RESEARCH ARTICLE

Expression of calcium channel transcripts in the zebrafish heart: dominance of T-type channels

Jaakko Haverinen^{1,*}, Minna Hassinen¹, Surjya Narayan Dash^{1,2} and Matti Vornanen¹

ABSTRACT

Calcium channels are necessary for cardiac excitation-contraction (E-C) coupling, but Ca2+ channel composition of fish hearts is still largely unknown. To this end, we determined transcript expression of Ca2+ channels in the heart of zebrafish (Danio rerio), a popular model species. Altogether, 18 Ca²⁺ channel α-subunit genes were expressed in both atrium and ventricle. Transcripts for 7 L-type (Cav1.1a, Cav1.1b, Cav1.2, Cav1.3a, Cav1.3b, Cav1.4a, Cav1.4b), 5 T-type (Cav3.1, Ca_v3.2a, Ca_v3.2b, Ca_v3.3a, Ca_v3.3b) and 6 P/Q-, N- and R-type $(Ca_v 2.1a, \ Ca_v 2.1b, \ Ca_v 2.2a, \ Ca_v 2.2b, \ Ca_v 2.3a, \ Ca_v 2.3b) \ Ca^{2+}$ channels were expressed. In the ventricle, T-type channels formed 54.9%, L-type channels 41.1% and P/Q-, N- and R-type channels 4.0% of the Ca²⁺ channel transcripts. In the atrium, the relative expression of T-type and L-type Ca²⁺ channel transcripts was 64.1% and 33.8%, respectively (others accounted for 2.1%). Thus, at the transcript level, T-type Ca²⁺ channels are prevalent in zebrafish atrium and ventricle. At the functional level, peak densities of ventricular T-type (I_{CaT}) and L-type (I_{CaL}) Ca²⁺ current were 6.3±0.8 and 7.7±0.8 pA pF⁻¹, respectively. I_{CaT} mediated a sizeable sarcolemmal Ca²⁺ influx into ventricular myocytes: the increment in total cellular Ca2+ content via I_{CaT} was 41.2±7.3 µmol I⁻¹, which was 31.7% of the combined Ca²⁺ influx (129 µmol I⁻¹) via I_{CaT} and I_{CaL} (88.5±20.5 µmol I⁻¹). The diversity of expressed Ca2+ channel genes in zebrafish heart is high, but dominated by the members of the T-type subfamily. The large ventricular I_{CaT} is likely to play a significant role in E–C coupling.

KEY WORDS: Danio rerio, E–C coupling, Cardiac myocytes, T-type Ca^{2+} current, Zebrafish heart

INTRODUCTION

Voltage-gated Ca²⁺ channels enable Ca²⁺ influx into cells and mediate a wide variety of physiological responses including muscle contraction, hormone secretion, neuronal transmission, gene expression and cell division (McDonald et al., 1994; Hofmann et al., 2014). In the sarcolemma of cardiac myocytes, two major types of Ca²⁺ channel are usually present: L-type (long-lasting, high-threshold) Ca²⁺ channels of the subfamily Ca_v1 and T-type (transient, low-threshold) Ca²⁺ channels of the subfamily Ca_v3 (Ertel et al., 2000; Catterall et al., 2005).

In the mammalian heart, L-type Ca^{2+} channels are abundantly expressed in atrial and ventricular myocytes, sinoatrial pacemaker cells and atrioventricular nodal cells (Hagiwara et al., 1988;

*Author for correspondence (jaakko.haverinen@uef.fi)

D.H., 0000-0002-2300-6849

Received 12 February 2018; Accepted 6 April 2018

Zamponi et al., 2015; Mesirca et al., 2015). L-type Ca^{2+} current (I_{CaL}) is a critical component in excitation–contraction (E–C) coupling of atrial and ventricular myocytes by inducing Ca^{2+} release (Ca^{2+} -induced Ca^{2+} release, CICR) from the sarcoplasmic reticulum (SR) (Fabiato, 1983; Bers, 2002). In sinoatrial myocytes, I_{CaL} generates the upstroke of pacemaker action potential (AP) (Irisawa et al., 1993). In cardiac myocytes of fetal and neonatal mammals and ectothermic vertebrates, I_{CaL} directly contributes to the cytosolic Ca^{2+} transient, as CICR is less powerful in these cells (Fabiato and Fabiato, 1978; Morad et al., 1981; Vornanen, 1996; Vornanen et al., 2002).

The distribution of T-type Ca^{2+} channels and current (I_{CaT}) is more limited in the adult mammalian heart. T-type Ca^{2+} channels are strongly expressed in sinoatrial and atrioventricular nodes, weakly expressed in atrial myocytes and are usually not present in healthy ventricular myocytes (Perez-Reyes, 2003; Ono and Iijima, 2010). It should be noted, however, that a small I_{CaT} is present in guinea-pig and dog ventricular myocytes (Nilius et al., 1985; Mitra and Morad, 1986; Balke et al., 1992; Wang and Cohen, 2003). I_{CaT} has a significant role in cardiac pacemaking by contributing to the diastolic depolarization of pacemaker AP, while its significance in E-C coupling of atrial and ventricular myocytes is incompletely resolved (Zhou and January, 1998; Kitchens et al., 2003; Jaleel et al., 2008; Ono and Iijima, 2010; Mesirca et al., 2015). I_{CaT} is upregulated in diseased mammalian heart, including genetic hypertension, cardiac hypertrophy and atherosclerosis (Takebayashi et al., 2006; Chiang et al., 2009).

 I_{CaL} has been recorded in atrial and ventricular myocytes of several fish species including the zebrafish (Danio rerio) (Maylie and Morad, 1995; Vornanen, 1997, 1998; Hove-Madsen and Tort, 1998; Vornanen et al., 2002; Shiels et al., 2006; Brette et al., 2008; Zhang et al., 2011; Galli et al., 2011; Haworth et al., 2014; Haverinen et al., 2014). I_{CaT} has been shown to be present in atrial and ventricular myocytes of the dogfish (Squalus acanthias) and zebrafish hearts, and in atrial myocytes of the Siberian sturgeon (Acipenser baerii) heart (Maylie and Morad, 1995; Warren et al., 2001; Nemtsas et al., 2010; Haworth et al., 2014). In contrast to the rich data on the mammalian cardiac Ca2+ channels, very little is known about Ca2+ channels of the fish heart, even though sarcolemmal Ca²⁺ channels play a central role in cardiac E-C coupling of fish (Vornanen et al., 2002; Zhang et al., 2011). There is also little knowledge about the molecular and genetic background of cardiac Ca²⁺ channels in zebrafish (Rottbauer et al., 2001), which is somewhat surprising considering that this species is a popular model for cardiovascular drug screening and human cardiac diseases (Bakkers, 2011; MacRae and Peterson, 2015). To be a useful model for the human heart, it is crucial to know the molecular basis of Ca²⁺ currents in the zebrafish heart, as Ca²⁺ channels are important therapeutic targets for the treatment of cardiovascular diseases (Belardetti and Zamponi, 2012). To this end, we measured Ca^{2+} channel transcript expression in the zebrafish heart. In addition, Ca2+ influx via I_{CaT} and I_{CaL} into zebrafish ventricular myocytes was

¹Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland. ²Neuroscience Center and Department of Anatomy, Faculty of Medicine, University of Helsinki, PO Box 63, 00014 Helsinki, Finland.

determined using the whole-cell patch-clamp method. Because I_{CaL} is generally regarded as the most important cardiac Ca²⁺ current, our working hypothesis was that different L-type Ca²⁺ channels form the dominant Ca²⁺ channel subfamily in the zebrafish atrium and ventricle.

MATERIALS AND METHODS Zebrafish

The wild-type Turku zebrafish line (kindly donated by Prof. Pertti Panula, University of Helsinki) was raised and maintained at the animal facilities of UEF (University of Eastern Finland, Joensuu) according to the established principles (Westerfield, 2007). The rearing temperature of the fish was 28°C. The experiments conform to the European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (Council of Europe No. 123, Strasbourg 1985) and were authorized by the national animal experimental board in Finland (permission ESAVI/2832/04.10.07/2015).

Total RNA isolation and quantification of gene expression

Fish were killed by immersing them in ice water and the heart was excised. Total RNA was isolated from three atrial and ventricular

Table 1. Primers used for qPCR

samples (see 'Patch-clamp analysis of I_{CaT} and I_{CaL} ', below) (each containing cardiac tissue of eight adult zebrafish, 1.5 years old) using TriReagent (Thermo Scientific, Waltham, MA, USA). RNA was DNase treated with RNase-free DNaseI (Thermo Scientific) and reverse-transcribed with random hexamer and oligo(dT) primers and Maxima RNase H-reverse transcriptase (Thermo Scientific) following the manufacturer's protocols. In order to design gene-specific primers for qPCR, a and b isoforms of each *cacna* (αl) gene were aligned and primers were designed to nonhomologous regions. Moreover, all 18 αI genes were aligned using Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) and the specificity of primers was checked. Finally, PrimerBlast (https:// www.ncbi.nlm.nih.gov/tools/primer-blast/) was used to validate the targets of each primer pair. qPCR was performed using Maxima SYBR Green qPCR Master Mix (Thermo Scientific) in an Aria MX Real-Time PCR machine (Agilent Technologies, Santa Clara, CA, USA). Accession numbers of the genes and primers used in this study are listed in Table 1. The thermal conditions were as follows: enzyme activation at 95°C for 10 min followed by 40 cycles at 95°C for 10 s, 58°C for 20 s and 72°C for 30 s, and final extension at 72°C for 3 min. After the qPCR reaction, the specificity of amplification was checked by melting curve analysis (from 65 to 95°C) and by

Protein	Gene	Gene Accession number Primer sequence		Amplicon length (bp)	
Ca _v 1.1a	α1Sa	NM_001146150	TCTATAGGCGTGCTGGAGGT	113	
			GCTATCTGCGAGCTGTAGGG		
Ca _v 1.1b	a1Sb	NM_214726	GTTGGCTGAAGACCCACAGT	110	
			GCCCATTGACAATACCCTGA		
Ca _v 1.2	α1C	XM_009300335	ACGGAGTCACTCTCCGACAC	105	
			AGAGAGGGCACAGGCTGATA		
Ca _v 1.3a	α1Da	NM_203484	ACTGGGCCACAGAGACTACG	106	
			TTCATCTGCAAGGTCCTCC		
Ca _v 1.3b	a1Db	ENSDARG00000101589	CGCAAACAGAGTCAGGATCA	105	
			GAGTCGTGATTGGCTGGATT		
Ca _v 1.4a	α1Fa	XM_021478483	AGCAGCCTCGAGCATACACT	115	
			CCCAAGCCTTCAGAAATCAG		
Ca _v 1.4b	α1Fb	NM_001324496	ATTGACCAACTGCCCAAGAG	115	
			GCTCTCCAGGGTACTCACCA		
Ca _v 2.1a	α1Aa	ENSDARG00000037905	TGCTACCCAGCCACATGATA	113	
•			TGGTAGAGGAAGGGTTGGTG		
Ca _v 2.1b	α1Ab	ENSDARG0000006923	CTGCGTGGACCAGATCTACA	105	
v			GGCATTGAGTGAGGGGTAAA		
Ca _v 2.2a	α1Ba	ENSDARG0000021735	CAATGCTGAGATGCAGAGGA	106	
- · · ·			CTGTGGTGCAAAAGTGGATG		
Ca _v 2.2b	α1Bb	ENSDARG0000079295	TGCTTCCTCTCACACACCTG	106	
			AAAGAAGTGGGTGTGGCATC		
Ca _v 2.3a	α1Ea	ENSDARG0000062346	GCAGCTCGAGGAACAGAAAC	114	
			CCTGCACTGTGAGTCAGGAA		
Ca _v 2.3b	α1Eb	ENSDARG0000095614	ACTACGACGCCTCACAGGTT	115	
000/2100	0.120		TGGGACACTGCAGCTTTGTA		
Ca _v 3.1	α1G	ENSDARG0000089913	CTTGGCACCGGTTGTGTTTT	100	
00,0.1	410		CATACTGGCCCTCTCGAACC	100	
Ca _v 3.2a	α1Ha	ENSDARG0000060496	TCCATCGAGCATTTCAATCA	107	
00,0.20	anna		GCCACGAGTTTAAGCAGAGC	101	
Ca _v 3.2b	α1Hb	ENSDARG00000099708	TGTTTCGGGGTCTGTGAGTG	120	
04/0.25	unno		ACTCTGCGTTTCGGGACATT	120	
Ca _v 3.3a	α1la	ENSDARG00000070522	TGTTCACGAAGAGCCACAG	103	
0a _v 0.5a	una	ENGLARCOUCOUTOSZZ	TGGCTTGTACTTTCCCCATC	105	
Ca _v 3.3b	α1lb	ENSDARG00000096307	TTCCCCATCAGAAACCTCAC	107	
0.00	uno		TGAGATTCTGTTTGCGCA	107	
β-actin	actb1	NM_131031	CTTCCAGCAGATGTGGATCA	102	
p-actin	auni	NIM_151051	GCCATTTAAGGTGGCAACA	102	
DnaJA2	dnoio?	NM 213493	CTATGGGGAACAGGGTCTGC	104	
DIIdJAZ	dnaja2	INIVI_2 I 3493		104	
			GTCCACCCATGAAACCAAAC		

Primers are in the 5'-3' orientation.

running the qPCR products on an agarose gel. Data were normalized to the geometric mean of *dnaja2* (DnaJ homologue subfamily A member 2) and *actb1* (β -actin) mRNA expression levels.

Patch-clamp analysis of ICaT and ICaL

Electrophysiological experiments were conducted on enzymatically isolated ventricular myocytes of adult zebrafish (1.5 years old, 0.68 ± 0.03 g). Fish were stunned with a quick blow to the head, the spine was cut and the heart was excised. The yield of atrial myocytes was low and therefore extensive characterization of atrial electrophysiology was not possible. The myocyte isolation procedure was essentially similar to our original isolation method for fish hearts (Vornanen, 1997), but scaled down to the size of small zebrafish hearts. For retrograde perfusion of the heart, a small cannula (34 gauge, TE734025, Adhesive Dispensing Ltd, Milton Kevnes, Bucks, UK) was inserted via the bulbus arteriosus into the ventricle and the bulbus was secured with a fine thread around the cannula. The heart was perfused first with Ca²⁺-free solution for 5 min and then with the same solution but with added hydrolytic enzymes [Collagenase Sigma IA, Trypsin type VI (Serva, Heidelberg, Germany) together with fatty acid-free serum albumen] for 15-20 min. Myocytes were stored at 5°C and used on the same day they were isolated. The composition of the Ca²⁺-free solution was (in mmol 1⁻¹): 100 NaCl, 10 KCl, 1.2 KH₂PO₄, 4 MgSO₄, 50 taurine, 20 glucose and 10 Hepes, with pH adjusted to 6.9 with KOH at 20°C.

An Axopatch 1D amplifier (Axon Instruments, Saratoga, CA, USA) with a CV-4 1/100 head-stage was used for whole-cell patch-clamp experiments. The external solution used for I_{CaT} and I_{CaL} recordings contained (in mmol 1⁻¹): 20 CsCl, 120 tetraethylammonium chloride, 1 MgCl₂, 2 CaCl₂, 10 glucose and 10 Hepes (pH adjusted to 7.7 with CsOH). The solution was Na⁺ free and included 0.5 µmol l⁻¹ tetrodotoxin (Tocris Cookson, Bristol, UK) to prevent Na⁺ current (I_{Na}). As Cs⁺ can flow through Erg K⁺ channels, 2 μ mol 1⁻¹ E-4031 (Tocris Cookson) was included in the external saline solution to prevent the rapid component of the delayed rectifier K⁺ current ($I_{\rm Kr}$). Temperature was regulated at 28°C by using a Peltier device (HCC-100A, Dagan, MN, USA). The pipette solution contained (in mmol 1⁻¹) 130 CsCl, 15 tetraethylammonium chloride, 5 MgATP, 1 MgCl₂, 5 oxaloacetate, 10 Hepes and 5 EGTA (pH adjusted to 7.2 at 20°C with CsOH) (all chemicals from Sigma, St Louis, MO, USA), giving a mean (±s.e.m.) resistance of 2.5±0.03 MΩ.

After gaining a giga-ohm seal and access to the cell, current transients due to series resistance (6.17±0.22 MΩ) and pipette capacitance (8.20±0.10 pF) were cancelled out, and the capacitive size of ventricular myocytes (27.77±1.11 F, *n*=62) was determined. The total $I_{\rm Ca}$, including both $I_{\rm CaT}$ and $I_{\rm CaL}$, was elicited by 300 ms square wave pulses from the holding potential ($V_{\rm h}$) of -90 mV with 10 mV increments to cover a voltage range from -80 to +50 mV. $I_{\rm CaL}$ was elicited from a $V_{\rm h}$ of -50 mV to voltages ranging from -40 to +50 mV. $I_{\rm CaT}$ was obtained as the difference current from these two protocols.

Charge transfer through Ca^{2+} channels was determined by integrating the inactivating portion of the Ca^{2+} current for 300 ms voltage pulses from -90 mV to -30 mV for I_{CaT} and from -50 mV to 0 mV for I_{CaL} . The change in total intracellular cellular Ca^{2+} concentration ($[Ca^{2+}]_i$) due to Ca^{2+} influx via T-type and L-type Ca^{2+} channels was calculated from the measured cell capacitance and the experimentally determined surface-to-volume ratio of the cells (1.15): as described earlier in detail (Vornanen, 1997). $[Ca^{2+}]_i$ was expressed for the non-mitochondrial cell volume assuming a non-mitochondrial volume fraction of 0.55.

Statistics

Statistics were performed using SPSS version 21.0. Statistically significant differences between sarcolemmal Ca²⁺ influxes by I_{CaT} versus I_{CaL} were detected through Mann–Whitney U non-parametric test for two independent samples, after checking the normality of distribution and carrying out necessary transformation of the data. Differences between mean transcript expression values of the five Ca²⁺ channel types and concentration-dependent I_{CaT} inactivation by Ni²⁺ were compared using one-way ANOVA followed by Tukey's *post hoc* test. Paired comparisons between transcripts of Ca²⁺ channel genes and T- and L-type Ca²⁺ current were done by two-tailed Student's *t*-test. The significance threshold was P < 0.05.

RESULTS

Expression of Ca²⁺ channel transcripts

We performed qPCR to investigate the mRNA expression of T-type (Ca_v3.1, Ca_v3.2a, Ca_v3.2b, Ca_v3.3a and Ca_v3.3b), L-type (Ca_v1.1a, Ca_v1.1b, Ca_v1.2, Ca_v1.3a, Ca_v1.3b, Ca_v1.4a and Cav1.4b), P/Q-type (Cav2.1a and Cav2.1b), N-type (Cav2.2a and Ca_v2.2b) and R-type (Ca_v2.3a and Ca_v2.3b) Ca²⁺ channel α subunit genes in the atrium and ventricle of 1.5 year old zebrafish. Interestingly, in the atrium, transcript expression of T-type Ca²⁺ channels (64.1±3.7% of all Ca_v transcripts) was significantly higher than that of L-type Ca^{2+} channels (33.8±3.4%; P<0.05) (Fig. 1). In the ventricle, T-type channel transcripts $(54.9\pm4.4\%)$ seemed to be more numerous than L-type channel transcripts (41.1 $\pm 4.4\%$), but the difference was not statistically significant (P>0.05). Transcripts of P/Q-type channels constituted 1.7 $\pm 0.3\%$ and $4.0\pm 0.5\%$ of all Ca²⁺ channel transcripts in the atrium and ventricle, respectively (Fig. 1). N- and R-type Ca²⁺ channel transcripts were also present, but the expression levels were low in both cardiac chambers (less than 0.5% of all Ca_v transcripts).

At transcript level, the main T-type Ca²⁺ channel isoform in the zebrafish heart was αIG (encoding Ca_v3.1), representing

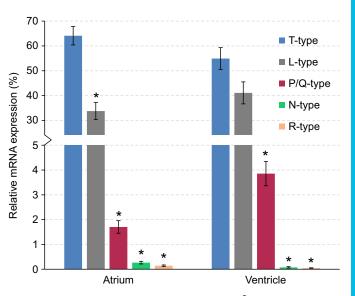


Fig. 1. Relative transcript expression of the five Ca^{2+} channel types in zebrafish atrium and ventricle. Data (means±s.e.m. of three samples, each representing pooled tissue from 8 fishes) are given as a percentage of all Ca^{2+} channel transcripts. An asterisk indicates a statistically significant difference (*P*<0.001) between T-type channels and the other Ca^{2+} channel types (pairwise comparisons between T-type channels and L-, P/Q-, N- and R-type channels using one-way ANOVA followed by Tukey's *post hoc* test).

99.7±0.05% and 98.9±0.3% of T-type transcripts in the ventricle and atrium, respectively (Fig. 2). The dominant L-type Ca²⁺ channel isoform was Ca_v1.2 (encoded by the αIC gene), comprising 93.0±1.2% and 95.9±0.7% of all Ca_v1 transcripts in the ventricle and atrium, respectively (Fig. 2). Transcript expression of αIG was significantly (*P*<0.05) higher – in both the ventricle (54.8±4.4% of all Ca_v transcripts) and the atrium (63.4±3.9%) – than that of the dominant L-type Ca²⁺ channel, αIC (38.3±4.6% in the ventricle and 32.4±3.4% in the atrium) (Table 2). P/Q-type Ca²⁺ channel isoform Ca_v2.1b (encoded by αIAb) showed the third highest expression level, representing 3.8±0.5% and 1.6±0.3% of all Ca_v transcripts in the ventricle and atrium, respectively (Table 2). Collectively, these data show that αIG mRNA expression is dominant in both cardiac chambers of the adult zebrafish heart.

Density and voltage dependence of I_{CaT} and I_{CaL}

 I_{CaL} was determined as the current elicited from a V_{h} of -50 mV. I_{CaT} was obtained by subtracting I_{CaL} from the current elicited from a V_{h} of -90 mV, where both channels are available for opening. Ventricular myocytes of the zebrafish heart had large I_{CaT} and I_{CaL} (Fig. 3). I_{CaT} had a peak current density of $6.3\pm0.8 \text{ pA pF}^{-1}$ at -30 mV, whereas I_{CaL} peaked at 0 mV with a density of $7.7\pm0.8 \text{ pA pF}^{-1}$ (P>0.05) (Fig. 3B). Densities of I_{CaT} and I_{CaL} varied markedly between individual ventricular myocytes (Fig. 3C). Typical densities for I_{CaL} were 4–6 pA pF⁻¹. The frequency distribution of I_{CaT} density was flatter than that of I_{CaL} without any typical density value.

Nickel sensitivity of ICaT

T-type Ca²⁺ channels are blocked by Ni²⁺. As Ca_v3.1 (αIG), Ca_v3.2 (αIH) and Ca_v3.3 (αII) isoforms are differently sensitive to Ni²⁺ (Lee et al., 1999), inhibition of I_{CaT} by Ni²⁺ can be used to trace isoform composition of cardiac myocytes. To this end, Ni²⁺ sensitivity of I_{CaT} was examined by cumulative additions of NiCl₂ (0.3–1000 µmol l⁻¹) to the external saline solution. I_{CaT} was inhibited by Ni²⁺ in a concentration-dependent manner (Fig. 4A). Half-maximal inhibition (IC₅₀) occurred at 92.1±0.1 µmol l⁻¹ Ni²⁺ (Fig. 4B). Ni²⁺ also slowed recovery from inactivation of I_{CaT} (Fig. 4B, inset).

Sarcolemmal Ca^{2+} entry via I_{CaT} and I_{CaL}

Sarcolemmal Ca²⁺ influx was obtained from the integrals of I_{CaT} and I_{CaL} at -50 and 0 mV, respectively (Fig. 5A). In ventricular myocytes, cytosolic Ca²⁺ increments via I_{CaT} and I_{CaL} were 41.2±7.3 and 88.5±20.5 µmol 1⁻¹ per non-mitochondrial cell volume, respectively (Fig. 5B). This means that I_{CaT} was responsible for 31.7% of the total Ca²⁺ influx via sarcolemmal Ca²⁺ channels.

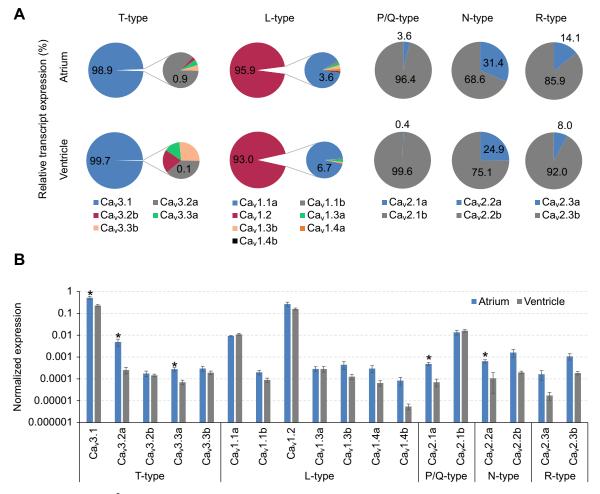


Fig. 2. Transcript expression of Ca²⁺ channel α -subunit genes in zebrafish atrium and ventricle. (A) Pie charts indicating the relative portions (%) of each Ca_v transcript from the total Ca²⁺ channel expression of each Ca²⁺ channel type. (B) Transcript expression of Ca_v genes in zebrafish atrium and ventricle normalized to the geometric mean expression of the reference genes *dnaJA2* and *β*-actin. The results are means±s.e.m. of three samples, each representing pooled tissue from 8 fishes. An asterisk indicates a statistically significant difference between atrium and ventricle (*P*<0.05, two-tailed Student's *t*-test).

Table 2. Comparison of different calcium ion currents and channel						
genes (% of all transcripts) between zebrafish (present study)						
and human heart (Gaborit et al., 2007)						

Ca ²⁺ current	Channel	Zebrafish (atrium)	Zebrafish (ventricle)	Human (atrium)	Human (ventricle)
I _{CaT}	Ca _v 3.1	63.44	54.76	3.02	0.14
	Ca _v 3.2a	0.58	0.06	1.08	1.46
	Ca _v 3.2b	0.02	0.03		
	Ca _v 3.3a	0.04	0.02		
	Ca _v 3.3b	0.04	0.05		
I _{CaL}	Ca _v 1.2	32.43	38.33	94.77	98.36
	Ca _v 1.3a	0.03	0.07	1.13	0.04
	Ca _v 1.3b	0.05	0.03		
	Ca _v 1.4a	0.03	0.02		
	Ca _v 1.4b	0.01	0.001		
	Ca _v 1.1a	1.20	2.63		
	Ca _v 1.1b	0.02	0.02		
I _{CaP/Q}	Ca _v 2.1a	0.06	0.02		
	Ca _v 2.1b	1.64	3.84		
I _{CaN}	Ca _v 2.2a	0.08	0.03		
	Ca _v 2.2b	0.19	0.05		
I_{CaR}	Ca _v 2.3a	0.02	0.004		
	Ca _v 2.3b	0.12	0.04		

DISCUSSION

Ten Ca²⁺ channel α -subunit genes, divided into three subfamilies (Ca_v1–3), exist in vertebrate genomes (Catterall et al., 2005). Because of the whole-genome duplication in the early teleosts, fish genomes include a number of gene paralogues. Therefore, a higher diversity of Ca²⁺ channel genes is expected to exist in fish genomes (Jegla et al., 2009). Indeed, 21 α -subunit genes were found in the genome of fugu (*Fugu rubripes*) (Wong et al., 2006). In the current study, we provide a complete survey of Ca²⁺ channel α -subunit

expression in the zebrafish heart. Transcript abundance of 18 Ca²⁺ channel α -subunit genes was quantified in the atrium and ventricle of the zebrafish heart. Several studies have shown that expression of ion channel proteins in the heart is predominantly determined at the level of transcription (Rosati and McKinnon, 2004; Marionneau et al., 2005; Gaborit et al., 2007; Chandler et al., 2009; Abd Allah et al., 2012). Therefore, we believe that the relative abundance of gene transcripts is a good surrogate for Ca²⁺ channel composition and expression in atrial and ventricular muscle of the zebrafish heart. Overall, the present findings show that the diversity of Ca²⁺ channels expressed in the zebrafish heart is higher than that in mammalian hearts and T-type channels are more abundant than L-type Ca²⁺ channels.

T-type Ca²⁺ channel transcript expression

To our knowledge, this is the first quantitative analysis of Ca²⁺ channel composition and expression in the fish heart. The main finding of the present study is that, at the transcript level, T-type Ca^{2+} channels with a relative abundance of 55–64% form the biggest Ca²⁺ channel subfamily in the zebrafish heart. This is in striking contrast to the human heart, where L-type Ca^{2+} channels make up 96–98% of the Ca²⁺ channel transcripts in both atria and ventricles, while T-type Ca²⁺ channels represent only 2-4% of the transcripts (Gaborit et al., 2007). The predominance of T-type Ca²⁺ channels is probably not common among fish hearts in the light of the Ca^{2+} current recordings. I_{CaL} is the main Ca^{2+} current in atrial and ventricular myocytes of many fish species including crucian carp (Carassius carassius), rainbow trout (Oncorhynchus mykiss), burbot (Lota lota) and bluefin tuna (Thunnus orientalis) (Vornanen, 1997, 1998; Hove-Madsen and Tort, 1998; Shiels et al., 2006; Shiels et al., 2015). It remains to be shown whether the strong expression of T-type Ca²⁺ channels in ventricles is typical for Danio

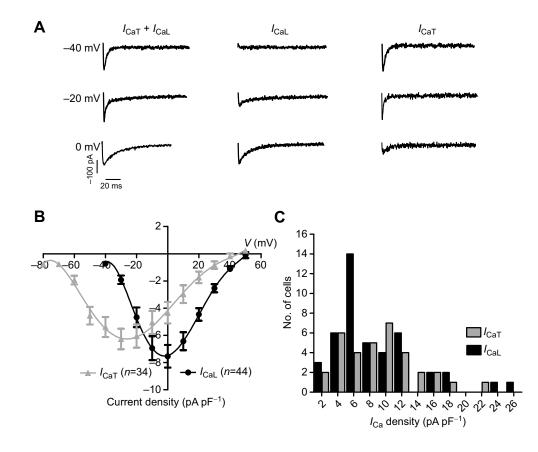


Fig. 3. T-type Ca²⁺ current of zebrafish ventricular myocytes in comparison to L-type Ca²⁺ current. (A) Representative recordings of the voltage dependence of the total cardiac Ca2+ current (left) elicited from a holding potential ($V_{\rm h}$) of -90 mV, the calcium current through L-type Ca2+ channels (I_{CaL}) elicited from a V_h of -50 mV (middle) and the calcium current through T-type Ca²⁺ channels (I_{CaT}) (right) obtained as the difference between the first two currents. (B) Current-voltage dependence of I_{CaT} and I_{CaL} in zebrafish ventricular myocytes. The results are means±s.e.m. of 34 and 44 myocytes for I_{CaT} and I_{CaL} , respectively. (C) Current density histograms of ventricular ICaT and I_{CaL}.

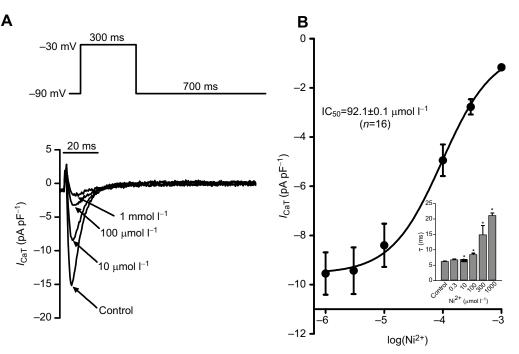


Fig. 4. Concentration-dependent inhibition of zebrafish ventricular ICaT by Ni²⁺. (A) Representative patch-clamp recordings showing inhibition of I_{CaT} by 10, 100 and 1000 µmol I⁻¹ Ni²⁺. (B) The mean concentration-response curve of Ni²⁺ (mol I-1) inhibition of ICaT. The inset bar graph indicates the concentrationdependent slowing of ICaT inactivation by Ni²⁺. The results in B are mean values (±s.e.m.) from 6-8 myocytes. An asterisk indicates a statistically significant difference between means in the absence and presence of Ni²⁺ (P<0.05, one-way ANOVA followed by Tukey's post hoc test).

species in general (a phylogenetic trait) or is an adaptation of tropical fishes to high environmental temperatures.

In zebrafish heart, five isoforms of T-type Ca²⁺ channels are expressed, while in the human heart only two gene products (αIH , αIG) are present (Gaborit et al., 2007). Different from mammalian genomes, in the zebrafish genome two paralogues exist for αIH and αII , and both gene products are expressed to some extent in the heart. Interestingly, the main T-type Ca²⁺ channel isoform of the zebrafish ventricle is Ca_v3.1 (αIG). In the right ventricle and Purkinje fibres of the human heart, T-type Ca²⁺ channel transcripts are weakly expressed, and Ca_v3.2 (αIH) is the predominant isoform in both tissues (Gaborit et al., 2007). In the human right atrium, $Ca_v 3.1 \ (\alpha IG)$ is the main T-type Ca^{2+} channel isoform, comprising 73.6% of T-type Ca^{2+} channel transcripts and 3.0% of all Ca^{2+} channel transcripts (Gaborit et al., 2007).

The density of I_{CaT} is significantly higher in the ventricles of fetal and neonatal mammals than in the ventricles of adult mammals (Perez-Reyes, 2003; Ono and Iijima, 2010). The developmental decrease in I_{CaT} density of the rat ventricle is associated with a significant shift in isoform composition from predominantly $\alpha 1G$ channels to $\alpha 1H$ channels (Ferron et al., 2002). mRNA expression of T-type Ca²⁺ channel $\alpha 1$ subunits ($\alpha 1G$, $\alpha 1H$) in the diseased

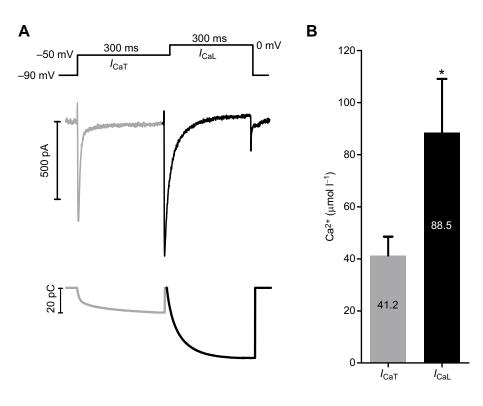


Fig. 5. Sarcolemmal Ca²⁺ influx by T-type Ca²⁺ current: comparison with L-type Ca²⁺ current. (A) Representative recordings of I_{CaT} at -50 mV and I_{CaL} at 0 mV (top trace) and the respective charge integrals (bottom trace). The voltage protocol is shown at the top. (B) Sarcolemmal Ca²⁺ influx by I_{CaT} and I_{CaL} in zebrafish ventricular myocytes. The results are means±s.e.m. from 34 and 44 myocytes for I_{CaT} and I_{CaL} , respectively. An asterisk indicates a statistically significant difference between mean values for I_{CaL} and I_{CaT} (P<0.05, Mann–Whitney U non-parametric test). (cardiac hypertrophy and failure) mammalian heart is significantly higher than that in healthy controls (Perez-Reyes, 2003; Ono and Iijima, 2010) (see 'Pathophysiology of T-type Ca^{2+} channels', below).

Taken together, the diversity of isoform composition of T-type Ca^{2+} channels is wider in zebrafish ventricle than in human (mammalian) ventricles and the major isoform is $Ca_v3.1$ (encoded by αIG) instead of the human $Ca_v3.2$ (encoded by αIH). With respect to expression of T-type Ca^{2+} channels, the zebrafish ventricle more closely resembles perinatal and diseased mammalian ventricles than healthy adult mammalian ventricles. Overall, isoform composition of T-type Ca^{2+} channels in zebrafish ventricle is more diverse and relative transcript abundance is markedly higher than in adult human ventricles.

L-type Ca²⁺ channel transcript expression

Instead of the four mammalian L-type Ca²⁺ channel genes, αlC , αID , αIF and αIS , seven isoforms are known for the zebrafish, because αID , αIF and αIS genes are duplicated. All seven L-type Ca²⁺ channel genes are expressed to some extent in the zebrafish heart. Similar to the human heart (Gaborit et al., 2007), αIC (encoding $Ca_v 1.2$) is the most expressed L-type Ca^{2+} channel isoform gene in zebrafish atrium and ventricle, and it is almost equally expressed in the two cardiac chambers. Another L-type Ca^{2+} channel expressed in the human heart is $Ca_v 1.3$ ($\alpha 1D$), but the expression level is quite low, representing 0.04% and 1.13% of all Ca_v1 transcripts in ventricular and atrial myocardia, respectively (Gaborit et al., 2007) (Table 2). In the zebrafish heart, both $Ca_v 1.3$ $(\alpha 1D)$ isoforms are very weakly expressed, whereas Ca_v1.1 ($\alpha 1Sa$) shows the second highest expression level among the L-type channels in both atrium and ventricle (Fig. 2). Collectively, the relative expression of L-type Ca²⁺ channel transcripts is much lower (41.1% versus 98.4%), and L-type Ca^{2+} channel composition is more diverse in zebrafish than in human heart.

Density of ICaT versus ICaL

Ventricular myocytes of the zebrafish heart have a large I_{CaT} . The peak current density of I_{CaT} is 83.1% of the respective value of I_{CaL} . The slightly smaller density of I_{CaT} in comparison to I_{CaL} is probably due to the lower single channel conductance of the T-type Ca^{2+} channels (Nilius et al., 1985). It should also be noted that the variability of current densities between cells is large for both I_{CaT} and I_{CaL} . Our findings are similar to those of Nemtsas et al. (2010), although our values for I_{CaT} are slightly higher and those for I_{CaL} slightly smaller than theirs. Notably, I_{CaT} has not been found in human atrial and ventricular myocytes, which accords with the minimal expression of the T-type Ca²⁺ channels in the human heart (Beuckelmann et al., 1991; Ouadid et al., 1991; Leuranguer et al., 2001). In contrast, a large cardiac I_{CaT} has previously been documented for a few endothermic and ectothermic vertebrates. A relatively large I_{CaT} exists in ventricular myocytes of finch (5.9 pA pF⁻¹; 56% of I_{CaL} ; Bogdanov et al., 1995) and shark (S. acanthias; -9.8 pA pF^{-1} ; 92.4% of I_{CaL} ; Maylie and Morad, 1995), and atrial myocytes of the Siberian sturgeon (A. baerii; 3.52 pA pF⁻¹; 242% of I_{CaL}) (Haworth et al., 2014). The peak density of I_{CaT} in zebrafish ventricular myocytes is 2–6 times higher than the reported I_{CaT} density in atrial and nodal tissues of other vertebrate species (for references, see Maylie and Morad, 1995). The presence of a large I_{CaT} in zebrafish ventricular myocytes is one of the most prominent differences in ion current composition between zebrafish and human hearts. ICaT density is significantly higher in the neonatal than in the adult mammalian heart. For

example, in the rat ventricle, the density of I_{CaT} decreases from about 3 pA pF⁻¹ at the fetal stage F16 to practical absence of the current in the adult ventricle (Ferron et al., 2002).

Ni²⁺ block of T-type Ca²⁺ channels

Ni²⁺ blocks different T-type Ca²⁺ channels with different affinities, and Ni²⁺ sensitivity of the channels is dependent on the cellular environment (Lee et al., 1999). When Ca²⁺ channels were expressed in *Xenopus* oocytes, IC₅₀ values were 167, 5.7 and 87 μ mol l⁻¹ Ni²⁺ for $\alpha 1G$ (rat), $\alpha 1H$ (human) and $\alpha 1I$ (rat), respectively. In HEK-293 cells, the respective IC₅₀ values were markedly higher (250, 12 and 216 μ mol 1⁻¹), even though the relative sensitivity order remained the same. Furthermore, the Ni²⁺ block of α 1G and α 1I channels (but not of α 1H) is voltage dependent, e.g. IC₅₀ value of α 1G is 200 μ mol l⁻¹ at 0 mV and only 70 μ mol l⁻¹ at -40 mV (Lee et al., 1999). In the present study, Ni^{2+} inhibition of I_{CaT} was determined at -30 mV. The IC₅₀ value of the zebrafish ventricular I_{CaT} was 92.1 μ mol l⁻¹, which is consistent with the T-type Ca²⁺ channel composition dominated by $\alpha 1G$ (70 µmol 1⁻¹ at -40 mV) (Lee et al., 1999). Others have reported a slightly higher IC₅₀ value (124 μ mol l⁻¹) for the zebrafish ventricular I_{CaT} at -40 mV (Nemtsas et al., 2010). The high Ni^{2+} sensitivity of α 1H channels is related to a unique histidine residue at position 191 in the S3-S4 loop of domain I (Kang et al., 2007). Sequence analysis of zebrafish T-type Ca²⁺ channel genes indicates that channels encoded by αIH and αIG , but not αII , share histidine-191 with the mammalian $\alpha 1H$.

Ca²⁺ influx via I_{CaT} and its physiological significance

In canine Purkinje myocytes, guinea-pig ventricular myocytes and mouse ventricular myocytes overexpressing α 1G T-type Ca²⁺ channels, Ca²⁺ admitted through T-type Ca²⁺ channels is capable of activating contraction via CICR from the SR (Sipido et al., 1998; Zhou and January, 1998; Jaleel et al., 2008). However, contractions initiated by Ca²⁺ entry through T-type Ca²⁺ channels are characterized by a long delay to the onset of shortening, slow rates of shortening and relaxation, low peak shortening, and long time-to-peak shortening (Zhou and January, 1998; Sipido et al., 1998; Jaleel et al., 2008). These findings show that Ca²⁺ entry through I_{CaT} is less effective than that through I_{CaL} in triggering CICR. T-type Ca²⁺ channels are primarily located in the peripheral sarcolemma and therefore are more distant from the Ca²⁺ release channels of the SR than L-type Ca²⁺ channels of the T-tubule membrane (Jaleel et al., 2008).

The contraction of zebrafish ventricle is strongly dependent on sarcolemmal Ca²⁺ influx, while CICR from the SR makes only a small contribution (about 15%) to the Ca^{2+} transient (Zhang et al., 2011; Bovo et al., 2013). In keeping with this, the combined sarcolemmal Ca^{2+} influx via I_{CaL} and I_{CaT} in zebrafish ventricular myocytes (129 µmol l⁻¹ at 28°C) is markedly large, bigger than that in other fish species like rainbow trout (32.1–45.8 μ mol l⁻¹ at 21°C) and crucian carp (14.7-42.9 µmol 1⁻¹ at 19-23°C) (Vornanen, 1997, 1998; Hove-Madsen and Tort, 1998). Moreover, in zebrafish ventricular myocytes, a significant portion of this Ca^{2+} influx is mediated by I_{CaT} . Indeed, T-type Ca²⁺ channels could be important for E-C coupling of cardiac myocytes in zebrafish and other tropical ectotherms, which rely strongly on sarcolemmal Ca²⁺ influx for cardiac contraction. Because of its low voltage threshold (about -70 mV), I_{CaT} starts to contribute to the intracellular Ca²⁺ transient earlier in the AP than I_{CaL} , which has a more depolarized threshold (about -40 mV). This is expected to reduce the delay between membrane depolarization and the onset of the intracellular Ca²⁺ transient, and make the Ca2+ transient fast rising. Fast Ca2+

transients might be adaptive for the tropical *Danio* species, which have high heart rates at temperatures close to their upper thermal tolerance limit (Sidhu et al., 2014). For example, in *D. rerio* at 36°C, the heart beats about 300 times per minute and ventricular AP lasts (AP duration at 50% repolarization) only 66 ms (Vornanen and Hassinen, 2016). At high temperatures, I_{CaT} and fast Ca^{2+} transients may be needed to cope with the requirements of short cycle lengths and AP durations. The role of I_{CaT} in cardiac E–C coupling of zebrafish and other tropical fish species will be an interesting future topic.

Pathophysiology of T-type Ca²⁺ channels

T-type Ca^{2+} channels and I_{CaT} are present in ventricular myocytes of perinatal mammalian (e.g. rat and mouse) heart, but during early postnatal development they gradually disappear (Ferron et al., 2002; Yasui et al., 2005). T-type Ca^{2+} channels and I_{CaT} reappear in ventricular myocytes of hypertrophied mammalian heart under different pathological stresses (Nuss and Houser, 1993; Martinez et al., 1999; Takebayashi et al., 2006), suggesting that they are somehow involved in the pathogenesis of hypertrophy. Indeed, studies on transgenic mouse models suggest that $Ca_v 3.2$ ($\alpha 1H$) channels might be pro-hypertrophic and Ca_v3.1 (αIG) channels anti-hypertrophic (Chiang et al., 2009; Nakayama et al., 2009). It should be noted, however, that in ventricular myocytes of perinatal mammals and adult zebrafish, I_{CaT} is a normal physiological component of the sarcolemmal ion current complex. In the ventricle of zebrafish, I_{CaT} is largely generated by Ca_v3.1 (αIG) channels, while in the ventricles of embryonic and neonatal mouse, Cav3.2 $(\alpha 1H)$ channels predominate (Ferron et al., 2002; Yasui et al., 2005).

Hypertrophic heart is prone to cardiac arrhythmias, but the role of the re-expressed T-type Ca²⁺ channels in arrhythmogenesis of mammalian heart is not yet resolved (Kinoshita et al., 2009). Steady-state activation and inactivation curves of mammalian I_{CaT} overlap, which shows that a small portion of the channels do not inactivate (Vassort et al., 2006). The non-inactivating T-type Ca²⁺ channels could be involved in arrhythmogenesis by inducing early and delayed after-depolarizations and associated arrhythmias (Kinoshita et al., 2009). The role of I_{CaT} is, however, difficult to discern as many other ion currents are changed in parallel with I_{CaT} (Kinoshita et al., 2009). It should be noted, however, that delayed after-depolarizations are induced by spontaneous Ca²⁺ release from the SR and SR leak may also be involved in triggering early after-depolarizations (Choi et al., 2002). In fish ventricular myocytes, Ca²⁺ release channels of the SR have low affinity to Ca²⁺ and therefore spontaneous Ca²⁺ releases are rare (Shiels and White, 2005; Vornanen, 2006; Bovo et al., 2013). The minor role of CICR in fish cardiac E-C coupling is suggested to make fish hearts less susceptible to early and delayed after-depolarizations and therefore triggered arrhythmias (Vornanen, 2017).

Conclusions and future perspectives

Zebrafish ventricular myocytes have a large I_{CaT} , which contributes a distinct depolarizing current and relatively large sarcolemmal Ca²⁺ influx. This is a prominent difference to human ventricles, where I_{CaL} is apparently the sole Ca²⁺ current type (Beuckelmann et al., 1991; Leuranguer et al., 2001). These differences are due to the dominance of T-type Ca²⁺ channels in the zebrafish heart (present study) and L-type Ca²⁺ channels in the human heart (Gaborit et al., 2007). As the zebrafish is a popular model for drug screening and human cardiac toxicology (Barros et al., 2008; Chakraborty et al., 2009; Peterson and MacRae, 2012), these species-specific differences in electrical excitation and E–C coupling warrant some care when adapting results from zebrafish studies to human heart. Because of the significant differences in Ca²⁺ and K⁺ currents/channels between zebrafish and human ventricles (Hassinen et al., 2015; Vornanen and Hassinen, 2016), the zebrafish is probably not an optimal model for screening of cardiovascular drugs. Interspecies differences in cardiac ion currents are so marked (even among mammals) that non-human cells and tissues are considered unsatisfying for preclinical drug screening and safety pharmacology. According to the novel CiPA (Comprehensive in vitro Proarrhythmia Assay) initiative of preclinical drug screening, only human cardiac ion channels, human stem cell-induced cardiomyocytes and in silico models of human cardiac AP are considered acceptable for drug screening and safety pharmacology (Gintant et al., 2016). CIPA is based on analysis of drug effects on multiple (7) human cardiac ion channels (Colatsky et al., 2016; Vicente et al., 2016), and I_{CaT} is not among those channels. If zebrafish are used for preclinical drug screening and safety pharmacology, the potential impact of the large I_{CaT} on drug responses and arrhythmia propensity should be carefully examined.

Although zebrafish may not be an optimal general model for human cardiac safety pharmacology and screening of cardiac drugs, they may be useful in solving more specific problems of ion channel function in cardiac excitation and E–C coupling. Owing to the large ventricular I_{CaT} , zebrafish could be a useful model species when the role of I_{CaT} in cardiac E–C coupling and as a putative target for cardiovascular drugs is examined. With their large I_{CaT} , lower dependence on CICR from the SR and absence of T-tubules, zebrafish ventricular myocytes more closely resemble perinatal ventricular myocytes than adult ventricular myocytes of the human heart. Considering that there is a paucity of information regarding the cardiac safety pharmacology of human neonates and premature infants (Pesco-Koplowitz et al., 2018), zebrafish could be a useful model for this population.

Acknowledgements

Prof. Pertti Panula (University of Helsinki) is acknowledged for donating the zebrafish for the establishment of our own zebrafish population in Joensuu. Anita Kervinen kindly prepared the solutions for electrophysiological experiments.

Competing interests

The authors declare no competing or financial interests.

Author contributions

Methodology: J.H., M.H., S.N.D., M.V.; Investigation: J.H., S.N.D.; Resources: M.V.; Writing - original draft: J.H., M.H., S.N.D., M.V.; Visualization: J.H., M.H., M.V.; Supervision: M.V.; Project administration: M.V.; Funding acquisition: M.V.

Funding

This work was supported by Jane ja Aatos Erkon Säätiö (project no. 64579 to M.V.)

References

- Abd Allah, E. S., Aslanidi, O. V., Tellez, J. O., Yanni, J., Billeter, R., Zhang, H., Dobrzynski, H. and Boyett, M. R. (2012). Postnatal development of transmural gradients in expression of ion channels and Ca²⁺-handling proteins in the ventricle. J. Mol. Cell. Cardiol. **53**, 145-155.
- Bakkers, J. (2011). Zebrafish as a model to study cardiac development and human cardiac disease. *Cardiovasc. Res.* **91**, 279-288.
- Balke, C. W., Rose, W. C., Marban, E. and Wier, W. G. (1992). Macroscopic and unitary properties of physiological ion flux through T-type Ca²⁺ channels in guinea-pig heart cells. J. Physiol. 456, 247-265.
- Barros, T. P., Alderton, W. K., Reynolds, H. M., Roach, A. G. and Berghmans, S. (2008). Zebrafish: an emerging technology for in vivo pharmacological assessment to identify potential safety liabilities in early drug discovery. *Br. J. Pharmacol.* **154**, 1400-1413.
- Belardetti, F. and Zamponi, G. W. (2012). Calcium channels as therapeutic targets. Wiley Interdiscip. Rev. Dev. Biol. 1, 433-451.
- Bers, D. M. (2002). Cardiac excitation-contraction coupling. Nature 415, 198-205.

- Beuckelmann, D. J., Näbauer, M. and Erdmann, E. (1991). Characteristics of calcium-current in isolated human ventricular myocytes from patients with terminal heart failure. *J. Mol. Cell. Cardiol.* 23, 929-937.
- Bogdanov, K. Y., Ziman, B. D., Spurgeon, H. A. and Lakatta, E. G. (1995). L-type and T-type calcium currents differ in finch and rat ventricular cardiomyocytes. *J. Mol. Cell. Cardiol.* 27, 2581-2593.
- Bovo, E., Dvornikov, A. V., Mazurek, S. R., de Tombe, P. P. and Zima, A. V. (2013). Mechanisms of Ca²⁺ handling in zebrafish ventricular myocytes. *Pflügers Arch.* **465**, 1775-1784.
- Brette, F., Luxan, G., Cros, C., Dixey, H., Wilson, C. and Shiels, H. A. (2008). Characterization of isolated ventricular myocytes from adult zebrafish (*Danio rerio*). *Biochem. Biophys. Res. Commun.* **374**, 143-146.
- Catterall, W. A., Perez-Reyes, E., Snutch, T. P. and Striessnig, J. (2005). International Union of Pharmacology. XLVIII. Nomenclature and structurefunction relationships of voltage-gated calcium channels. *Pharmacol. Rev.* 57, 411-425.
- Chakraborty, C., Hsu, C. H., Wen, Z. H., Lin, C. S. and Agoramoorthy, G. (2009). Zebrafish: a complete animal model for in vivo drug discovery and development. *Curr. Drug Metab.* **10**, 116-124.
- Chandler, N. J., Greener, I. D., Tellez, J. O., Inada, S., Musa, H., Molenaar, P., DiFrancesco, D., Baruscotti, M., Longhi, R., Anderson, R. H. et al. (2009). Molecular architecture of the human sinus node: insights into the function of the cardiac pacemaker. *Circulation* **119**, 1562-1575.
- Chiang, C.-S., Huang, C.-H., Chieng, H., Chang, Y.-T., Chang, D., Chen, J.-J., Chen, Y.-C., Chen, Y.-H., Shin, H.-S., Campbell, K. P. et al. (2009). The Ca_v3.2 T-type Ca²⁺ channel is required for pressure overload-induced cardiac hypertrophy in mice. *Circ. Res.* **104**, 522-530.
- Choi, B.-R., Burton, F. and Salama, G. (2002). Cytosolic Ca²⁺ triggers early afterdepolarizations and Torsade de Pointes in rabbit hearts with type 2 long QT syndrome. J. Physiol. 543, 615-631.
- Colatsky, T., Fermini, B., Gintant, G., Pierson, J. B., Sager, P., Sekino, Y., Strauss, D. G. and Stockbridge, N. (2016). The comprehensive in vitro proarrhythmia assay (CiPA) initiative - Update on progress. J. Pharmacol. Toxicol. Methods 81, 15-20.
- Ertel, E. A., Campbell, K. P., Harpold, M. M., Hofmann, F., Mori, Y., Perez-Reyes, E., Schwartz, A., Snutch, T. P., Tanabe, T. and Birnbaumer, L. (2000). Nomenclature of voltage-gated calcium channels. *Neuron* 25, 533-535.
- Fabiato, A. (1983). Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am. J. Physiol. 245, C1-C14.
- Fabiato, A. and Fabiato, F. (1978). Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat and frog hearts and from fetal and new-born rat ventricles. *Ann. NY Acad. Sci.* 307, 491-522.
- Ferron, L., Capuano, V., Deroubaix, E., Coulombe, A. and Renaud, J.-F. (2002). Functional and molecular characterization of a T-type Ca²⁺ channel during fetal and postnatal rat heart development. J. Mol. Cell. Cardiol. **34**, 533-546.
- Gaborit, N., Le Bouter, S., Szuts, V., Varro, A., Escande, D., Nattel, S. and Demolombe, S. (2007). Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J. Physiol. 582, 675-693.
- Galli, G. L. J., Lipnick, M. S., Shiels, H. A. and Block, B. A. (2011). Temperature effects on Ca²⁺ cycling in scombrid cardiomyocytes: a phylogenetic comparison. *J. Exp. Biol.* **214**, 1068-1076.
- Gintant, G., Sager, P. T. and Stockbridge, N. (2016). Evolution of strategies to improve preclinical cardiac safety testing. *Nat. Rev. Drug Discov.* 15, 457.
- Hagiwara, N., Irisawa, H. and Kameyama, M. (1988). Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. *J. Physiol.* **395**, 233-253.
- Hassinen, M., Haverinen, J., Hardy, M. E., Shiels, H. A. and Vornanen, M. (2015). Inward rectifier potassium current (I_{K1}) and Kir2 composition of the zebrafish (*Danio rerio*) heart. *Pflüg. Arch. Eur. J. Physiol.* **467**, 2437-2446.
- Haverinen, J., Egginton, S. and Vornanen, M. (2014). Electrical excitation of the heart in a basal vertebrate, the European river lamprey (*Lampetra fluviatilis*). *Physiol. Biochem. Zool.* 87, 817-828.
- Haworth, T. E., Haverinen, J., Shiels, H. A. and Vornanen, M. (2014). Electrical excitability of the heart in a Chondrostei fish, the Siberian sturgeon (*Acipenser baerii*). *Am. J. Physiol.* **307**, R1157-R1166.
- Hofmann, F., Flockerzi, V., Kahl, S. and Wegener, J. W. (2014). L-type CaV1.2 calcium channels: from in vitro findings to in vivo function. *Physiol. Rev.* 94, 303-326.
- Hove-Madsen, L. and Tort, L. (1998). L-type Ca²⁺ current and excitationcontraction coupling in single atrial myocytes from rainbow trout. *Am. J. Physiol.* 275, R2061-R2069.
- Irisawa, H., Brown, H. F. and Giles, W. (1993). Cardiac pacemaking in the sinoatrial node. *Physiol. Rev.* 73, 197-227.
- Jaleel, N., Nakayama, H., Chen, X., Kubo, H., MacDonnell, S., Zhang, H., Berretta, R., Robbins, J., Cribbs, L. L., Molkentin, J. D. et al. (2008). Ca²⁺ influx through T- and L-type Ca²⁺ channels have different effects on myocyte contractility and induce unique cardiac phenotypes. *Circ. Res.* **103**, 1109-1119.
- Jegla, T. J., Zmasek, C. M., Batalov, S. and Nayak, S. K. (2009). Evolution of the human ion channel set. Comb. Chem. High Throughput Screen. 12, 2-23.

- Kang, H.-W., Moon, H.-J., Joo, S.-H. and Lee, J.-H. (2007). Histidine residues in the IS3–IS4 loop are critical for nickel-sensitive inhibition of the Cav2.3 calcium channel. *FEBS Lett.* 581, 5774-5780.
- Kinoshita, H., Kuwahara, K., Takano, M., Arai, Y., Kuwabara, Y., Yasuno, S., Nakagawa, Y., Nakanishi, M., Harada, M., Fujiwara, M. et al. (2009). T-type Ca²⁺ channel blockade prevents sudden death in mice with heart failure. *Circulation* **120**, 743-752.
- Kitchens, S. A., Burch, J. and Creazzo, T. L. (2003). T-type Ca²⁺ current contribution to Ca²⁺-induced Ca²⁺ release in developing myocardium. J. Mol. Cell. Cardiol. 35, 515-523.
- Lee, J.-H., Gomora, J. C., Cribbs, L. L. and Perez-Reyes, E. (1999). Nickel block of three cloned T-Type calcium channels: low concentrations selectively block α1H. *Biophys. J.* **77**, 3034-3042.
- Leuranguer, V., Mangoni, M. E., Nargeot, J. and Richard, S. (2001). Inhibition of T-Type and L-Type calcium channels by mibefradil: physiologic and pharmacologic bases of cardiovascular effects. J. Cardiovasc. Pharmacol. 37, 649-661.
- MacRae, C. A. and Peterson, R. T. (2015). Zebrafish as tools for drug discovery. Nature Reviews Drug Discovery 14, 721-731.
- Marionneau, C., Couette, B., Liu, J., Li, H., Mangoni, M. E., Nargeot, J., Lei, M., Escande, D. and Demolombe, S. (2005). Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. J. Physiol. 562, 223-234.
- Martinez, M. L., Heredia, M. P. and Delgado, C. (1999). Expression of T-type Ca²⁺ channels in ventricular cells from hypertrophied rat hearts. *J. Mol. Cell. Cardiol.* 31, 1617-1625.
- Maylie, J. G. and Morad, M. (1995). Evaluation of T-type and L-type Ca²⁺ currents in shark ventricular myocytes. *Am. J. Physiol.* **269**, H1695-H1703.
- McDonald, T. F., Pelzer, S., Trautwein, W. and Pelzer, D. J. (1994). Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. *Physiol. Rev.* 74, 365-507.
- Mesirca, P., Torrente, A. G. and Mangoni, M. E. (2015). Functional role of voltage gated Ca²⁺ channels in heart automaticity. *Front. Physiol.* 6, 19.
- Mitra, R. and Morad, M. (1986). Two types of calcium channels in guinea pig ventricular myocytes. Proc. Natl. Acad. Sci. USA 83, 5340-5344.
- Morad, M., Goldman, Y. E. and Trentham, D. R. (1981). Rapid photochemical inactivation of Ca²⁺-antagonits shows that Ca²⁺ entry directly activates contraction in frog heart. *Nature* **304**, 635-638.
- Nakayama, H., Bodi, I., Correll, R. N., Chen, X., Lorenz, J., Houser, S. R., Robbins, J., Schwartz, A. and Molkentin, J. D. (2009). Alpha1G-dependent T-type Ca²⁺ current antagonizes cardiac hypertrophy through a NOS3-dependent mechanism in mice. J. Clin. Invest. **119**, 3787-3796.
- Nemtsas, P., Wettwer, E., Christ, T., Weidinger, G. and Ravens, U. (2010). Adult zebrafish heart as a model for human heart? An electrophysiological study. *J. Mol. Cell. Cardiol.* 48, 161-171.
- Nilius, B., Hess, P., Lansman, J. B. and Tsien, R. W. (1985). A novel type of cardiac calcium channel in ventricular cells. *Nature* **316**, 443-446.
- Nuss, H. B. and Houser, S. R. (1993). T-type Ca²⁺ current is expressed in hypertrophied adult feline left ventricular myocytes. *Circ. Res.* 73, 777-782.
- Ono, K. and Iijima, T. (2010). Cardiac T-type Ca²⁺ channels in the heart. J. Mol. Cell. Cardiol. 48, 65-70.
- Ouadid, H., Séguin, J., Richard, S., Chaptal, P. A. and Nargeot, J. (1991). Properties and modulation of Ca channels in adult human atrial cells. J. Mol. Cell. Cardiol. 23, 41-54.
- Perez-Reyes, E. (2003). Molecular physiology of low-voltage-activated t-type calcium channels. *Physiol. Rev.* 83, 117-161.
- Pesco-Koplowitz, L., Gintant, G., Ward, R., Heon, D., Saulnier, M. and Heilbraun, J. (2018). Drug-induced cardiac abnormalities in premature infants and neonates. *Am. Heart J.* **195**, 14-38.
- Peterson, R. T. and MacRae, C. A. (2012). Systematic approaches to toxicology in the zebrafish. *Annu. Rev. Pharmacol. Toxicol.* **52**, 433-453.
- Rosati, B. and McKinnon, D. (2004). Regulation of ion channel expression. *Circ.* res. 94, 874-883.
- Rottbauer, W., Baker, K., Wo, Z. G., Mohideen, M.-A. P. K., Cantiello, H. F. and Fishman, M. C. (2001). Growth and function of the embryonic heart depend upon the cardiac-specific L-Type calcium channel α1 subunit. *Dev. Cell* **1**, 265-275.
- Shiels, H. A. and White, E. (2005). Temporal and spatial properties of cellular Ca²⁺ flux in trout ventricular myocytes. Am. J. Physiol. 288, R1756-R1766.
- Shiels, H. A., Paajanen, V. and Vornanen, M. (2006). Sarcolemmal ion currents and sarcoplasmic reticulum Ca²⁺ content in ventricular myocytes from the cold stenothermic fish, the burbot (*Lota lota*). J. Exp. Biol. 209, 3091-3100.
- Shiels, H. A., Galli, G. L. J. and Block, B. A. (2015). Cardiac function in an endothermic fish: cellular mechanisms for overcoming acute thermal challenges during diving. *Proc. R. Soc. Lond. B* 282, 20141989.
- Sidhu, R., Anttila, K. and Farrell, A. P. (2014). Upper thermal tolerance of closely related Danio species. J. Fish Biol. 84, 982-995.
- Sipido, K. R., Carmeliet, E. and Van de Werf, F. (1998). T-type Ca²⁺ current as trigger for Ca²⁺ release from the sarcoplasmic reticulum in guinea-pig ventricular myocytes. J. Physiol. 508.2, 439-451.

- Takebayashi, S., Li, Y., Kaku, T., Inagaki, S., Hashimoto, Y., Kimura, K., Miyamoto, S. H. T. and Ono, K. (2006). Remodeling excitation–contraction coupling of hypertrophied ventricular myocytes is dependent on T-type calcium channels expression. *Biochem. Biophys. Res. Commun.* 345, 766-773.
- Vassort, G., Talavera, K. and Alvarez, J. L. (2006). Role of T-type Ca²⁺ channels in the heart. *Cell Calcium* 40, 205-220.
- Vicente, J., Stockbridge, N. and Strauss, D. G. (2016). Evolving regulatory paradigm for proarrhythmic risk assessment for new drugs. J. Electrocardiol. 49, 837-842.
- Vornanen, M. (1996). Contribution of calcium current to total cellular calcium in postnatally developing rat heart. *Cardiovasc. Res.* **32**, 400-410.
- Vornanen, M. (1997). Sarcolemmal Ca influx through L-type Ca channels in ventricular myocytes of a teleost fish. *Am. J. Physiol.* 272, R1432-R1440.
- Vornanen, M. (1998). L-type Ca current in fish cardiac myocytes: effects of thermal acclimation and β-adrenergic stimulation. J. Exp. Biol. 201, 533-547.
- Vornanen, M. (2006). Temperature and Ca²⁺ dependence of [³H]ryanodine binding in the burbot (*Lota lota* L.) heart. *Am. J. Physiol.* 290, R345-R351.
- Vornanen, M. (2017). Electrical excitability of the fish heart and its autonomic regulation. In *The Cardiovascular System: Morphology, Control and Function* (*Fish Physiology*) (ed. K. A. Gamperl, T. E. Gillis, P. A. Farrell and C. J. Brauner), pp. 99-153. Cambridge, MA: Elsevier.
- Vornanen, M. and Hassinen, M. (2016). Zebrafish heart as a model for human cardiac electrophysiology. *Channels* **10**, 101-110.
- Vornanen, M., Shiels, H. A. and Farrell, A. P. (2002). Plasticity of excitationcontraction coupling in fish cardiac myocytes. *Comp. Biochem. Physiol. A* 132, 827-846.

- Wang, H.-S. and Cohen, I. S. (2003). Calcium channel heterogeneity in canine left ventricular myocytes. J. Physiol. 547, 825-833.
- Warren, K. S., Baker, K. and Fishman, M. C. (2001). The slow mo mutation reduces pacemaker current and heart rate in adult zebrafish. *Am. J. Physiol.* 281, H1711-H1719.
- Westerfield, M. (2007). The Zebrafish Book: A Guide for the Laboratory use of Zebrafish Danio (Brachydanio rerio). Eugene, Oregon, USA: University of Oregon Press.
- Wong, E., Yu, W.-P., Yap, W. H., Venkatesh, B. and Soong, T. W. (2006). Comparative genomics of the human and Fugu voltage-gated calcium channel α1-subunit gene family reveals greater diversity in Fugu. *Gene* 366, 117-127.
- Yasui, K., Niwa, N., Takemura, H., Opthof, T., Muto, T., Horiba, M., Shimizu, A., Lee, J.-K., Honjo, H. and Kamiya, K. (2005). Pathophysiological significance of T-type Ca²⁺ channels: expression of T-type Ca²⁺ channels in fetal and diseased heart. J. Pharmacol. Sci. 99, 205-210.
- Zamponi, G. W., Striessnig, J., Koschak, A. and Dolphin, A. C. (2015). The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. *Pharmacol. Rev.* 67, 821-870.
- Zhang, P. C., Llach, A., Sheng, X. Y., Hove-Madsen, L. and Tibbits, G. F. (2011). Calcium handling in zebrafish ventricular myocytes. *Am. J. Physiol.* **300**, R56-R66.
- Zhou, Z. and January, C. T. (1998). Both T- and L-type Ca²⁺ channels can contribute to excitation-contraction coupling in cardiac Purkinje cells. *Biophys. J.* 74, 1830-1839.