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Frank–Starling mechanism and short-term adjustment
of cardiac flow
José Guilherme Chaui-Berlinck1,* and Luiz Henrique Alves Monteiro2,3

ABSTRACT
The Frank–Starling law of the heart is a filling–force mechanism
(FFm), a positive relationship between the distension of a ventricular
chamber and its force of ejection, and such a mechanism is found
across all the studied vertebrate lineages. The functioning of the
cardiovascular system is usually described by means of the cardiac
and vascular functions, the former related to the contractility of the
heart and the latter related to the afterload imposed on the ventricle.
The crossing of these functions is the so-called ‘operation point’, and
the FFm is supposed to play a stabilizing role for the short-term
variations in the working of the system. In the present study, we
analyzewhether the FFm is truly responsible for such a stability within
two different settings: one-ventricle and two-ventricle hearts. To
approach the query, we linearized the region around an arbitrary
operation point and put forward a dynamical system of differential
equations to describe the relationship among volumes in face of blood
flows governed by pressure differences between compartments. Our
results show that the FFm is not necessary to give stability to an
operation point. Thus, which forces selected and maintained such a
mechanism in all vertebrates? The present results indicate three
different and complementary roles for the FFm: (1) it decreases the
demands of a central controlling system over the circulatory system;
(2) it smooths out perturbations in volumes; and (3) it guarantees
faster transitions between operation points, i.e. it allows for rapid
changes in cardiac output.

KEY WORDS: Cardiovascular system, Dynamical system, Filling–
force mechanism, Frank–Starling law, Heart, Stability analysis

INTRODUCTION
The Frank–Starling law, or heart law, has a long history, and
Starling himself is not its main discoverer: indeed, the length–
tension relationship from which it is derived was known at the
beginning of 1830 (Katz, 2002). The Frank–Starling law is a
relationship between the filling of a ventricle and the force of
contraction it develops (e.g. Holubarsch et al., 1996). In this way, it
is also known as the heart filling–force relationship (Katz, 2002;
Saks et al., 2006). Despite the fact that many fishes regulate cardiac

output mainly by changes in stroke volume, whereas mammals and
birds control it mainly by heart rate, the filling–force mechanism
(FFm) is found across all vertebrate classes (Shiels and White,
2008).

The relationship between cardiac muscle fiber length and force
resembles the same relationship that occurs in skeletal muscles.
However, the steepness of the curve obtained for the heart suggests
that, beyond myofilament overlapping, there should be other
mechanisms involved in the phenomenon. At the cellular level,
the still-unknown mechanism is the length-dependent activation
(Solaro, 2007) [also known as stretch-activation/calcium-activation
(Campbell and Chandra, 2006)], and, indeed, a calcium-activation
process is fundamental for the increase in force due to an increase in
length (e.g. Moss and Fitzsimons, 2002; Niederer and Smith, 2009;
Saks et al., 2004). Be that as it may, it is important to note that the
FFm is inherent to the heart cells themselves, without the
participation of extrinsic, such as neural or hormonal, controls. As
stated in the opening of the review by Shiels and White (Shiels and
White, 2008), ‘The Frank–Starling mechanism is an intrinsic
property of all vertebrate cardiac tissue’.

Guyton and co-workers conceived an invaluable static approach
to address the functioning of the cardiovascular system (e.g. Guyton
et al., 1957). We qualitatively illustrate this approach in Fig. 1A,
where the abscissa axis is the central venous pressure and the
ordinate axis is the cardiac output. Two linearized curves are shown:
the cardiac function (the ascending one) and the vascular function
(the descending one).

The cardiac function ultimately represents the FFm discussed
above, because an increase in central venous pressure would elicit
an increase in ventricular volume during the diastolic phase of the
cardiac cycle, which, in turn, would increase the contraction force,
resulting in increased cardiac output. The vascular curve is, in fact,
plotted the other way around to as it is truly obtained (the
experimental procedure is to cause changes in flow and measure the
resulting pressure), and represents the relationship between central
venous pressure and blood flow (for details and insightful
discussions of this subject, see Brengelmann, 2003 and Levy and
Pappano, 2007). The crossing of the two curves is the so-called
‘operation point’ (OP) of the cardiovascular system.

Now, many textbooks and papers consider, implicitly or
explicitly, the OP as a stable equilibrium point, and that the FFm
is responsible for such a stability. Let us give some examples:
‘… [OP] represent the stable values of cardiac output and central
venous pressure at which the system tends to operate. Any
perturbation … institutes a sequence of changes in cardiac output
and venous pressure that restore these variables to their equilibrium
values’ (Levy and Pappano, 2007, p. 187); ‘[Frank–Starling
mechanism] … applies in particular to the coordination of the
output of the two ventricles. Because the ventricles beat at the same
rate, the output of the two can bematched only by adjustments of the
stroke volume’ (Antoni, 1996, p. 1814); ‘The heart maintainsReceived 20 July 2017; Accepted 11 September 2017
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normal blood circulation under a wide range of workloads, a
function governed by the Frank–Starling law’ (Saks et al., 2006);
‘This important functional property of the heart supplies an essential
regulatory mechanism by which cardiac output is intrinsically
optimized relative to demand’ (Asnes et al., 2006). Besides these
citations, many others, one way or another, consider the OP as a
stable equilibrium point owing to the FFm (e.g. Fuchs and Smith,
2001; Moss and Fitzsimons, 2002; Niederer et al., 2011).
As we see from the above-mentioned literature, students and

physicians are led to consider the FFm as giving stability to the
system. However, if we take the (apparent) stability of the
cardiovascular system as prima facie evidence of the (supposed)
stability generated by the FFm, we risk ourselves falling into a
circular reasoning. Actually, the OP could well be a neutral
equilibrium point or, even worse, an unstable node or focus, all
compatible with the curves that describe the OP (see Fig. 1B–D as
examples). In effect, during undergraduate and graduate disciplines,
one of us (J.G.C.-B.) has been troubled by trying to explain the
stability of the OP from the vascular and cardiac curves. If one
examines with care the diagram in Fig. 1B, a perturbation in the OP
would not be dampened in the following cycle(s) but instead would
be amplified.
Why does this occur? It occurs because the OP diagram is not a

diagram concerning the dynamical phase space of the variables. It
shows a static two-dimensional (2D) relationship between a pair of

variables that belong to a higher dimensional space: the curves are
somehow projections of the null-clines of the whole system (note: in
the case of one-ventricle hearts, as discussed later, the OP diagram is
a construct from a lower dimensional space, but this is not really
important here).

In plain English, the OP diagram does not, and cannot, reveal
how changes in one variable (say, left cardiac output) alters the other
(say, central pulmonary venous pressure) because there are missing
variables. If the vascular curve refers to the vena cava, then the
cardiac curve should be for the right ventricle. If the vascular curve
refers to the pulmonary veins, then the cardiac curve should be for
the left ventricle. However, as usually presented, the OP diagram
mixes up the two sides of the heart. Once we recognize this, we
understand that, for two-ventricle hearts, one needs four
dimensions somehow related to the systemic pressure, the right
ventricle output, the pulmonary pressure and the left ventricle
output (although this obviously prevents a 2D representation).
Therefore, there are two OPs: one for the left side and one for the
right side of the heart.

In a more formal language, the diagram of the vascular and
cardiac curves (Fig. 1) as obtained does not have an associated
vector field in the phase space that represents the possible
trajectories of the system given a perturbation from the OP. Thus,
the conundrum is whether the OP is a stable equilibrium point due to
the FFm, which, in the end, guaranties that both beat-to-beat
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Fig. 1. Cardiovascular operation point (OP). (A) Usual (linearized) representation of the cardiac (double line) and vascular (single line) functions resulting
in an OP of the heart. (B–D) Pictorial representations of putative trajectories of the system after an arbitrary perturbation under different scenarios of the
cardiac function (the paths are only for illustrative purposes and based on a cobwebbing approach of discrete dynamical systems). The perturbation is indicated by
the solid arrow (δ), and leaves the system at point a. Such a point corresponds to a certain central venous pressure (vertical
dotted line) that, in turn, corresponds to a cardiac output over the cardiac function line (horizontal dotted line; point b). This cardiac output results in another
central venous pressure to the vascular function (point c), and so forth. The dashed arrows indicate the time evolution of the system after the perturbation.
(B) Here, the cardiac function is the one expected due to the filling–force mechanism (FFm). (C) Here, the cardiac function is independent of the central venous
pressure. (D) Here, the cardiac function works in the opposite way as the FFm: it decreases as the central venous pressure increases. From the plots,
one would be tempted to conclude that the usual FFm would render the system unstable (notice that, in B, after the perturbation the system does not
return to the previousOP), whereas its absence brings stability. However, as we explain in the text, this diagramcannot be employed to draw conclusions in regard
of the stability of the OP because it is not the true phase space of the system and, thus, has no vector field of temporal evolution associated to it (see Fig. 3).
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variation and the coordination between the ventricles can be
sustained without any regulatory loop extrinsic to the heart.
The FFm is found among all vertebrate classes, as stated before.

However, many vertebrates have single-ventricle hearts and so there
is no match necessities between the outputs from two ventricles
beating simultaneously. Moreover, exactly these vertebrates belong
to the predecessor lines of the two-ventricle hearts of mammals,
birds and some reptiles. Thus, in evolutive terms, the FFm precedes
output-matching necessities.
Fishes regulate cardiac output mainly by systolic volume and it is

considered that the FFm is responsible for the adjustment of ejection
in face of large changes in ventricle volume (Shiels and White,
2008). The ascending limb of the relationship between developed
tension and sarcomere length is much broader in these animals than
in mammals and birds, indicating a wider range of adequate
ventricular pressure responses in face of increases in chamber
volume (Shiels and White, 2008). Despite the fact that these
considerations seem to address the question of the stability of a
given equilibrium point in fishes, in fact they are related to the
transitions among operating points governed by a series of systemic
changes (e.g. changes in metabolic demand, muscle contraction,
autonomic tonus, etc.). Counterintuitively, the latter, transitions,
does not imply the former, stability.
The present study aims to answer the questions of the role of the

FFm in the stability of an OP and of the role of the FFm in output-
matching. These questions are approached by the analysis of a
dynamical system representing the acute and intrinsic coupling
between cardiac output and central venous pressure (see the
following section for details). We analyze two settings of this
coupling, one concerning the single ventricle system of fishes and
the other concerning the two-ventricle system of mammals, birds
and some reptiles. The settings are analyzed in two different
scenarios: (A) the FFm actuating the ventricular chamber; and (B) a
fixed force is exerted by a ventricular chamber. These two scenarios
are intended to allow for a comparison of what would happen if the
FFm were absent and so, to answer the proposed questions.

MATERIALS AND METHODS
Preliminary considerations
Mechanistic description and cardiac dynamics
The functioning of the cardiovascular system is governed by a set of
variables, including vascular capacitances, vascular impedances,
blood rheology, total blood volume and autonomic nervous system
tonus (e.g. Holubarsch et al., 1996; Hoppensteadt and Peskin, 2002).
For the purposes of the present analysis, these variables would be
considered as constants during the timeframe of interest. This defines
what is meant by ‘acute’ and ‘intrinsic’ that we mentioned above. In
other words, we are saying that there is more than one timescale to
describe the system, and we shall investigate one that operates at a
rate corresponding to one heartbeat interval. In doing so,we are led to
consider that, in the vicinities of an OP, the system behaves linearly.
In this instance, the total volume of fluid (explicitly, blood), VT, is

constant and equals the sum of the volumes in each compartment,
Vj, of the system:

VT ¼
X

Vj: ð1Þ
We use the Hagen–Poiseuille model to describe flow between

two points, i and j, of the circulatory system:

_Qi;j ¼
Pi � Pj

Ri;j
; ð2Þ

in which _Q is the flow between compartments i and j, P is the
pressure in a given compartment and R is the resistance imposed to
the flow between the compartments. Notice that the resistance term
encloses physical constants of the system, such as mean radius and
length of the vessels, viscosity of the fluid, etc.

The pressure in a given compartment (Pj) is the volume (Vj) of
blood present in the compartment divided by the capacitance (βj) of
the compartment (here, we consider the capacitance as a constant in
the small range of volume variations we analyze):

Pj ¼
Vj

bj
: ð3Þ

Eqns 1–3 form the core of the subsequent models in which the
time variation in the volume of a given compartment ( j) is the result
of the inflow and outflow of blood:

dVj

dt
¼ _Qin � _Qout: ð4Þ

Because total volume is constant, it follows that:

X dVj

dt
¼ 0: ð5Þ

As stated before, the timeframe of reference is related to one
heartbeat, which is composed of two phases. During systole, the heart
ejects but does not receive blood. During diastole, the reverse is true.
Therefore, when we employ Eqn 4 we are referring to mean values
during the cardiac cycle. To incorporate such a cycle in the mean-
valued model, we consider that, during diastole, the capacitance of
the ventricle tends to infinity and, therefore, the circulatory tree fills
the heart against a near-zero pressure. During systole, the ventricle
develops a certain pressure (force), and this pressure is related to the
volume of the ventricle. This is the FFm.

The model is intended to study the behavior of the system near
an OP. Therefore, we employ a simple positive linear relationship
between volume and pressure (force). This means that we are
neither modeling any transition between two distant OPs nor
pathological conditions in which the FFm might be inverted (i.e.
the greater the ventricular volume the lower the developed force, as
in Fig. 1D).

RESULTS
Modeling and results: From fish …

One-ventricle hearts
Let ‘H’ represent the heart chamber and ‘S’ the vascular tree (Fig. 2).

Scenario A: the FFm actuating the ventricular chamber
The outflow from the heart (inflow to the vascular tree) and the
outflow from the vascular tree (inflow to the heart) are:

_QH ¼ F � VH � VS � bS
�1

RS
; ð6Þ

_QS ¼ VS � bS
�1

RH
; ð7Þ

in which F is the linear coefficient of the relationship between
ventricle volume and developed pressure (the FFm). For the sake of
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notation, we define:

a ¼ 1

RS � bS
; ð8Þ

b ¼ 1

RH � bS
; ð9Þ

f ¼ F

RS
: ð10Þ

Coefficients a, b and f have units of pressure · volume−1 ·
resistance−1. Because resistance to flow have units of time · pressure ·
volume−1, the coefficients end up as time−1 (i.e. inverse of time
constants).
Because the time variation in total blood volume is zero (Eqn 5),

then, from Eqn 4, the system is described by the following
differential equation:

dVH

dt
¼ ðaþ bÞ � VT � ðaþ bþ f Þ � VH: ð11Þ

By equating dVH/dt to zero, we obtain the value of the cardiac
volume (and, consequently, the volume of the vascular tree as well)
at the equilibrium point of the system, denoted by an asterisk:

VH� ¼ aþ b

aþ bþ f
� VT: ð12Þ

In fact, Eqn 11 can be directly integrated and we have:

VHðtÞ ¼ aþ b

aþ bþ f
� VT � ð1� e�ðaþbþf Þ�tÞ; ð13Þ

in which e is the base of the natural logarithm.

Scenario B: a fixed force is exerted by a ventricular chamber
We use the subscript k to indicate the parameters and the variables in
this fixed-force scenario. The outflow from the heart (inflow to the
vascular tree) becomes:

_QH;k ¼
Fk � VS � bS

�1

RS
; ð14Þ

in which Fk is the fixed-force term. The outflow from the vascular
tree (inflow to the heart) remains the same as in Eqn 6. The

differential equation describing the dynamics of the system is now:

dVH;k

dt
¼ ðaþ bÞ � VT � fk � ðaþ bÞ � VH;k : ð15Þ

Notice that the constant fk has units of volume · time−1, i.e. flow.
Integrating Eqn 15 results in:

VH;kðtÞ ¼ VT � fk
aþ b

� �
� ð1� e�ðaþbÞ� tÞ; ð16Þ

and the value of the cardiac volume at the equilibrium point is:

V
H;k
� ¼VT � fk

aþ b
: ð17Þ

Eqn 17 shows that, if the fixed-force term (represented by fk) is
much greater than the sum of a+b, the heart chamber would become
completely empty of blood.

Stability of the equilibrium point
Both Eqns 13 and 16 reveal that their respective equilibrium points
are an asymptotically stable node: both eigenvalues are negative real
numbers (e.g. Monteiro, 2011). Therefore, irrespective of the
presence of the FFm, the one-ventricle circulatory system has a
stable OP. Fig. 3 illustrates the phase portrait of the one-ventricle
system with its associated vector field.

… to philosopher
[From Fish to Philosopher is a classical book by Homer William
Smith (1959).]

Two-ventricle hearts
As stated in the Introduction, we need four state variables (shown in
subscript in the equations) to describe two-ventricle hearts: left
ventricle (L), systemic vascular bed (S), right ventricle (D – we use
D for dextral instead of R, to avoid confusion with resistance) and
pulmonary vascular bed (G; we use ‘G’ for ‘gas exchanger organ’

VH

VS

QH
.

QS
.

Fig. 2. Schematic diagram of the model of the one-ventricle heart system.
The state variables heart volume (VH) and systemic volume (VS) are in
boxes. The arrows indicate blood flows ( _Q).
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Fig. 3. Phase portrait of the one-ventricle system. The black circle indicates
the pair (cardiac volume, vascular tree volume) at a given equilibrium point.
The dashed line represents the total volume of the system (i.e. VH+VS), which
is constant. The pair of solid arrows over the VT line is the associated vector
field of the system. As explained in the text, the equilibrium point is
asymptotically stable. Therefore, the vector field (solid arrows) points towards
the black circle, indicating that, for a given set of parameters (a, b and f, or fk,
where fk is the fixed-force term), the system returns to this equilibrium point
after a perturbation. Notice that the phase space (x- and y-axis) is not composed
by ‘central venous pressure’ and ‘cardiac output’ as in the usual OP
representation (Fig. 1). Instead, it is composed by the state variables ‘vascular
tree volume’ and ‘cardiac volume’, and has an associated vector field that
identifies the time evolution of the system. For the sake of illustration, above theVT

line we show other vector fields that would represent unstable equilibrium points.
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instead of ‘P’, which would cause confusion with pressure) (see
Fig. 4).

Scenario A: the FFm actuating the ventricular chamber
Flows are given by the following equations:

_QL ¼ FL � VL � VS � bS
�1

RS
¼ fL � VL � a � VS; ð18Þ

_QS ¼ VS � bS
�1

RD
¼ b � VS; ð19Þ

_QD ¼ FD � VD � VG � bG
�1

RG
¼ fD � VD � c � VG; ð20Þ

_QG ¼ VG � bG
�1

RL
¼ e � VG; ð21Þ

in which we employ the same short notation as in the preceding
section for the sake of clarity. From the equations of flow and Eqn 5,
we have the following set of coupled differential equations to
describe the system:

dVL

dt
¼ e � VG þ a � VS � fL � VL

dVS

dt
¼ fL � VL � ðaþ bÞ � VS

dVG

dt
¼ fD � ðVT � VL � VS � VGÞ � ðcþ eÞ � VG:

8>>>>><
>>>>>:

ð22Þ

The volumes at the equilibrium point of the system are (we let VS*
and VG* be functions of VL*):

VS
� ¼ fL

aþ b
� VL

�; ð23Þ

VG
� ¼ b � fL

e � ðaþ bÞ � VL
�; ð24Þ

VL
�¼ fD �e�ðaþbÞ

fD �e�ðaþbÞþfL �½fD �ðbþeÞþb�ðcþeÞ��VT: ð25Þ

Just to check the feasibility of Eqn 25, if fD=0, i.e. the right
ventricle has no ejecting force at all, then thewhole volume of blood
would be retained in the right ventricle, whereas, if fL=0, then the
volume is completely retained in the left ventricle. If both fD and fL
go to zero simultaneously, then one has a proportion of blood
retained in the right side and the other in the left side, as in
stagnation conditions. These extreme results are in accordance with
what one would anticipate within this simplified framework of the
circulatory system.

Stability of the equilibrium point in the presence of the FFm
The stability of the equilibrium point is given by setting the
determinant of the Jacobian of the system to zero:

�fL � l a e
fL �ðaþ bÞ � l 0

�fD �fD �fD � c� e� l

������
������¼ 0; ð26Þ

in which λ is an eigenvalue of the system. This determinant
corresponds to the following characteristic equation:

l3 þ z1 � l2 þ z2 � lþz3 ¼ 0: ð27Þ

The coefficients zi are:

z1 ¼ aþ bþ cþ eþ fL þ fD; ð28Þ

z2 ¼ a � cþ a � eþ b � cþ b � eþ fD � aþ fD � bþ fD � e
þ fL � bþ fL � cþ fL � eþ fL � fD; ð29Þ

z3 ¼ e � fD � aþ e � fD � bþ e � fL � bþ fL � c � bþ fL � e
þ b � fL � fD þ e � fL � fD:

ð30Þ

For the equilibrium point to be asymptotically stable, the
following conditions must be satisfied: (1) zi>0 ∀ i; (2) z1 · z2>z3.
Because all parameters are positive, condition 1 is satisfied. Plain
inspection of the coefficients shows that condition 2 is also satisfied.
Therefore, the equilibrium point of a two-ventricle system in the
presence of the FFm is asymptotically stable.

Scenario B: a fixed force is exerted by a ventricular chamber
The system is described by the following coupled differential
equations, where the subscript k indicates the fixed force:

dVL

dt
¼ e � VG þ a � VS � fL;k

dVS

dt
¼ fL;k � ðaþ bÞ � VS:

dVG

dt
¼ fD;k � ðcþ eÞ � VG:

8>>>>><
>>>>>:

ð31Þ

The volumes of the compartments S and G at the equilibrium point
of the system are:

VS
� ¼ fL;k

aþ b
; ð32Þ

VG
� ¼ fD;k

cþ e
: ð33Þ

VG VL

VSVD

QL
.

QS
.

QG
.

QD
.

Fig. 4. Schematic diagram of the model of the two-ventricle heart system.
The state variables left ventricle volume (VL), systemic circulation volume (VS),
right ventricle volume (VR) and gas-exchanger circulation volume (VG) are
in boxes. The arrows indicate blood flows ( _Q).
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From these values, in the equation of dVL/dt, we obtain that the
following relationship must hold in order for the system to have an
equilibrium point:

fL;k � b � ðcþ eÞ ¼ fD;k � e � ðaþ bÞ: ð34Þ

Therefore, unless the condition in Eqn 34 is fulfilled, the system
will not attain an equilibrium point at all. Also notice that the
volumes of two compartments are not obtained (see below).

Stability of the equilibrium point in the presence of a fixed force of ejection
We obtain the following determinant of the Jacobian of system 22:

�l a e
0 �ðaþ bÞ � l 0
0 0 �ðcþ eÞ � l

������
������ ¼ 0: ð35Þ

Therefore, the system has an asymptotically stable subspace with
two real eigenvalues [λ1=–(a+b) and λ2=–(c+e)] and a central
manifold corresponding to λ3=0. This central manifold represents
the indeterminacy of the two volumes (VL and VD in this case). Let
VH=VL+VD. Because:

dVH

dt
¼ dVL

dt
þ dVD

dt
¼ � dVS

dt
� dVG

dt
; ð36Þ

the system becomes simply:

dVS

dt
¼ fL;k � ðaþ bÞ � VS

dVG

dt
¼ fD;k � ðcþ eÞ � VG

8><
>: : ð37Þ

In a very similar way to what happens in the case of one-ventricle
hearts, the system is asymptotically stable even in the absence of the
FFm and, considering Eqn 34, one way to write the heart volume is:

VH
� ¼VT �

fD;k
cþ e

� bþ e

b

� �
: ð38Þ

DISCUSSION
The stability of the OP of the cardiovascular system is usually taken
for granted as a result of the Frank–Starling law, i.e. the FFm of the
heart. However, the OP diagram does not convey sufficient
information to conclude that such an intrinsic mechanism of the
myocardium truly would bring about stability to the system on a
beat-to-beat basis.
In the present study, we approach this question by investigating

the behavior of a dynamical system, representing a circulatory
system, in the vicinity of an OP. In such a vicinity, the temporal
variation of a set of relevant physical variables in the cardiovascular
system is taken as null, i.e. we investigate the behavior of the system
within a fast time scale, roughly corresponding to the heartbeat
interval. In this sense, all the sympathovagal inputs to the heart are
considered as constants, as well as changes in blood volume,
rheological factors, etc.
The first important conclusion of the study is that both types of

circulatory systems, i.e. one-ventricle and two-ventricle hearts, are
asymptotically stable even in the absence of the FFm. In other
words, if a given OP exists, it is stable, and the system will return to
such an OP after suffering a perturbation, irrespective of the
presence of the FFm and without any extrinsic regulatory loop.

Therefore, the question is now renewed. One has to understand
the evolutive conservation and the role of the FFm without evoking
its alleged and putative responsibility in stabilizing the OP.

Owing to the similar results between the systems with one and
two ventricles, let us focus on the one-ventricle heart for simplicity.
Eqns 12 and 17 describe the volume in the heart compartment for
one system with and for another one without the FFm, respectively.
Fig. 5 shows a plot of these functions (the 5% volume line is
indicated simply as a reference to a usual value of the volume in the
heart in relation to the volume of blood).

At the risk of becoming repetitive, let us put it once again: both
scenarios allow for the existence of stable OPs. In addition, as
already stated (see Results), if the force term tends to zero, the
total blood volume tends to be retained in the cardiac chamber
(left-hand side in Fig. 5). In the vicinities of the zero force, the
heart volume of the system with the FFm shows a steeper
relationship with force than the fixed-force system. However,
from a certain volume down, the linear relationship of the fixed
force becomes steeper than the asymptote of the FFm system.
Thus, close to the range of reasonable heart volumes, the fixed-
force system shows a higher variation in the volumes of its
compartments in face of variations in force, whereas the filling-
force system has a smooth response.

The effort required for control (e.g. Kirk, 2012 p. 259; Todorov
and Jordan, 2002) and computational complexity (e.g. Benenti
et al., 2007 p. 24; Moller and Smolka, 1965) are somehow related to
energy waste and resource allocation by the controller system or the
resolution algorithm in a given task. In this sense, it is now widely
recognized that the processing of information in the nervous systems
incurs substantial increases in energy demands of the organism, and
reducing the amount of redundant information processing or
eliminating predictable inputs are important selective pressures
operating at diverse levels of organization (Niven and Laughlin,
2008). Considering that the resistances, capacitances and even the
myocardial force itself are under adjustments regulated by the
autonomous nervous system, the smoothness brought by the FFm
ends up as a lower effort on the controller unit (i.e. lower energy
demand and/or use of system resources).
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Fig. 5. Comparison between the effects of varying the force terms in the
two different scenarios analyzed (Eqns 12 and 17). The y-axis represents
the fraction of blood in the cardiac chamber in relation to total blood volume.
The x-axis represents force, i.e. the terms f and fk (it must be kept in mind that
f and fk have different dimensions). Continuous line: volume in the scenario
with the FFm. Dashed line: volume in the scenario with a fixed-force exerted by
the ventricular chamber. Dotted horizontal line: 5% of total blood volume.
The sum of the terms a and b in both Eqns 12 and 17 is 1 for the simulations
shown in the plot.
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Inspection of Eqn 25 shows that the controller unit can operate a
variation in one given parameter (say, systemic resistance in the
coefficient a) and the circulatory system will self-adjust its volumes
accordingly. By contrast, in the scenario with fixed-force terms,
inspection of Eqn 34 shows that the controller unit must operate
simultaneous variations in at least two parameters in order to
guarantee the working of the system.
Thus, the second conclusion we can draw is that the FFm has a

role in decreasing the controlling effort external to the circulatory
system (note that this has nothing to do with the stability of an OP
discussed above). The absence of the FFm does not preclude
variations to be operated in the circulation, but the presence of the
FFm smooths out perturbations more easily.
Then, the next inevitable question is whether the FFm plays

some role in heart-rate variability. Heart rate suffers variations on a
beat-to-beat basis. The most prominent are changes associated
with ventilation (respiratory sinus arrhythmia), but many other
factors are also interconnected with these variations, resulting in a
multifaceted composition of frequencies. The beat-to-beat
modulation of heart rate is due to a number of feedback loops
that end in a common dual efferent path, the sympathetic and
parasympathetic branches of the autonomic nervous system (e.g.
Aubert et al., 2003; Stauss, 2003). Also, there might exist some
intrinsic innervation in the heart itself, whose role in this process is
not well established (Stauss, 2003). This modulation gives rise to the
so-called ‘heart-rate variability’, and such a variability is an important
sign of adequate functioning of the cardiovascular system (e.g.
Stauss, 2003; TASK FORCE, 1996).
In this sense, the third relevant conclusion of the present study

comes from the inspection of the eigenvalues of a system with the
FFm and of a similar system (i.e. a system with the same set of
values for the parameters of the vascular bed) with a fixed ejection
force. For the one-ventricle hearts, this can be directly evaluated in
Eqns 13 and 16 for the cases with the FFm and without it,
respectively. Considering that the volume of blood in the heart is
approximately 5% of the total blood volume, from Eqn 12 we obtain
that the filling-force term would be roughly 19-fold greater than the
sum of the other two terms, a and b. This results in a returning to the
OP 20 times faster in the presence of the FFm than in its absence.
For the two-ventricle hearts without the FFm, the eigenvalues of

the stable sub-space are shown in Eqn 35. Although we did not
directly compute the eigenvalues of two-ventricle hearts when the
FFm is present, we can have a glimpse of what occurs in them.
Because the sum of the eigenvalues of a system equals the trace of
the Jacobian matrix, then we can observe that both terms fL and fR,
related to the FFm, take part in at least one of the eigenvalues of the
system (see Eqn 26). Therefore, similarly to what happens in one-
ventricle hearts, two-ventricle systems will also return to the OP
faster in the presence of the FFm than in its absence.
Thus, our third conclusion is in regard to the time constant of a

system: the FFm allows for a much faster return to an OP after a
perturbation. In other words, despite the fact that an existing OP is
stable even in the absence of the FFm, its presence guaranties the OP
to be regained in a fraction of the time than if there were no such a
mechanism.
Heuristically, we might consider that, when the system transits

from a previous OP to a new one, the former is a perturbation in
relation to the latter (notice that this is not the mathematical
definition of ‘perturbation’). In this sense, the transition among OPs
would be sped up by the FFm. In a similar line of reasoning, this
speeding up potentially contributes to non-autonomic components
of heart-rate variability, particularly in the high-frequency range.

In conclusion, in contrast to the currently held view, the FFm is
not necessary in order to give stability to an OP in a circulatory
system, whether composed by a heart with a single ventricle or with
two. Our modeling supports that the role of the FFm is related to
decreases in the controlling effort over the circulatory system,
to smooth out perturbations and to guarantee faster transitions
between OPs.
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da Fıśica.

Moss, R. L. and Fitzsimons, D. P. (2002). Frank-Starling relationship. Circ. Res.
90, 11-13.

Niederer, S. A. and Smith, N. P. (2009). The role of the frank–starling law in the
transduction of cellular work to whole organ pump function: a computational
modeling analysis. PLoS Comput. Biol. 5, e1000371.

Niederer, S. A., Plank, G., Chinchapatnam, P., Ginks, M., Lamata, P., Rhode,
K. S., Rinaldi, C. A., Razavi, R. and Smith, N. P. (2011). Length-dependent
tension in the failing heart and the efficacy of cardiac resynchronization therapy.
Cardiovasc. Res. 89, 336-343.

Niven, J. E. and Laughlin, S. B. (2008). Energy limitation as a selective pressure on
the evolution of sensory systems. J. Exp. Biol. 211, 1792-1804.

4397

RESEARCH ARTICLE Journal of Experimental Biology (2017) 220, 4391-4398 doi:10.1242/jeb.167106

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

http://dx.doi.org/10.1529/biophysj.105.065961
http://dx.doi.org/10.1529/biophysj.105.065961
http://dx.doi.org/10.1529/biophysj.105.065961
http://dx.doi.org/10.2165/00007256-200333120-00003
http://dx.doi.org/10.2165/00007256-200333120-00003
http://dx.doi.org/10.1152/japplphysiol.00868.2002
http://dx.doi.org/10.1152/japplphysiol.00868.2002
http://dx.doi.org/10.1085/jgp.200509483
http://dx.doi.org/10.1085/jgp.200509483
http://dx.doi.org/10.1161/01.CIR.94.4.683
http://dx.doi.org/10.1161/01.CIR.94.4.683
http://dx.doi.org/10.1161/01.CIR.94.4.683
http://dx.doi.org/10.1161/01.CIR.94.4.683
http://dx.doi.org/10.1161/01.CIR.0000040594.96123.55
http://dx.doi.org/10.1161/01.CIR.0000040594.96123.55
http://dx.doi.org/10.1090/S0002-9947-1965-0170805-7
http://dx.doi.org/10.1090/S0002-9947-1965-0170805-7
http://dx.doi.org/10.1161/hh0102.102977
http://dx.doi.org/10.1161/hh0102.102977
http://dx.doi.org/10.1371/journal.pcbi.1000371
http://dx.doi.org/10.1371/journal.pcbi.1000371
http://dx.doi.org/10.1371/journal.pcbi.1000371
http://dx.doi.org/10.1093/cvr/cvq318
http://dx.doi.org/10.1093/cvr/cvq318
http://dx.doi.org/10.1093/cvr/cvq318
http://dx.doi.org/10.1093/cvr/cvq318
http://dx.doi.org/10.1242/jeb.017574
http://dx.doi.org/10.1242/jeb.017574


Saks, V. A., Kuznetsov, A. V., Vendelin, M., Guerrero, K., Kay, L. and Seppet,
E. K. (2004). Functional coupling as a basic mechanism of feedback regulation of
cardiac energy metabolism. Mol. Cell. Biochem. 256, 185-199.

Saks, V., Dzeja, P., Schlattner, U., Vendelin, M., Terzic, A. and Wallimann, T.
(2006). Cardiac system bioenergetics: metabolic basis of the Frank-Starling law.
J. Physiol. 571, 253-273.

Shiels, H. and White, E. (2008). The Frank-Starling mechanism in vertebrate
cardiac myocytes. J. Exp. Biol. 211, 2005-2013.

Smith, H. W. (1959). From Fish to Philosopher: The Story of our Internal
Environment. Revised. Summit: CIBA Pharmaceutical Products Inc.

Solaro, R. J. (2007). Mechanisms of the Frank-Starling law of the heart: the beat
goes on. Biophys. J. 93, 4095-4096.

Stauss, H. M. (2003). Heart rate variability. Am. J. Physiol. -Regul. Integr. Comp.
Physiol. 285, R927-R931.

TASK FORCE (1996). Heart rate variability. Standards of measurement,
physiological interpretation, and clinical use. Task Force of the European
Society of Cardiology and the North American Society of Pacing and
Electrophysiology. Eur. Heart J. 17, 354-381.

Todorov, E. and Jordan, M. I. (2002). Optimal feedback control as a theory of motor
coordination. Nat. Neurosci. 5, 1226-1235.

4398

RESEARCH ARTICLE Journal of Experimental Biology (2017) 220, 4391-4398 doi:10.1242/jeb.167106

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

http://dx.doi.org/10.1023/B:MCBI.0000009868.92189.fb
http://dx.doi.org/10.1023/B:MCBI.0000009868.92189.fb
http://dx.doi.org/10.1023/B:MCBI.0000009868.92189.fb
http://dx.doi.org/10.1113/jphysiol.2005.101444
http://dx.doi.org/10.1113/jphysiol.2005.101444
http://dx.doi.org/10.1113/jphysiol.2005.101444
http://dx.doi.org/10.1242/jeb.003145
http://dx.doi.org/10.1242/jeb.003145
http://dx.doi.org/10.1529/biophysj.107.117200
http://dx.doi.org/10.1529/biophysj.107.117200
http://dx.doi.org/10.1152/ajpregu.00452.2003
http://dx.doi.org/10.1152/ajpregu.00452.2003
http://dx.doi.org/10.1093/oxfordjournals.eurheartj.a014868
http://dx.doi.org/10.1093/oxfordjournals.eurheartj.a014868
http://dx.doi.org/10.1093/oxfordjournals.eurheartj.a014868
http://dx.doi.org/10.1093/oxfordjournals.eurheartj.a014868
http://dx.doi.org/10.1038/nn963
http://dx.doi.org/10.1038/nn963

