars and 18 replicates for the wingless fourth instars. After
parasitism, aphids were put back into small Petri dishes (55 mm
diameter) with artificial diet until mummification and parasitoid
adult emergence in the dark at 22±1°C. The artificial diet was
changed thrice a week to avoid diet depletion and microorganism
contamination. Twenty-four hours after adult emergence, sex was
identified, and we measured the fresh mass, dry mass and lipid
content of emerging parasitoids.
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Second, in a choice experiment, five aphids of the winged and
five of the wingless morphs of the same stage (10 aphids in total,
third and fourth instars were used separately) were placed in the Petri
dish and left to be parasitized by a 1–2 day old naive female
parasitoid over a period of 4 h. We performed 10 replicates in total
for each stage. After emergence, sex was identified and parasitoids
were freeze dried (−20°C) and placed in 2 ml Eppendorf tubes. We
measured mummy width, tibia size, fresh mass, wing area, wing
load (fresh mass/wing area), the number of eggs at emergence for
parasitoids emerging from third instars and the reproductive effort
(see below).
Lipid quantification from emerging parasitoids was performed

as described in Colinet et al. (2006). Parasitoid individuals were
first weighed (Mettler-electrobalance Me22; sensitivity: 0001 mg,
Mettler-Toledo) to evaluate fresh mass. Individuals were then dried
over a period of 3 days at 60°C to obtain dry mass. Dried individuals
were placed in Eppendorf tubes with 1 ml of chloroform/methanol
(2:1 v/v) solution to extract lipids. The tubes were placed on an
agitating table for 2 weeks. After these 2 weeks, the solution was
withdrawn, and the samples were dried again at 60°C for 12 h. The
lipid content corresponds to the difference between the dry mass
before and after extraction.
Photos of the parasitoid left hind tibia, left forewing and

mummies were taken with a Sony SSC-DC 198P camera
mounted on a binocular microscope (20× magnification, Leica
MZ6, Leica Microsystems, Diegem, Belgium). The length of the
tibia, the wing area and the mummy width were then measured
with ImageJ software (Abramoff et al., 2004). The number of eggs
at emergence was counted in females under a Nikon SMZ800
binocular microscope (63× magnification, Nikon, Brussels,
Belgium). The abdomen was separated from the rest of the body
on a microscope slide and then opened with entomological pins in a
drop of Hanks’ balanced salts solution (H6136, Sigma-Aldrich).
Ovarioles were then opened and stained with Lactophenol Blue
(Sampaio et al., 2008) to count mature eggs (Barrette et al., 2009).
The eggs were kept on a sealed slide and photographs of mature
eggs were taken. With ImageJ, the volume of 20 eggs per female
was estimated as described in Le Lann et al. (2012). The mean
egg volume multiplied by the number of eggs provided our
estimate of the reproductive effort. Pictures were taken with a Leica
DMC4500 camera mounted on a Leica DMLB microscope
(400× magnification, Leica Microsystems).
The parasitism rate of the parental generation was also evaluated

as the number of mummies divided by the number of aphids
available for parasitism and the emergence rate as the number of
emerging parasitoids divided by the number of mummies. Values
were calculated for each female and a mean for all females in a given
condition was obtained. Replicates with no mummy formed were
not considered.

Statistical analysis
Generalized linear models were used to assess the impact of aphid
stage, aphid morph and parasitoid sex. In the case of aphid fresh
mass and parasitoid fresh mass in the no-choice experiment, a log
transformation of the values was used. A square root transformation
for sugar and protein content in the aphid energy budget and for
lipid content of the parasitoids was also used to obtain a normal
distribution.
The egg load was analysed by means of a quasi-Poisson error

distribution.
As energetic content correlates with fresh mass, it was analysed

with fresh mass as the first explanatory variable (Foray et al., 2012,

2014). In the choice experiment, fitness parameters that correlate
with mummy width were analysed with mummy width as the first
explanatory variable (Demmon et al., 2004).

The parasitoid sex ratio was analysed with a binomial test to
see whether it was different from 0.50. The impact of stage and
morph on sex ratio, emergence rate and parasitism rate was
analysed with a generalized linear model with a binomial error
distribution.

The interaction between stage and morph when non-significant
was suppressed from models. Contrasts between stage, morph and
sex were obtained with the ‘lsmeans’ function (lsmeans R package,
Tukey adjustment). All data are presented as means±s.d. Graphs and
analyses were performed using the R statistical package, version
3.4.3 (http://www.r-project.org/).

The number of individuals used to estimate the different
parameters is listed in Table S2.

RESULTS
Aphid energy budget
The crowding stimulus induced a winged offspring level of
3.19±0.53% of all individuals. No winged offspring were ever
produced with this clone at lower densities (Pirotte, 2011). Winged
aphids were always heavier than wingless aphids (stage:
F2,79=1108.6, P<0.0001; morph: F1,79=395.4, P<0.0001) (Table 1).

All energy compartments correlated with fresh mass for the
wingless (glycogen, F1,39=469.3, R2=0.92, P<0.0001; free sugars,
F1,39=90.76, R2=0.69, P<0.0001; lipid, F1,39=35.64, R2=0.47,
P<0.0001; protein, F1,39=102.1, R2=0.72, P<0.0001) and the
winged morph (glycogen, F1,38=78.9, R2=0.66, P<0.0001; free
sugars, F1,38=132.9, R2=0.77, P<0.0001; lipid, F1,38=393.3,
R2=0.90, P<0.0001; protein, F1,38=62.65, R2=0.61, P<0.0001)
(Fig. S1). Therefore, to account for this size effect, the fresh mass
was used in the regression. Residuals from the regression are
depicted for each morph/stage combination (Fig. 1). The total
amount of a given energy compartment per aphid is shown
in Table 1.

For glycogen content, wingless aphids accumulated more than
winged aphids at all stages (Table 1). However, the pattern of
accumulation was not the same between morphs. In winged

Table 1. Summary of the results for aphid fresh mass, glycogen,
free sugar, lipid and protein content according to aphid stage
and morph

Parameters Stage WD WL P-value

Aphid fresh mass (μg) Third instars 84±4 49±5 <0.0001
Fourth instars 186±20 120±17 <0.0001
Adults 358±23 213±31 <0.0001

Glycogen content (μg) Third instars 2.52±0.74 3.25±0.46 0.0020
Fourth instars 5.32±0.66 6.24±0.71 0.0004
Adults 6.39±0.95 9.41±0.98 <0.0001

Free sugar content (μg) Third instars 1.73±0.33 1.40±0.34 0.0482
Fourth instars 3.00±0.64 1.63±0.58 <0.0001
Adults 5.51±1.08 3.54±0.45 0.0015

Lipid content (μg) Third instars 1.80±0.77 3.08±0.60 0.0002
Fourth instars 4.82±0.88 3.47±0.63 ns
Adults 9.35±1.56 5.17±1.16 0.0035

Protein content (μg) Third instars 1.27±0.29 1.1±0.37 ns
Fourth instars 3.42±0.92 2.07±0.66 0.0036
Adults 6.29±2.58 5.07±0.93 ns

WD, winged; WL, wingless. Data are means±s.d., n=14 for each group except
for winged adults, where n=13. Each biological replicate corresponds to 15
aphids. Generalized linear model (GLM) with post hoc test (Tukey adjustment);
ns, no significant difference (P>0.05).
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individuals, the quantity of glycogen reached a maximum value
in fourth instars whereas in wingless individuals, the glycogen
content increased during development (interaction stage×morph:
F2,76=15.53, P<0.0001) (Fig. 1).
For free sugar content, third wingless instars showed a slightly

higher free sugar content than winged ones, but the reverse was the
case in fourth instars and adults (interaction stage×morph:
F2,76=6.19, P=0.0032) (Fig. 1, Table 1).
The lipid content was higher in adult winged aphids than in

wingless ones, whereas in third instars, the wingless phenotype
contained more lipids (Table 1). In general, lipid content increased
with age in the winged phenotype and decreased with age in
the wingless phenotype (interaction stage×morph: F2,76=15.38,
P<0.0001) (Fig. 1).
The total protein content was on average higher in winged

individuals, but it was significant only in fourth instars (Table 1).
The accumulation of protein was observed between third and fourth
instars for the winged phenotype and between fourth instars and
adults for the wingless phenotype (interaction stage×morph:
F2,75=3.33, P=0.041) (Fig. 1).

Fitness consequences of parasitoid development in
winged or wingless aphids
No-choice experiment
The parasitism rate was not different according to stage or morph
(stage: χ21,276=2.98, P=0.084; morph: χ21,276=3.00, P=0.083)
(Table 2).

When parasitism occurred for winged third instars, mummies
usually presented wing buds (even if they mummified as adults;
Fig. 2A) except in 8 cases out of 162 where mummies presented
full wings. Individuals that emerged from these mummies were
excluded from the analysis. Indeed, this lower number of
individuals with wings when parasitism occurred in third instars
did not allow us to test the impact of wing inhibition itself on the
emergent fitness. When parasitism occurred in winged fourth instar
hosts, all mummies presented full wings (Fig. 2B).

The emergence rate was higher in winged fourth instars than in
winged third instars (stage: χ21,164=3.98, P=0.046; morph:
χ21,164=0.75, P=0.39) (Table 2).

Stage or morph did not have any effect on the sex ratio (stage:
χ21,314=0.019, P=0.89; morph: χ21,314=0.14, P=0.71), which did not
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Fig. 1. Boxplots of residuals for glycogen, free sugar, lipid and protein content of aphids (regression with fresh mass) according to stage and morph.
3, third instar; 4, fourth instar; A, adult; WD, winged; WL, wingless; n=14 for each group except for AWD, where n=13. Each biological replicate corresponds
to 15 aphids. Horizontal bold line: median, box: lower and upper quartiles, dashed lines: smallest and largest non-outlier observations. Generalized linear
model (GLM; see Table 1 for details on P-values).
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differ from 0.50 in any of the conditions (sex ratio=0.51, P=0.92 for
wingless third instar hosts; sex ratio=0.46, P=0.51 for winged third
instar hosts; sex ratio=0.47, P=0.86 for wingless fourth instar hosts;
sex ratio=0.51, P=1 for winged fourth instar hosts).
In general, parasitoids emerging from aphids parasitized at

the third instars were heavier than those emerging from aphids
parasitized at the fourth instars (stage effect on fresh mass:

F1,305=81.26, P<0.0001; dry mass: F1,304=139.99, P<0.0001)
(Fig. 3, Table 2). This was also the case for parasitoids emerging
from winged aphids compared with wingless aphids (morph effect
on fresh mass: F1,305=19.83, P<0.0001; dry mass: F1,304=11.58,
P=0.00076) and for female parasitoids compared with males
(sex effect on fresh mass: F1,305=54.41, P<0.0001; dry mass:
F1,304=30.95, P<0.0001) (Fig. 3, Table 2). The dry mass of
parasitoids that emerged from fourth instars was not significantly
different according to sex. The sex differencewas only significant in
third instars and females were heavier than males (interaction
stage×sex: F1,304=5.55, P=0.019) (Fig. 3).

The parasitoid lipid content correlated with fresh mass for the
wingless (F1,135=339, R2=0.71, P<0.0001) and the winged morph
(F1,168=940.9, R2=0.85, P<0.0001). Therefore, to account for this size
effect, fresh mass was used in the regression. Parasitoids emerging
from aphids parasitized as third instars showed a higher lipid content
than those emerging from fourth instars (stage: F1,304=25.03,
P<0.0001) as was the case for parasitoids emerging from winged
aphids (morph: F1,304=23.53, P<0.0001). Per unit of fresh mass,
males accumulated more lipid than females (sex: F1,304=36.62,
P<0.0001) even if females contained more lipids in total as they were
heavier. There was no interaction effect (Fig. 4, Table 2).

Choice experiment
In the choice experiment, the parasitism rate was lower in third
instars (stage: χ21,197=5.26, P=0.022; morph: χ21,197=1.55, P=0.21)
(Table 2).

When parasitism occurred in winged third instars, the mummy
usually presented wing buds (even if they mummified as adults)
except in 3 cases out of 35 where the mummy presented full wings.
Individuals that emerged from these mummies were excluded from
the analysis. Again, this low number of individuals with wings
when parasitism occurred in third instars did not allow us to test the
impact of wing inhibition itself on the emergent fitness. When
parasitism occurred in winged fourth instar hosts, all mummies
presented full wings.

Table 2. Summary of the main results in the no-choice and choice experiments according to aphid stage and morph

Experiment Parameter Stage WD WL P-value

No-choice Fresh mass (mg) Third 0.23±0.043 0.21±0.033 <0.0001
Fourth 0.19±0.031 0.18±0.017 <0.0001

Dry mass (mg) Third 0.094±0.018 0.084±0.014 <0.0001
Fourth 0.072±0.012 0.066±0.0079 <0.0001

Lipid content (mg) Third 0.035±0.0098 0.028±0.0066 0.0001
Fourth 0.023±0.0057 0.020±0.0046 0.0001

Parasitism rate Third 0.73±0.27 0.63±0.29 ns
Fourth 0.72±0.28 0.51±0.15 ns

Emergence rate Third 0.78±0.29 0.81±0.23 ns
Fourth 0.92±0.14 0.82±0.21 ns

Choice Fresh mass (mg) Third 0.24±0.028 0.22±0.024 ns
Fourth 0.19±0.022 0.19±0.022 ns

Mummy width (mm) Third 1.16±0.042 1.12±0.04 0.0087
Fourth 1.09±0.040 1.08±0.06 0.0087

Tibia size (mm) Third 0.58±0.023 0.56±0.020 ns
Fourth 0.53±0.032 0.52±0.028 ns

Wing load (mg mm−2) Third 0.41±0.041 0.40±0.042 ns
Fourth 0.37±0.047 0.38±0.032 ns

Egg load Third 201±61 217±40 ns
Parasitism rate Third 0.72±0.32 0.74±0.32 ns

Fourth 0.80±0.094 0.92±0.14 ns
Emergence rate Third 0.97±0.083 0.91±0.11 <0.0001

Fourth 0.92±0.14 0.41±0.25 <0.0001

WD, winged; WL, wingless. Data are means±s.d. Generalized linear model (GLM) with post hoc test (Tukey adjustment); ns, no significant difference (P>0.05).
Binomial error distribution for emergence and parasitism rates.

A

B

Fig. 2. Images of various degrees of wing inhibition when developing
winged aphids are parasitized. (A) Mummy with wing buds (parasitism in
third instars). (B) Mummy with full wings (parasitism in fourth instars).
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The emergence rate was far lower in fourth instars than in third
instars and was lower in wingless instars than in winged instars
(stage: χ21,155=21.21, P<0.0001; morph: χ21,155=30.43, P<0.0001)
(Table 2).We dissected mummies fromwhich no adult emerged and
in most of them (22 out of 28 mummies of wingless fourth instar
hosts) the larva was still present but dead and had not completed
metamorphosis. Stage and morph did not have any effect on the
sex ratio (stage: χ21,131=0.61, P=0.44; morph: χ21,131=1.67, P=0.20),
which was female biased in all conditions (sex ratio=0.77,
P=0.0019 for wingless third instar hosts; sex ratio=0.74,

P=0.0060 for winged third instar hosts; sex ratio=0.92, P<0.0001
for wingless fourth instar hosts; sex ratio=0.75, P=0.0022 for
winged fourth instar hosts).

Very few males were produced. As the emergence rate was very
low from thewingless fourth instars, only onemalewas available for
analysis. In consequence, the analysis is only described for females.

Mummies were wider if parasitism occurred in third instars
especially if the host was an immature winged aphid (stage:
F1,89=33.41, P<0.0001; morph: F1,89=7.21, P=0.0087) (Fig. 5,
Table 2).
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Fig. 3. Boxplot of fresh mass for male and
female parasitoids emerging from two different
aphid stages and morphs. For females, n=48
in 3WD, n=55 in 3WL, n=34 in 4WD and n=14 in
4WL. For males, n=56 in 3WD, n=53 in 3WL, n=33
in 4WD and n=16 in 4WL. GLM with post hoc test
(Tukey adjustment); ****P<0.0001 for differences
between winged and wingless individuals at
each stage.
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*** Parasitoid sex Fig. 4. Boxplot of residuals for lipid content
(regression with fresh mass) for male and
female parasitoids emerging from two
different aphid stages and morphs. For
females, n=48 in 3WD, n=55 in 3WL, n=34
in 4WD and n=14 in 4WL. For males, n=56 in
3WD, n=53 in 3WL, n=33 in 4WD and n=16
in 4WL. GLM with post hoc test (Tukey
adjustment); ***P≤0.001.
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Parasitoid tibia size, wing area, wing load and fresh mass were
correlated with mummy width for the wingless (tibia size,
F1,45=31.19, R2=0.39, P<0.0001; wing load, F1,44=4.25,
R2=0.066, P=0.045; wing area, F1,44=32.55, R

2=0.41, P<0.0001;
fresh mass, F1,45=28.82, R2=0.37, P<0.0001) and the winged
morph (tibia size, F1,49=80.18, R

2=0.61, P<0.0001; wing load,
F1,49=5.68, R2=0.084, P=0.021; wing area, F1,49=46.65, R2=0.47,
P<0.0001; fresh mass, F1,49=42.86, R2=0.45, P<0.0001).
Therefore, to account for this size effect, mummy width was used
in the regression. Residuals from the regression are depicted for each
morph/stage combination (Fig. S2).
Third instars allowed the production of bigger parasitoids,

whatever the fitness parameter considered (tibia size: F1,88=28.55,
P<0.0001; wing load:F1,87=5.31,P=0.024; freshmass:F1,88=24.05,
P<0.0001; mean wing area: F1,87=16.15, P=0.00012). Morph did
not have any effect on these fitness parameters (tibia size:
F1,88=1.22, P=0.27; wing load: F1,87=0.28, P=0.60; fresh mass:
F1,88=0.18, P=0.67; mean wing area: F1,87=1.92, P=0.17) (Table 2;
Fig. S2).
As bigger differences were observed for the third instars for all

other fitness parameters, we also focused our attention on
parasitoids emerging from this stage as far as the egg load and the
reproductive effort are concerned. There was no significant effect
of morph on any variable related to reproduction (egg load:
χ21,37=12.02, P=0.34; mean egg volume: F1,37=0.56, P=0.46;
reproductive effort: F1,37=0.76, P=0.39) (Table 2; Figs S3 and S4).

DISCUSSION
Immature winged aphids do not represent hosts of equal quality
compared with immature wingless aphids and this is the case for
both aphid instars. Indeed, both winged instars allow the production
of heavier and fattier parasitoids (Table 2).
This can be explained by the greater mass of winged instars

compared with wingless instars in our case. This morph should
accumulate more resources to cope with the variability of food
availability during dispersal and to build up reserves for flight
(Zera and Harshman, 2001). Indeed, winged individuals are usually
more resistant to starvation (Hazell et al., 2005).

Our results showing that winged aphids are heavier than wingless
aphids are in contrast with previous studies on other species like
Sitobion avenae (Castañeda et al., 2010) or Aphis gossypii (Shi
et al., 2010). Nonetheless, not all studies demonstrate significant
differences between winged and wingless individuals for mass.
Some studies have produced these two morphs by different
methods, which may modify the final results, as is the case, for
example, when the difference in fecundity between morphs is
considered (Groeters and Dingle, 1989). Studies usually apply a
crowding stimulus to induce the production of winged aphids
whereas wingless aphids are obtained in isolation (Shi et al., 2010;
Xu et al., 2011). However, when the same rearing method is applied
to both forms as in our study, winged and wingless individuals
of the same stage have a similar mass in Acyrthosiphon pisum
(Tsumuki et al., 1990) or winged are heavier in S. avenae (Newton
and Dixon, 1990). A difference in favour of wingless aphids is only
found for adults in these species (Castañeda et al., 2010; Newton
and Dixon, 1990; Tsumuki et al., 1990).

Moreover, it seems that winged individuals might be heavier
than wingless individuals in some species including M. persicae
(Dixon and Kindlmann, 1999). The general assumption that
migrants should be smaller is, in aphids, particularly true for large
species (Dixon and Kindlmann, 1999). In Megoura crassicauda or
A. gossypii, winged individuals have longer tibias than wingless
ones, which is the opposite of what is found for A. pisum (Ishikawa
and Miura, 2007; Wall, 1933). This could be linked to the need of
one morph compared with another to disperse by walking (Ishikawa
and Miura, 2007).

However, the use of clones reared in the laboratory for several
years could lead to a reduced response to wing-inducing cues such
as the presence of alarm pheromone (Clegg and Barlow, 1982;
Thieme and Dixon, 2015). The conditions of rearing would select
for individuals that do not fly or those with a lower flying ability as
flyers would escape from the cages (Bush et al., 1976; Dabrowski,
1988; Dutton and Bigler, 1995). This could explain why immature
winged individuals are heavier than their wingless counterparts if
they behave not as migrants but as non-flyers. Those intermediate
forms should resemble more the wingless individuals (Shull, 1940).
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Fig. 5. Boxplot of mummy width from parasitism of two
different aphid stages and morphs. n=23 in 3WD, n=25 in
3WL, n=29 in 4WD and n=15 in 4WL. GLM with post hoc test
(Tukey adjustment); **P≤0.01.
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As stated in the Results section, this clone never produced winged
offspring under lower densities (Pirotte, 2011). Further, with
Capsicum annuum as a host plant, the production of winged
offspring can be very rare or continuous according to the plant
variety (J.A.-L.M.P. and T.H., personal observation). We therefore
do not believe this clone is not responsive to wing-inducing cues but
that density is not the proper cue in this non-gregarious species
(Müller et al., 2001; Williams et al., 2000). Moreover, different
laboratory-reared clones of Aphis fabae have been shown to be
perfectly capable of flying even if they do so over a shorter period
than field-collected clones (Cockbain, 1961). Finally, development
in immature winged aphids also has a positive impact on parasitoid
lipid content in the field with a field-collected clone (J.A.-L.M.P.,
L. Ferrais, A. Goldarazena and T.H., unpublished).
The higher parasitoid fitness when developing in winged instars

could also be explained by the differences in nutritional quality of
the two types of morphs, as observed here in M. persicae. The
content of all energy resources increases with fresh mass, as larger
individuals will accumulate more resources (Cockbain, 1961;
Strohm, 2000), and this is the case for winged aphids except for
glycogen. Winged aphids therefore represent an interesting source
of lipids, proteins and sugars. Host lipids and proteins are needed
for the parasitoid to produce eggs (Rivero and Casas, 1999) and
parasitoids lack lipogenesis (Giron and Casas, 2003; Strand and
Casas, 2008; Visser and Ellers, 2008). Aphidius colemani is a
synovigenic species that matures eggs throughout its adult life (as
for all Braconidae; Jervis et al., 2001) and is not a host-feeder
species at the adult stage (Romeis et al., 2003). This means that all
the nutriments required for reproduction are obtained during larval
development (Romeis et al., 2003). However, adult parasitoids can
replenish their sugar reserves by feeding on nectar (Jervis et al.,
2008). Moreover, the honeydew of certain aphid species can
increase A. colemani longevity (Wäckers et al., 2008).
Furthermore, A. colemani is known to inhibit wing development

in A. fabae (Kati and Hardie, 2010). In our system, wing inhibition
occurred in young instars (third) but not in older instars (fourth)
(Zhang et al., 2009, 2012). When developing in both winged instars,
parasitoids show a higher fresh mass and lipid content than in
wingless instars. This would mean that wing inhibition does not
imply an arrest of lipid accumulation. The difference in dry mass
between male and female individuals is not significant when
developing in fourth instars. As A. colemani is a koinobiont species,
the host will continue to feed and grow. Therefore, third instars have
more time to develop and grow than fourth instars, meaning more
resources are available, whereas in fourth instars, the parasitoid
larva will quickly experience the arrest of the growth of its host, as it
will become an adult.
Previous studies brought results that are not consistent with

ours. In Mackauer (1986), no difference in male parasitoid dry
mass was found when winged and wingless hosts were compared.
In this case, second instars were used for parasitism. Demmon
et al. (2004) used fourth instars, and in their case, parasitoids
emerging from winged hosts were smaller and lighter. Both
studies used A. pisum as a host, in which wingless individuals are
heavier than winged ones. Even if this difference in mass is
taken into account for Demmon et al. (2004), the development
in immature winged individuals had a negative impact on
parasitoid size. In our case, the positive effect of morph on
tibia size and mean wing area disappeared if mummy width
was considered.
There was no strong pattern concerning parasitism rates and

emergence rates and no effect of morph on sex ratio. Wing buds do

not seem to impose a constraint on oviposition success. However, in
the choice experiment, the emergence rate was higher in winged
instars than in wingless instars. It might be that winged individuals
develop a lower physiological defence and that this is a counterpart
of flight and associated costs (Parker et al., 2017). Alternatively,
wingless instars might be more superparasitized than winged instars
as they suffer from a higher mortality rate (Bai and Mackauer, 1992;
Keinan et al., 2012). We did not strictly control for superparasitism
as in Khatri et al. (2017). A previous study showed that for the
density of aphids used and the time spent by the female in the
confined area, A. colemani can perform superparasitism (Khatri,
2017). Superparasitism is observed when hosts are available in low
numbers (Chow and Mackauer, 1991; Jones et al., 2003; McBrien
and Mackauer, 1990). It may be adaptive as superparasitized aphids
show a higher feeding activity compared with aphids parasitized
only once (Cloutier and Mackauer, 1980). However, studies report
that there was no effect of superparasitism on emergent dry mass
whether females or males were laid by a mated female. Only a
higher fitness for males laid by virgin females is reported in
superparasitized aphids (Bai and Mackauer, 1992; Mackauer and
Chau, 2001). All our females were mated; therefore, we think that
even if some superparasitism occurred, it did not affect the fitness
of our parasitoids. Moreover, defensive behaviours displayed by
attacked aphids may hinder superparasitism (Gardner et al., 1984).
The hosts used, third to fourth instars, are highly capable of
defending themselves compared with younger instars (Gerling et al.,
1990; Hofsvang and Hågvar, 1986; Khatri et al., 2016; Walker and
Hoy, 2003; Weisser, 1994; Wu et al., 2011). An observation of the
parasitoid behaviour and subsequent aphid dissection might help us
to see whether such superparasitism is displayed more often on
wingless instars than on winged instars.

The flight fuel in M. persicae seems to be lipid as in Orthoptera
(Clark et al., 2013; Zera and Larsen, 2001) and Lepidoptera
(Beenakkers et al., 1985). The storage of lipids for flight will be
done at the expense of glycogen, supporting reproduction.
However, winged individuals might recover resources from the
breakdown of wing musculature after flight (Ishikawa and Miura,
2009). Moreover, lipids are interesting as they offer twice as much
energy per unit mass as carbohydrates (Clements, 1992).

We demonstrated that winged individuals might be high-quality
hosts. In our study, immature winged aphids are bigger and have a
higher content of resources except glycogen. Lipids and proteins
can be especially interesting from the parasitoid point of view for
building eggs. Parasitoids are bigger and fattier in winged instars
than in wingless instars. Wing inhibition does not seem to be
playing a role in the higher fitness brought by winged individuals as
fitness differences are also seen in fourth instars where no wing
inhibition occurs. Our study also highlights the importance of using
the same rearing method for each phenotype as natural enemies
might be faced to the two types of host in the same colony.

We also showed that A. colemani, currently used as a biological
control agent, is able to parasite wingless as well as winged hosts at
least in the juvenile stages. This is a matter for consideration as
winged individuals are implicated in the secondary transmission of
plant virus (Williams et al., 2000) and the presence of the virus can
increase the proportion of winged offspring (Blua and Perring, 1992;
Gildow, 1980; Ryabov et al., 2009). If the parasitism occurs in third
instars, the parasitoid will even prevent the aphid from flying, which
could in turn reduce virus transmission. In fourth instars, where wing
inhibition is less frequent, thewings are present and, apparently, flight
is not prevented at least as long as the parasitoid egg does not hatch
(Rauwald and Ives, 2001; Zhang et al., 2009; Zhang et al., 2012).
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Parasitoids may even use those fourth instars for their own dispersal
(Derocles et al., 2014; Feng et al., 2007; Walton et al., 2011).
However, when the parasitoid larva grows bigger, host wing muscles
may be consumed so that no more flights will be possible even if the
wings are unfolded (Rauwald and Ives, 2001).
In conclusion,we showed thatwing polyphenism leads to different

energy budgets that meet the needs for flight as demonstrated in
other wing-polymorphic insects (Zera and Larsen, 2001). This has
implications for the individual’s nutritional value as a host, which in
turn has consequences for parasitoid fitness. Very few studies have
been interested in the impact of wing polymorphism on the third
trophic level (Demmon et al., 2004;Mackauer, 1986) and they lead to
very different conclusions. A more global picture is needed to fully
understand how this can alter or improve the efficiency of biological
control agents.
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anonymous reviewers for their helpful comments on earlier versions of this
manuscript. We are grateful to Benoît Dochy for photos of the mummies. We thank
Viridaxis SA for the supply of aphids, parasitoids and artificial diet.

Competing interests
The authors declare no competing or financial interests.

Author contributions
Conceptualization: J.A.-L.M.P., V.F., T.H.; Methodology: J.A.-L.M.P., V.F., T.H.;
Formal analysis: J.A.-L.M.P., V.F.; Investigation: J.A.-L.M.P., A.L.; Writing - original
draft: J.A.-L.M.P.; Writing - review & editing: V.F., T.H.; Supervision: T.H.; Project
administration: T.H.; Funding acquisition: T.H.

Funding
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Romeis, J., Babendreier, D. andWäckers, F. L. (2003). Consumption of snowdrop
lectin (Galanthus nivalis agglutinin) causes direct effects on adult parasitic wasps.
Oecologia 134, 528-536.

Ryabov, E. V., Keane, G., Naish, N., Evered, C. and Winstanley, D. (2009).
Densovirus induces winged morphs in asexual clones of the rosy apple aphid,
Dysaphis plantaginea. Proc. Natl Acad. Sci. USA 106, 8465-8470.

Sabri, A., Vandermoten, S., Leroy, P. D., Haubruge, E., Hance, T., Thonart, P.,
De Pauw, E. and Francis, F. (2013). Proteomic investigation of aphid honeydew
reveals an unexpected diversity of proteins. Plos One 8, e74656.

Sampaio, M. V., Bueno, V. H. P. andDeConti, B. F. (2008). The effect of the quality
and size of host aphid species on the biological characteristics of
Aphidius colemani (Hymenoptera: Braconidae: Aphidiinae). Eur. J. Entomol.
105, 489-494.

Scaraffia, P. Y. and Wells, M. A. (2003). Proline can be utilized as an energy
substrate during flight of Aedes aegypti females. J. Insect Physiol. 49, 591-601.

Shi, S.-L., Liu, X.-X., Zhang, Q.-W. and Zhao, Z.-W. (2010). Morph-specific
differences in metabolism related to flight in the wing-dimorphic Aphis gossypii.
Insect Sci. 17, 527-534.

Shull, A. F. (1940). Adult intermediate-winged aphids not physiologically
intermediate. Genetics 25, 287-298.

Sorin, M. (1958). Nymphs of Myzus persicae Sulzer. Shin Konchu 11, 2-6.
Starý, P. (2002). Field establishment of Aphidius colemani Vier. (Hym., Braconidae,

Aphidiinae) in the Czech Republic. J. Appl. Entomol. 126, 405-408.
Strand, M. R. and Casas, J. (2008). Parasitoid and host nutritional physiology in

behavioral ecology. In Behavioral Ecology of Insect Parasitoids: From Theoretical
Approaches to Field Applications (ed. E. Wajnberg, C. Bernstein and J. J. M. van
Alphen). Blackwell Publishing.

Strohm, E. (2000). Factors affecting body size and fat content in a digger wasp.
Oecologia 123, 184-191.

Strong, F. E. (1965). Detection of lipids in the honeydew of an aphid. Nature 205,
1242.

Suarez, R. K., Darveau, C.-A., Welch, K. C., O’Brien, D., Roubik, D. W. and
Hochachka, P. W. (2005). Energy metabolism in orchid bee flight muscles:
carbohydrate fuels all. J. Exp. Biol. 208, 3573-3579.

Sylvester, E. S. (1954). Insectary life history and apterous instar morphology of
Myzus persicae (Sulzer) (Homoptera, Aphidae). Ann. Entomol. Soc. Am. 47,
397-406.

Takada, H. (1998). A review of Aphidius colemani (Hymenoptera: Braconidae,
Aphidiinae) and closely related species indigenous to Japan. Appl. Entomol. Zool.
33, 59-66.

Thieme, T. and Dixon, A. F. G. (2015). Is the response of aphids to alarm
pheromone stable? J. Appl. Entomol. 139, 741-746.

Tsumuki, H., Nagatsuka, H., Kawada, K. and Kanehisa, K. (1990). Comparison of
nutrient reservation in apterous and alate pea aphids, Acyrthosiphon pisum
(Harris) 1. Developmental time and sugar content. Appl. Entomol. Zool. 25,
215-221.

van Emden, H. F. and Kifle, A. T. (2002). Performance of the parasitoid Aphidius
colemani when reared on Myzus persicae on a fully defined artificial diet.
BioControl 47, 607-616.

van Emden, H. F., Eastop, V. F., Hughes, R. D. andWay,M. J. (1969). The ecology
of Myzus persicae. Annu. Rev. Entomol. 14, 197-270.

Van Handel, E. (1984). Metabolism of nutrients in the adult mosquito. Mosq. News
44, 573-579.

Visser, B. and Ellers, J. (2008). Lack of lipogenesis in parasitoids: a review of
physiological mechanisms and evolutionary implications. J. Insect Physiol. 54,
1315-1322.
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